當前位置:首頁 » 凈水方式 » 銦離子交換裝置

銦離子交換裝置

發布時間: 2021-01-18 00:05:35

A. 離子交換分離法

將含有鎳的9mol/LHCl溶液,流經氯型強鹼性陰離子交換樹脂柱,由於鐵、鈷、銅、鋅、內鉍等金屬離子在鹽容酸溶液中形成相應的配陰離子,而被吸附在陰離子交換樹脂柱中。鎳在此條件下不形成配陰離子,因而不被樹脂所吸附,仍留在溶液中,由此可與上述金屬離子得到分離。與鎳一起進入溶液的有鹼金屬,鹼土金屬以及鈦、釩、錳等。

AG50W陽離子交換樹脂從6mol/LHCl-丙酮介質中吸附分離鎳,鎳的分配系數可達227。在同一條件下,易形成氯配陰離子的一些元素分配系數在1以下,而鐵、鈷、銅、鋅、鎘、汞、鉛、鉍、錳、鉬、釩、鎵、銦、鈾等的分配系數不超過4;因此,鎳可與上述元素得到完全分離。

B. 離子交換-半微量化學分析法

銅的硫化礦物黃銅礦、輝銅礦和斑銅礦的分析可參照黃鐵礦的分析流程(圖69.1)

試樣用王水分解後制回成0.2mol/LHCl溶液上陽答離子交換柱,用0.2mol/LHCl淋洗後,於流出液中測定砷、磷和硒。用2mol/LHCl淋洗其他組分。

銅的測定最好單獨取樣。

分析步驟

(1)試樣分解及砷、磷、硒、硫、鈣、鎂、鋅、鈷、鎳、鉻、錳和銦的測定

稱取50mg(精確至0.01mg)試樣,置於100mL燒杯中,按本章69.1.1離子交換分離-半微量分析法分析黃鐵礦的分析步驟溶解,上陽離子交換柱,淋洗,測定As、P、Se、S、Ca、Mg、Zn、Co、Ni、Cr、Mn和In。

(2)銅和鐵的測定

稱取20mg(精確至0.01mg)試樣,置於100mL燒杯中,用HCl和HNO3溶樣,然後用NH4Cl-NH4OH小體積沉澱法使銅與鐵分離。在濾液中用碘量法測定銅。

沉澱用HCl溶解後取部分溶液用1,10-鄰二氮菲光度法測定鐵。

注意事項

1)輝銅礦因鐵量很低,可在陽離子交換的流程中用原子吸收光譜法測定。

2)硫也可以單獨取樣,用硫酸鋇重量法測定。

C. 離子交換分離-半微量化學分析

其分析流程見圖.1。

試劑

強酸性苯乙烯型陽離子交換樹脂,強酸1號。樹脂在水中浸泡後倒去水,再用2mol/LHCl浸泡過夜,傾出鹽酸,用蒸餾水洗滌至中性,裝入交換柱(1cm×7cm)中。用30mL2mol/LHCl淋洗樹脂,再用蒸餾水淋洗至中性,最後用0.2mol/LHCl淋洗平衡,備用。

圖69.1 黃鐵礦分析流程

底液取100mL1g/L動物膠溶液、270mL(1+1)H2SO4和50mL100μg/mL碲溶液混合,用水稀釋至500mL,搖勻(供測砷用)。

金-銅混合試劑將0.93g氯化金(AuCl3·HCl·4H2O)和13.4g氯化銅(CuCl2·2H2O)溶於500mL(1+1)HCl溶液中;取10mL此溶液用氯化鈉飽和的(1+1)HCl稀釋至400mL(供測硒用)。

分析步驟

稱取40mg(精確至0.01mg)試樣置於100mL燒杯中,加幾滴水潤濕試樣,加入5mL冷王水(用時現配),蓋上表面皿並放置30min(其間可搖動兩次,使試樣慢慢分解)。將燒杯置於水浴上加熱,分解試樣至全溶。移去表面皿,將溶液蒸至近干。取下,加2mLHCl,繼續加熱,蒸發至干。加熱的10~20mL0.2mol/LHCl溶解鹽類至溶液清亮,取下。冷卻至室溫。將溶液(若有沉澱或殘渣,則過濾後使用溶液;沉澱殘渣經灼燒,氫氟酸揮發測定SiO2,殘渣溶解後合並於2mol/LHCl淋洗液中)倒入陽離子交換柱,流出液用100mL容量瓶承接,用0.2mol/LHCl淋洗燒杯及交換柱,溶液體積控制在70mL左右,再用水淋洗至約100mL,取下容量瓶。用水稀釋至刻度,搖勻,製得溶液(A)。供測定硫、砷、硒、磷等元素使用。

用40mL2mol/LHCl分8次淋洗陽離子交換柱(每次5mL),流出液用100mL燒杯承接,低溫或水浴上蒸發除去過量的酸,轉入50mL容量瓶中,用水稀釋至刻度並控制酸度!(HCL)=2%左右,搖勻。製得溶液(B)。供測定全鐵、鈣、鎂、銅、鋅、鈷、鎳、鎘、錳和銦。

(1)硫的測定

移取50.0mL溶液(A)於250mL燒杯中,加水稀釋至150mL,熱至微沸。趁熱加入5mL100g/LBaCl2溶液,用硫酸鋇重量法測定。

(2)砷的測定

移取2.0mL溶液(A)於10mL比色管中,加入1滴50g/L抗壞血酸溶液、4mL底液、1mL2mol/LNH4I,用水稀釋至刻度,搖勻。在示波極譜儀上於原點電位-0.1V掃描測定。

校準曲線0~1μgAs或0~10μgAs。

(3)硒的測定

移取2.0mL溶液(A)於10mL比色管中,加入1mL0.1mol/LNaOH溶液、5mL金-銅混合試劑、1mL10g/L阿拉伯膠,用水稀釋至刻度,搖勻。與校準曲線同時加0.5mL100g/L次亞磷酸鈉溶液,立即搖勻。放置15~30min後,目視比色或按加次亞磷酸鈉的順序,以水為參比,用2cm比色皿,在波長580nm處測量吸光度。

校準曲線0.00~0.05μgSe。

(4)磷的測定

移取20.0mL溶液(A)於100mL燒杯中,加入2mLHBr,加熱蒸發至近干;加入2mLHNO3,加熱蒸發至近干,取下。冷卻後,用磷鉬藍光度法測定。

(5)全鐵的測定

移取2.0mL試液(B)於100mL容量瓶中,分別加入5mL2og/L抗壞血酸溶液、10mL4g/L1,10-鄰二氮菲溶液和15mL250g/L乙酸鈉溶液,用水稀釋至刻度,搖勻。用1cm比色皿,於波長510nm處,測量吸光度。

校準曲線0~800μgFe2O3

(6)鈣和鎂的測定

移取10.0mL試液(B)於25mL容量瓶中,准確加入2mL100g/LSrCl2溶液,用水稀釋至刻度,搖勻。用原子吸收光譜法測定鈣和鎂。

校準曲線0~500μgMgO、CaO。

(7)銅、鋅、鈷、鎳、鎘、錳和銦的測定

用剩下的試液(B),選擇各自的最佳儀器條件參數,以原子吸收光譜法測定銅、鋅、鈷、鎳、鎘、錳和銦。

注意事項

砷、硒也可以用原子熒光光譜法測定。

D. 氧化銦的制備方法

製取三氧化二銦的方法很多:有高頻吹氧法、硝酸鹽分解法、氫氧化銦分解回法、碳酸分解法等
詳細答介紹:
硝酸鹽分解法
1試劑及儀器:金屬銦 (4N或 5N),高純硝酸,分析純酒精,溫度控制儀,白鋼鍋,燒懷,馬弗爐 。
2試驗方法:將 4N(或 5N)金屬銦於白鋼鍋中熔化,潑成薄片,再加工成小片,每袋裝 1kg銦片備用。向處理好的 5L燒懷內加入 1kg銦片,先用離子交換水洗兩次,然後加 2 5L離子交換水和少量高純硝酸在電爐上加熱熔解,每次加酸量使溶液不能溢出為止。將澄清的溶液在電爐上加熱濃縮,出現白色結晶後倒入瓷碗中繼續濃縮,燒干後將調壓器調小微熱。將瓷碗放入馬弗爐中焙燒,先加熱至 50 0℃,無黃煙後,關爐門恆溫 1 5h,然後升溫至 63 0℃,恆溫 2h後降溫。待三氧化二銦降至室溫即得。

E. 怎麼翻譯,The ion exchange unoxidizes the ITO and cause the ITO circuit open

離子交換使ITO厭氧並導致ITO的電子迴路打開了。

F. 銦的研究與利用

一、銦的資源狀況

到20世紀90年代初為止,美國已探明銦儲量1萬噸左右,秘魯、瑞典、南非、加拿大等國均為數千噸(中國地質礦產信息研究院,1993)。

銦資源主要產地有秘魯、玻利維亞、加拿大、俄羅斯、中國、法國、比利時、英國、美國和日本等,大部分富銦礦床都產於環太平洋帶。加拿大的Mount Pleasant錫多金屬礦床就擁有數千噸銦,1998年投產後年產銦25t,產錫3500t。俄羅斯的富銦礦床產於遠東地區。美國和日本是全世界銦消費大國,對銦資源非常重視,20多年來一直重視對銦資源的勘查和保護,相繼也有不少富銦礦床發現,如日本的鹿兒島、苗木、豐羽、Toyoha、Nakakoshi等礦床,是日本有名的富銦礦床。我國銦的潛在資源相當豐富,全國16個省區都有富銦礦床發現,已探明銦儲量近2萬噸,遠景儲量大於10萬噸,80%以上的儲量分布在廣西、雲南、內蒙古、廣東四省區(四省區25處富銦礦床中,大、中型富銦礦床12處,小型3處,探明儲量1萬多噸,佔全國銦儲量的80%以上),其中以廣西和雲南居首,僅位於南嶺西段的大廠礦田銦儲量達6000噸以上,都龍錫鋅礦床銦儲量達4000多噸,個舊錫礦銦儲量達2000多噸,同一地區的白牛廠錫多金屬礦床也是一個超大型富銦礦床。研究顯示,內蒙古東部地區的孟恩陶勒蓋、大井、布敦化、白音諾、鬧牛山、敖腦達巴等錫-鉛-鋅-銀多金屬礦床也含有很高的銦,孟恩陶勒蓋礦床銦儲量達400多噸,該區有可能成為我國另一個重要的富銦礦床密集區。

過去認為銦主要從鉛鋅礦床中回收,其實並非所有的鉛鋅礦床都富銦,其中一個重要原因是由於銦資源的稀少,故把鉛鋅礦石中銦的回收指標定得很低(5×10-6~10×10-6,全國礦產儲量委員會辦公室,1987)。我們所說的富銦礦床,是指銦在礦床中大量富集了的礦床,礦石中一般銦含量在(50~100)×10-6以上,閃鋅礦(為主要含銦金屬礦物)為(500~3000)×10-6,甚至更高。

處於環太平洋帶中的印度尼西亞、馬來西亞等國,產出有世界著名的錫石硫化物礦床,但是這些國家由於工業發現的滯後,對銦的研究與開發也相對薄弱,相信這些地區的銦具有巨大的資源潛力等待開發利用。

二、銦的應用及需求

從銦的發現到1950年以前的近100年中,銦的研究和利用與它的量一樣的稀少,人們對銦的重視是與世界工業發展同步的。隨著工業的快速發展,銦的應用除傳統的半導體、無線電、焊料、粘合劑和密封合金、機電合金等領域外,其用途正在快速發展。目前,銦在新半導體合金、太陽能電池、光纖通訊、原子能、航天技術、計算機、電視機以及防腐等方面都得到廣泛的應用,並且,新技術、新用途還在不斷地被開發和研製出來。

隨著銦的用途的快速拓展,全世界銦的產量也在直線上升,1924年全世界產銦僅1kg,到了1980年,銦產量達到了45.5t,1990年達133t,1995年為197t,1998年為215t,1999年為235t,2000年超過了300t。中國既是世界銦資源大國,也是世界產銦大國,從1954年開始從多金屬礦石中回收銦,至1990年產量達11t,1997年為35t,1998年為48t,1999年為60t,2000年有6家冶煉廠生產銦,全年銦產量達到了115t。國內銦的消費量不足2t,深加工能力非常薄弱。隨著產量的增加和急功近利的影響,中國成了銦出口大國,1998年出口23.737 t,1999年出口41.92 t,2000年出口50 t,致使國際銦金屬價格從90年代初的近40萬美元/t,至2000年初銳降至60萬元人民幣/t,最近兩年銦價格的下降仍在繼續。這種貴重戰略性金屬的廉價出口引發了工業發達國家對銦的大量囤積。

由於銦的特殊物理性能,其應用范圍正在快速擴大,特別是近10年來,許多新技術、新領域的發展對銦的需求量在不斷增加。歸納起來,目前銦主要應用於以下方面:

(1)低熔點銦合金材料領域 銦低熔點合金具有良好的機械性能,防腐蝕,高導,常用作低電阻接點材料、低壓冷焊劑等方面。銦的二元或三元低熔點合金具有較高的高溫抗拉強度和抗疲勞強度,銦合金焊料比鉛-錫及金-錫焊料更高級。由於銦材料在低溫下具有良好的延展性,用於登月艙,著陸時的可靠性大大加強,不脆化、不開裂。目前銦合金的類型也在不斷增加。

(2)半導體領域 銦在半導體領域的應用最早最廣,可作為半導體鍺及晶體管、電子管的摻合劑、接觸劑和焊料。銦常用來生產銻化銦、磷化銦、砷化銦等半導體材料,研究和應用最早的是銻化銦,目前最有前景的是磷化銦,在通訊激光光源、太陽能電池等方面展現了可喜的前景。銻化銦和砷化銦主要用於紅外探測、光磁器件及太陽能轉換器等方面。

(3)硒銦銅多晶薄膜太陽能電池 該項技術是在20世紀80年代開發成功的,具有熱轉換率高,成本低廉,性能優越和生產工藝簡單的特點。

(4)原子能領域 銦能夠敏感地感測中子輻射,因此原子能工業中用於監控材料,其用量之大,與電子工業相當。

(5)防腐蝕領域 銦具有很好的防腐蝕性能是由日本三井金屬礦業公司在研究減少防腐劑中水銀的用量時發現的。現在日本所有的電池生產廠家利用銦徹底解決了腐蝕問題。電池中使用的鋅粉腐蝕產生氫氣,降低電池性能和壽命。原來用於防腐的水銀產生無法處理的環境污染。1984年日本開始研究用銦替代水銀,1992年實現了電池無水銀化,為銦開辟了新的用途。據劉世友(2001)資料,在此新用途中,銦的添加量為100×10-6,日本在此項應用中,1992年消費銦2 t,1993年和1994年各消費銦3 t,此後逐年上升。

(6)光纖通訊市場的應用 磷化銦現已用於光纖通訊領域,主要用作生產半導體銦-鎵-砷化物-磷化物的襯底,以提高光纖性能和穩定性。

(7)電視顯像管電子槍 在顯像管電子槍生產中,以銦代替鈧,一方面降低成本,同時有利於大功率輸出,延長壽命。

(8)銦錫氧化物(ITO)方面的應用 ITO可見光透過率>95%,紫外線吸收率>70%,對微波衰減率>85%,導電和加工性能良好,耐磨,耐化學腐蝕,因此其用途極為廣泛。

ITO是目前銦消費的最大市場。日本是全世界銦的最大消費國,佔全世界銦消費量的70%以上,1995年的數字表明,當年日本共消費銦92t,其中52t用於ITO。ITO主要用於薄膜晶體管(TFT)、液晶顯示器(LCD)及等離子顯示器的生產,傳統CRT顯示器的陰極射線管也需要數量可觀的銦,ITO在這方面的應用目前還沒有可替代品。

銦在其他方面還有很多用途。例如,由於銦具有強抗腐蝕性及對光的強反射能力,用於製作船艦的反射鏡,既可保持長久光亮,又能抵抗海水侵蝕;利用銦的低熔點特性製成特殊合金,用於消防系統的斷路保護裝置及自動控制裝置。另外,銦用作耐磨軸承、牙科合金、鋼鐵和有色金屬的防腐裝飾材料及傳統首飾等。ITO還用於建築玻璃、車輛玻璃等的去霧劑和除霜劑等。

2000年以前,全世界銦的需求量以每年4%~5%的速度增長,2000年至2001年,增長速度已達10%~15%。據估計,未來幾年,隨著個人計算機的進一步普及,尤其是不遠的將來大屏幕液晶及等離子電視進入千家萬戶,銦的需求量將飛速增長。因此,做好銦資源的勘查和研究、加強銦應用技術的研究及銦的儲備是保證在不遠的將來有備無患的關鍵。

三、銦資源的研究現狀綜述

世界各國學者對銦元素的研究已進行了半個多世紀,在兩個領域作出了重大貢獻,其一為銦的地球化學性質、銦在地球各類岩石和礦物及隕石中的含量、銦的富集成礦,全世界已有一大批(富)銦礦床被發現;其二為銦元素的應用,目前銦大量用於無線電、航天技術、高性能合金材料研製等新用途中,銦的需求量也在不斷增加,這又反過來促進了銦資源的研究。所以從20世紀50年代開始至今,一些發達國家對銦成礦學的研究從未停止,已取得了巨大進展,並且有越來越重視的趨勢。

對銦元素的大量研究開始於20世紀50年代。這一時期的研究者主要是西方學者,研究重點為銦元素的地球化學性質(Shaw,1952,1957;Fleischer et al.,1955),In-In3S2的熱動力學的研究(Thompson et al.,1954)、侵入岩岩石及礦物中銦的研究(Wager et al.,1958)、硫化物中包括銦在內的微量元素的研究(Fleischer,1955)等,可以說是這一時期的代表。這些研究大致釐定了銦在各類岩石中的分布,為後來對銦的研究奠定了基礎。

20世紀60~70年代,蘇聯學者將銦的研究推向高潮,他們詳細研究了前蘇聯境內銦在不同岩石和不同礦床中的分布,發現了一批富銦礦床,而且在銦的地球化學方面提出「地球化學星」的概念(Иванов,1963)並作了一些銦的富集與Eh值及溫度關系的實驗(Иванов,1966);發現礦石中含錫越高,硫化物中銦含量越高,銦的富集與高溫成礦條件有關;對不同時代岩石和礦床中銦的研究發現,從老到新,銦含量有所升高;出版了《分散元素礦床》一書(Ivanov et al.,1977);不少學者將銦與其它分散元素及成礦主元素如Zn、Fe等結合來探索礦床成因及綜合利用,認為硫化物礦床中的In對礦床成因有指示意義並具有工業綜合利用價值(Beus et al.,1960;Ganeev et al,1961;Иванов,1966;Ivanov,1968;Shtereberg et al.,1967)。這一時期其他西方國家的學者也作了不少研究工作,如Boorman等(1967)對Mount Pleasant錫礦中銦的研究、Caley等(1967)對墨西哥西部錫礦中銦的研究等,Chakrabarti(1967)的研究就將硫化物礦床中的微量元素與成礦聯系起來,而另一些西方學者更進一步研究了銦在隕石、不同岩石中的含量。

80~90年代,蘇聯學者繼續加強對銦的研究,隨之一些富銦礦床相繼又被發現(戈涅弗楚克,1991)。Greta(1980)對保加利亞7個煤礦中銦的研究有獨到之處,研究發現,煤中含銦很高,部分煤樣含銦(20~167)×10-6,個別樣品含銦大於1000×10-6,區內多金屬礦床含錫富銦。在瑞典、法國、加拿大、美國都先後發現了銦礦床或銦礦體的報道(Johan,1988;Marao et al.,1992;Kieft et al.,1990)。這一時期日本學者對銦富集成礦的研究取得了巨大進展,在苗木、鹿兒島、豐羽、Toyoha、Nakakoshi等地都發現了銦礦體和礦床,使日本的銦資源躍居世界前列(村尾智等,1990;Murao Satoshi et al.,1991;Marao et al.,1992;太田英順,1993;Tsushima et al.,1999),Nakakoshi礦床閃鋅礦和含Cu-Fe-Zn-Sn-S的硫鹽類礦物含銦1.8%~16.3%,礦石含銦0.02%,構成典型的銦礦床(Tsushima et al.,1999)。同時,國外學者對銦成礦作用的研究明顯加強,相繼進行了銦存在形式的研究(Johan,1988)、含銦礦物合成試驗研究(Raudsepp et al.,1987)、玄武岩、硫化物和地幔中銦和錫關系的研究(Yi Wen et al.,1995)等。隨著研究的深入,一些新的銦礦物也被發現,到1980年為止,全世界共發現銦礦物5種,近20年中又發現了3種,還有三種未定名的銦礦物,使銦礦物數量增至11種。

20世紀70年代,以前我國學者對銦的研究較少,僅見到為數不多的文獻中有少量銦的資料,並被後來的研究證實銦含量的可靠性存在一些問題。80 年代以來,國內對銦元素研究開始增多,但研究的主要對象為錫銅鉛鋅硫化物礦床,研究的方法主要是礦石中多種微量元素的綜合研究,雖然每一位學者都要討論銦元素的綜合利用價值,但沒有針對銦富集與成礦機理的專門研究,沒有把銦作為一個礦種加以研究。在這期間,塗光熾等(1984)對我國三十多個層控鉛鋅礦床的研究,童潛明(1984)對湖南10多個鉛鋅礦床的研究,國外如 Pankratiev 等(1981)對烏茲別克共和國產於沉積岩和火山岩中的層狀鉛鋅礦床中微量元素的研究,葉慶同(1982)對銀山、凡口、東坡、桃林四個礦床閃鋅礦成分的研究及Song Xuexin(1984)對廣東凡口鉛鋅礦床微量元素的研究等,展示出了我國一些鉛鋅礦床中銦等微量元素的含量特點。塗光熾等(1993)在《中國礦床》上冊「中國的鉛鋅礦床」一章中系統地總結和論述了包括我國幾乎所有類型鉛鋅礦床中銦的含量特徵,除同生沉積、後期改造型礦床外,矽卡岩型、岩漿熱液型鉛鋅礦床閃鋅礦中銦等微量元素在上述類型鉛鋅礦床中的分布特點。章振根等(1981)、李錫林等(1981)、黃明智等(1988)對廣西大廠礦田分散元素進行了綜合研究,指出大廠礦田的銦是有利用價值的分散元素之一。Zhang Qian(1987)在對國內外60多個鉛鋅礦床微量元素的研究和調研,發現除一些含錫的鉛鋅礦床外,不含錫的礦床含銦都很低,大部分改造成因及同生沉積成因的鉛鋅礦床,銦沒有太大的工業利用價值,同時,將包括 In在內的分散元素的某些特徵直接與礦床成因聯系起來,製作的圖表示蹤模式,對幾乎所有的鉛鋅硫化物礦床,都可判斷其改造、同生沉積與中高溫熱液成因。劉英俊等(1984)對銦元素地球化學的研究,肯定了銦在熱液作用的沉澱階段大量進入四面體晶格配位的硫化物中,具有這種晶格配位的閃鋅礦在硫化物礦床中量大面廣,因而是富集銦的最佳礦物,這一成果從晶體結構方面闡明了銦大量進入閃鋅礦的機理。但從絕大多數鉛鋅礦床中閃鋅礦並不富銦的現象來看,銦進入閃鋅礦是有條件的。

中國地質礦產信息研究院(1993)主編的《中國礦產》一書明確提出了銦礦床的概念。塗光熾院士明確提出了分散元素可以形成礦床的理論。隨著未來我國對銦需求的增長,國家對銦資源的研究與利用已引起重視,銦富集成礦的一些問題已有了初步認識。

熱點內容
丁度巴拉斯情人電影推薦 發布:2024-08-19 09:13:07 瀏覽:886
類似深水的露點電影 發布:2024-08-19 09:10:12 瀏覽:80
《消失的眼角膜》2電影 發布:2024-08-19 08:34:43 瀏覽:878
私人影院什麼電影好看 發布:2024-08-19 08:33:32 瀏覽:593
干 B 發布:2024-08-19 08:30:21 瀏覽:910
夜晚看片網站 發布:2024-08-19 08:20:59 瀏覽:440
台灣男同電影《越界》 發布:2024-08-19 08:04:35 瀏覽:290
看電影選座位追女孩 發布:2024-08-19 07:54:42 瀏覽:975
日本a級愛情 發布:2024-08-19 07:30:38 瀏覽:832
生活中的瑪麗類似電影 發布:2024-08-19 07:26:46 瀏覽:239