當前位置:首頁 » 凈水方式 » 生物化學超濾法

生物化學超濾法

發布時間: 2021-01-31 10:41:39

『壹』 超濾膜是什麼

你好,下面是有關超濾膜的介紹,希望對你有用

順祝您學習進步,望採納謝謝

超濾膜科技名詞定義中文名稱:超濾膜英文名稱:ultrafiltrationmembrane;hyperfiltrationmembrane定義:膜狀的超濾材料。應用學科:生物化學與分子生物學(一級學科);方法與技術(二級學科)以上內容由全國科學技術名詞審定委員會審定公布求助編輯網路名片
超濾膜

超濾膜,是一種孔徑規格一致,額定孔徑范圍為0.001-0.02微米的微孔過濾膜。在膜的一側施以適當壓力,就能篩出小於孔徑的溶質分子,以分離分子量大於500道爾頓、粒徑大於2~20納米的顆粒。超濾膜是最早開發的高分子分離膜之一,在60年代超濾裝置就實現了工業化。

目錄

簡介
產品結構
超濾膜過濾
工藝特點
超濾膜的材料
  1. 簡介
  2. 主要應用
超濾膜的分類
  1. 概述
  2. 有機膜
  3. 無機膜
  4. 分類
超濾膜過濾原理
超濾膜的清洗
  1. 超濾設備及工作原理
  2. 應用
在家用機中的應用
市場應用與發展前景
超濾膜的保存展開簡介
產品結構
超濾膜過濾
工藝特點
超濾膜的材料
  1. 簡介
  2. 主要應用
超濾膜的分類
  1. 概述
  2. 有機膜
  3. 無機膜
  4. 分類
超濾膜過濾原理
超濾膜的清洗
  1. 超濾設備及工作原理
  2. 應用
在家用機中的應用
市場應用與發展前景
超濾膜的保存展開編輯本段簡介

超濾膜的工業應用十分廣泛,已成為新型化工單元操作之一。用於分離、濃縮、純化生物製品、醫葯製品以及食品工業中;還用於血液處理、廢水處理和超純水制備中的終端處理裝置。在我國已成功地利用超濾膜進行了中草葯的濃縮提純。超濾膜隨著技術的進步,其篩選功能必將得到改進和加強,對人類社會的貢獻也將越來越大。
編輯本段產品結構超濾膜的結構有對稱和非對稱之分。前者是各向同性的,沒有皮層,所有方向上的孔隙都是一樣的,屬於深層過濾;後者具有較緻密的表層和以指狀結構為主的底層,表層厚度為0.1微米或更小,並具有排列有序的微孔,底層厚度為200~250微米,屬於表層過濾。工業使用的超濾膜一般為非對稱膜。超濾膜的膜材料主要有纖維素及其衍生物、聚碳酸酯、聚氯乙烯、聚偏氟乙烯、聚碸、聚丙烯腈、聚醯胺、聚碸醯胺、磺化聚碸、交鏈的聚乙烯醇、改性丙烯酸聚合物等等。
編輯本段超濾膜過濾採用超濾膜以壓力差為推動力的膜過濾方法為超濾膜過濾。超濾膜大多由醋酯纖維或與其性能類似的高分子材料製得。最適於處理溶液中溶質的分離和增濃,也常用於其他分離技術難以完成的膠狀懸浮液的分離,其應用領域在不斷擴大。
編輯本段工藝特點以壓力差為推動力的膜過濾可區分為超濾膜過濾、微孔膜過濾和逆滲透膜過濾三類。它們的區分是根據膜層所能截留的最小粒子尺寸或分子量大小。以膜的額定孔徑范圍作為區分標准時,則微孔膜(MF)的額定孔徑范圍為0.02~10μm;超濾膜(UF)為0.001~0.02μm;逆滲透膜(RO)為0.0001~0.001μm。由此可知,超濾膜最適於處理溶液中溶質的分離和增濃,或採用其他分離技術所難以完成的膠狀懸浮液的分離。超濾膜的制膜技術,即獲得預期尺寸和窄分布微孔的技術是極其重要的。孔的控制因素較多,如根據制膜時溶液的種類和濃度、蒸發及凝聚條件等不同可得到不同孔徑及孔徑分布的超濾膜。超濾膜一般為高分子分離膜,用作超濾膜的高分子材料主要有纖維素衍生物、聚碸、聚丙烯腈、聚醯胺及聚碳酸酯等。超濾膜可被做成平面膜、卷式膜、管式膜或中空纖維膜等形式,廣泛用於如醫葯工業、食品工業、環境工程等。
編輯本段超濾膜的材料簡介聚丙烯腈。英文簡寫PAN。由單體丙烯腈經自由基聚合反應而得到。大分子鏈中的丙烯腈單元是接頭-尾方式相連的。外觀為白色粉末狀,密度為1.14~1.15g/cm,加熱至220~300℃時軟化並發生分解。
主要應用聚丙烯腈主要用於製造合成纖維(如腈綸)。用85%以上的丙烯腈和其他第二、第三單體共聚的高分子聚合物仿製的合成纖維。聚丙烯腈纖維的中國商品名。俗稱人造羊毛。美國杜邦公司於20世紀40年代研製成功純聚丙烯腈纖維(商品名為奧綸),因染色困難、易原纖化,一直未投入工業化生產。後來在改善聚合物的可仿性和纖維的染色性的基礎上,腈綸才得以實現工業化生產。各個國家有不同的商品名,如美國有奧綸、阿克利綸、克麗斯綸、澤弗綸,英國有考特爾,日本有毛麗龍、開司米綸、依克絲蘭、貝絲綸等。腈綸密度一般為1.16~1.18克/厘米3,標准回潮率為1.0%~2.5%。纖維的特點是蓬鬆性和保暖性好,手感柔軟,並具有良好的耐氣候性和防霉、防蛀性能。主要用做人造纖維,俗稱人造羊毛;制毛線、針織物(純紡或與羊毛混紡)和機織物,尤其適宜作室內裝飾布,如窗簾等。在材料學中常以聚丙烯腈為基體來合成多空材料,例如PAN基活性炭。
可以用來製造超濾的材質很多,包括:聚偏氟乙烯(PVDF)、聚醚碸(PES)、聚丙烯(PP)、聚乙烯(PE)、聚碸(PS)、聚丙稀腈(PAN)、聚氯乙稀(PVC)等。90年代初,聚醚碸材料在商業上取得了應用;而90年代末,性能更優良的聚偏氟乙烯超濾開始被廣泛地應用於水處理行業。因此聚偏氟乙烯和聚醚碸成為目前最廣泛使用的超濾膜材料。
編輯本段超濾膜的分類概述超濾膜根據膜材料的不同,可分為無機膜和有機膜,無機膜主要是陶瓷膜和金屬膜。
有機膜有機膜主要是由高分子材料製成,如醋酸纖維素、芳香族聚醯胺、聚醚碸、聚偏氟乙烯等等。根據膜形狀的不同,可分為平板膜、管式膜、毛細管膜、中空纖維膜等。目前,市面上家用凈水器用的膜基本上都是中空纖維膜。
無機膜無機膜中,陶瓷超濾膜在家用凈水器中應用比較多。陶瓷膜壽命長,耐腐蝕,但出水有土味,影響口感。同時陶瓷膜易堵塞,清洗不易。中空纖維超濾膜由於其填充密度大,有效膜面積大,純水通量高,操作簡單易清洗等優勢,被廣泛應用於家用凈水行業。
分類按膜的外形特徵可將超濾膜分為
①平板膜;
②管式超濾膜,內徑>lOnm;
③毛細管式超濾膜,內徑O.50~10.00nm;
④中空纖維超濾膜,內徑<0.5nm;
⑤多孔超濾膜。
編輯本段超濾膜過濾原理超濾膜篩分過程,以膜兩側的壓力差為驅動力,以超濾膜為過濾介質,在一定的壓力下,當原液流過膜表面時,超濾膜表面密布的許多細小的微孔只允許水及小分子物質通過而成為透過液,而原液中體積大於膜表面微孔徑的物質則被截留在膜的進液側,成為濃縮液,因而實現對原液的凈化、分離和濃縮的目的。每米長的超濾膜絲管壁上約有60億個0.01微米的微孔,其孔徑只允許水分子、水中的有益礦物質和微量元素通過,而最小細菌的體積都在0.02微米以上,因此細菌以及比細菌體積大得多的膠體、鐵銹、懸浮物、泥沙、大分子有機物等都能被超濾膜截留下來,從而實現了凈化過程。
在單位膜絲面積產水量不變的情況下,濾芯裝填的膜面積越大,則濾芯的總產水量越多,
其計算公式為:
S內=πdL×n
S外=πDL×n
其中:S內為膜絲總內表面積,d為超濾膜絲的內徑;
S外為膜絲總外表面積,D為超濾膜絲的外徑;
L為超濾膜絲的長度;
n為超濾膜絲的根數。
內壓式和外壓式中空纖維超濾膜
一支超濾膜由成百到上千根細小的中空纖維絲組成,一般將中空纖維膜內徑在0.6-6mm之間的超濾膜稱為毛細管式超濾膜,毛細管式超濾膜因內徑較大,不易被大顆粒物質堵塞。
編輯本段超濾膜的清洗膜必須進行定期清洗,以保持一定的膜透過通量,並延長膜的壽命。清洗方法一般根據膜的性質和處理料液的性質來確定。通常和反滲透相類似,即先以水力清洗,而後根據情況採用不同的化學洗滌劑進行清洗,例如對電塗材料可以選用含離子的增溶劑,對水溶性有機塗料可以用「橋鍵」型溶劑。食品工業中蛋白質沉澱可以用朊酶溶劑或磷酸鹽、硅酸鹽為基礎的鹼性去垢劑。膜表面由無機鹽形成的沉澱可用EDTA之類的螯合劑或酸、鹼加以溶解。對於不同的膜組件,可以選用不同的清洗方法,如管式組件可以用海綿球進行機械清洗,中空纖維式組件可以用反向沖洗等。對於食品工業用膜還需進行消毒處理(用NaOH和H2O2等)。
超濾設備及工作原理超濾設備,就是以超濾膜為核心產品,利用多孔材料的攔截能力,以物理截留的方式去除水中一定大小的雜質顆粒。在壓力驅動下,溶液中水、有機低分子、無機離子等尺寸小的物質可通過纖維壁上的微孔到達膜的另一側,溶液中菌體、膠體、顆粒物、有機大分子等大尺寸物質被截留,從而達到篩分溶液中不同組分的目的。
超濾設備以壓力為推動力,利用超濾膜不同孔徑對液體進行分離的物理篩分過程。其分子切割量(CWCO)一般為6000到50萬,孔徑為100nm(納米)。超濾所用的膜為非對稱膜,其表面活性分離層平均孔徑約為10-200,能夠截留分子量為500以上的大分子與膠體微粒,所用操作壓差在0.1—0.5MPa。
應用超濾膜分離可取代傳統工藝中的自然沉降,板框過濾,真空轉鼓,離心分離,溶媒萃取,樹脂提純,活性炭脫色等工藝過程。該過程為常溫操作,無相態變化,不產生二次污染。
編輯本段在家用機中的應用一種孔徑規格一致,額定孔徑范圍為0.001-0.02微米的微孔過濾膜。採用超濾膜以壓力差為推動力的膜過濾方法為超濾膜過濾。超濾膜大多由醋酯纖維或與其性能類似的高分子材料製得。最適於處理溶液中溶質的分離和增濃,也常用於其他分離技術難以完成的膠狀懸浮液的分離,其應用領域在不斷擴大。以壓力差為推動力的膜過濾可區分為超濾膜過濾、微孔膜過濾和逆滲透膜過濾三類。它們的區分是根據膜層所能截留的最小粒子尺寸或分子量大小。以膜的額定孔徑范圍作為區分標准時,則微孔膜(MF)的額定孔徑范圍為0.02~10μm;超濾膜(UF)為0.001~0.02μm;逆滲透膜(RO)為0.0001~0.001μm。由此可知,超濾膜最適於處理溶液中溶質的分離和增濃,或採用其他分離技術所難以完成的膠狀懸浮液的分離。超濾膜的制膜技術,即獲得預期尺寸和窄分布微孔的技術是極其重要的。孔的控制因素較多,如根據制膜時溶液的種類和濃度、蒸發及凝聚條件等不同可得到不同孔徑及孔徑分布的超濾膜。超濾膜一般為高分子分離膜,用作超濾膜的高分子材料主要有纖維素衍生物、聚碸、聚丙烯腈、聚醯胺及聚碳酸酯等。超濾膜可被做成平面膜、卷式膜、管式膜或中空纖維膜等形式,廣泛用於如醫葯工業、食品工業、環境工程等。我們都知道篩子是用來篩東西的,它能將細小物體放行,而將個頭較大的截留下來。可是,您聽說過能篩分子的篩子嗎?超膜--這種超級篩子能將尺寸不等的分子篩分開來!那麼,到底什麼是超濾膜呢?超濾膜是一種具有超級「篩分」分離功能的多孔膜。它的孔徑只有幾納米到幾十納米,也就是說只有一根頭發絲的1‰!在膜的一側施以適當壓力,就能篩出大於孔徑的溶質分子,以分離分子量大於500道爾頓、粒徑大於2~20納米的顆粒。超濾膜的結構有對稱和非對稱之分。前者是各向同性的,沒有皮層,所有方向上的孔隙都是一樣的,屬於深層過濾;後者具有較緻密的表層和以指狀結構為主的底層,表層厚度為0.1微米或更小,並具有排列有序的微孔,底層厚度為200~250微米,屬於表層過濾。工業使用的超濾膜一般為非對稱膜。超濾膜的膜材料主要有纖維素及其衍生物、聚碳酸酯、聚氯乙烯、聚偏氟乙烯、聚碸、聚丙烯腈、聚醯胺、聚碸醯胺、磺化聚碸、交鏈的聚乙烯醇、改性丙烯酸聚合物等等。

『貳』 蛋白質的純化實驗

一、儀器設備
色析管柱 (Pharmacia C column, 1.6×100 cm)、鐵架、鐵夾及水平儀;部分收集器(fraction collector, 需准備干凈試管約100 支);濃縮用離心機 (低速5,000 rpm);濃縮用離心管Centriprep-30 (Amicon 4322) 請注意其使用方法。

二、葯品試劑
膠體Sephacryl S-300 (Pharmacia):a. 預先以緩沖液buffer A-150 平衡好,並且使完全沈降後的膠體體積,佔全部體積的七至八成;要先預估好膠體的使用量。b. 膠體溫度要與操作場所的溫度一致,否則溫度變化會產生氣泡。c. Sephacryl 系列膠體有相當大的吸附力,因此要在緩沖液加入0.15 M 以上的NaCl 以除去非專一性吸附。Buffer A-150:注意使用時的溫度要與管柱膠體的溫度一致標準分子量組合 (Bio-Rad 151-1901):溶於1 mL 後每組取0.4 mL.含有thyroglobulin (670 kD), bovine gamma globulin (158 kD), chicken ovalbumin (44 kD), equine myoglobin (17 kD), vitamin B12 (1 350)。

三、管柱裝填

1. 以純水沖洗玻璃管柱 (以純水上下沖洗即可,嚴禁使用試管刷);並請了解管柱的構造與拆裝方法,垂直架好管柱,以軟管連接部分收集器,並以bufferA-150 試看管路是否通暢;可以用止血鉗或長尾文書夾夾住出口軟管,則可控制溶離的進行。 注意系統的擺設要適當,不要裝置於交通要沖。

2. 依預估量取出Sephacryl 膠體,注意膠體的溫度與緩沖液是否已平衡;將瓶中的膠體上下震盪,使的完全懸浮,但勿產生太多氣泡。

3. 在管柱內加入約10 cm 高緩沖液,然後將膠體慢慢沿著管壁倒入管柱,一直加到管柱頂端,開始流洗後膠體沈降很快。當膠體上方的液面逐漸降低時,可於頂端添加膠體,以達所要高度;膠體高度約90 cm。

4. 膠體完全沈降後,小心以buffer A-150 加滿管柱,關閉出口,裝上頂端端蓋並連通緩沖液瓶,打開出口以重力流洗。 調整緩沖液瓶高度,使流速約每五~六秒一滴,並設定收集體積為2.5 mL/tube。

5. 膠柱流洗約100 mL 後,關閉出口,拆開頂端端蓋,先以滴管吸出膠體上方的溶液到剩約1 cm 高,注意勿破壞膠體表面平整; 然後打開出口,使液面下降至膠體面,再關閉出口,准備注入樣本。

四、樣本色析進行

1. 以微量移液器或滴管吸取樣本 (樣本體積不得超過膠體總體積的3%),沿著膠體上方管壁緩慢加入,注意切勿破壞膠體的平整表面。

2. 打開出口,同時開啟部分收集器;當樣本完全沒入膠體時,關閉出口,緩緩加入與樣本相等體積的buffer A-150,打開出口待其慢慢進入膠體中,如此重復二次。不得擾動膠體表面,造成凹陷。

3. 暫時關閉出口,將液面高度加滿至管柱頂端,並把頂端端蓋鎖上;然後打開出口開始溶離,調整緩沖液瓶的高度,使流速為6 s 一滴。

4. 要留心觀察前面幾個分劃,確定整個系統運轉無礙,小心部分收集器最容易出問題。管柱預計將流洗過夜,收集約80 管。
10) 收集試管,進行蛋白質定量分析以及GUS 活性測定,並請作圖。

5. 收集GUS 活性區,以Centriprep-30 濃縮至10 mL 後,加buffer A-0 稀釋至20 mL,保留100 μL。

6. 管柱請再以buffer A-150 流洗100 mL 後,小心放置一旁,准備以後進行分子量測定。

五、分子量測定

1. 進行分子量測定前一天,請先以buffer A-150 流洗100 mL,並檢查膠柱內有無氣泡產生,若有嚴重的氣泡或乾裂,必須重新裝填管柱。

2. 取標準分子量溶液0.4 mL,加上純質目標酶0.5 mL (以親和層析法所得的AF 部份),如上法注入管柱中,立刻開始進行膠體過濾,並收集各分劃。請依循上述所有管柱及分劃收集器的操作要點。

3. 收集所得,進行蛋白質定量分析,可定出數個蛋白質尖峰,以作為分子量依據;另以目測法,決定紅色高峰的管數,則可定出vitamin B12的溶離管數。利用以上數據,可畫出分子量與溶離管數間的直線關系,作為分子量判定的標准校正線。

4. 同樣的一批分劃,請進行酶活性分析 (GUS),則可定出酶的溶離體積,對照上述標准校正線,則可求出酶的分子量。

六、拆除管柱及保存膠體
1. 若管柱長期不用,應當自管柱中取出膠體,以緩沖液清洗後,置冷藏室中保存,但絕對不要放在冷凍箱中。膠體若裝填太緊,有時可能不易取出,要有耐心地以緩沖液慢慢沖出來。

2. 膠體可以加0.01% NaN3防止黴菌生長,但使用前記得要洗去;再度使用時,請檢查膠體中有無灰黑色黴菌顆粒,若有結塊而不易打散者,也不要使用。

『叄』 細胞生物學11

蛋白質、酶和核酸這三大類物質都是生物大分子,它們都具有十分重要的生理功能。酶是生物催化劑,核酸是遺傳信息的攜帶者,蛋白質是生命現象的基礎。因此對生物大分子的結構與功能的研究,具有十分重要的理論和實踐意義。而這研究的首要條件是制備高純度的生物大分子,否則對其結構與功能的研究就無從談起。

2.制備方法的分類:

依理化性質,分離、純化生物大分子的方法可分四個類型:

(1)按分子大小和形態:採用高速離心、過濾、分子篩、透析等方法。

(2)按溶解度:採用鹽析、溶劑抽提、分配層析、逆流分配、結晶等方法。

(3)按電荷差異:採用電泳、電滲析、等電點沉澱、離子交換層析、吸附層析等方法。

(4)按生物功能專一性:採用親和層析法。

3.制備的總體思路:

一般可分為六個階段:

(1)材料選擇與預處理:動物、植物和微生物都是制備生物大分子的材料,選什麼材料主要依靠實驗的目的而定,選材料時應注意以下幾個問題:

①使用的目的:從科學實驗的特殊需要出發,選材時需求能符合實驗預定目標即可。

②材料的生理狀態差異:選材時要注意植物的季節性,微生物的生長期和動物的生理狀

態。如:微生物生長的對數期,酶與核酸的含量較高。

材料選定後,通常要進行預處理,如動物組織要剔除結締組織,脂肪組織等非活性部位,植物種子先行去殼、除脂、微生物需將菌體和發酵液分離開,暫時不用材料尚需冰凍保存。

(2)細胞的破碎及細胞器的分離

①細胞的破碎:除了提取液和細胞外某些多肽激素、蛋白質和酶不需破碎細胞膜,對於細胞內和多細咆生物組織中各種生物大分子的分離提純都需要事先將細胞和組織破碎,使生物大分子充分釋放到溶液中,不同生物體,或同一生物體的不同組織,其細胞破碎難易不一致,因此使用方法也不完全相同,通常兩種方法共同使用。

A. 高速組織搗碎機

玻璃勻漿器

研磨

機械切力的作用

物理方法:

反復凍融法

冷熱交替法

超聲波處理法

加壓破碎法

物理因素的作用

B.化學及生物化學法

自溶法

溶菌酶處理法

表面活性劑處理法

改變細胞膜透性法

但是,不管採用哪種方法,都需要在一定稀鹽溶液或緩沖溶液中進行,且需加某些保護劑,以防止生物大分子的變性及降解。

②細胞器的分離:制備某種生物大分子時,往往需要採用細胞中某一部分為材料;或者為了純化某一特定細胞器上的生物大分子,通常破碎細胞後,先分離各組分,以防干擾,這對制備—些高難度和高純度的生物大分子是必要的,細胞器的分離,一般採用差速離心法,此法是利用細胞各組分質量大小不同,在離心管不同區域沉降的原理,分離出所需組分,分離得到的細胞器,其純度可採用電子顯微鏡法、免疫學法或測定標志酶活力法進行鑒定。

(3)提取:

提取又稱抽提或萃取,其作用是將經過處理或破碎了的細胞置於一定的條件和溶劑中,讓被提取的生物大分子充分地釋放出來,提取效果如何,取決於該物質在溶劑中溶解度的大小和該物質的分子結構及使用溶劑的理化性質。原則地說,極性物質易溶於極性溶劑,非極性物質易溶於非極性有機溶劑;鹼性物質易溶於酸性溶劑,酸性物質易溶於鹼性溶劑中;溫度高時,一般溶解度相應增大,在遠離生物大分子等電點的pH值時溶解度增加,從細胞中提取生物大分子也受擴散作用的影響和分配定律的支配。由於影響因素較多,在實際制備時應根據經驗並結合具體實驗條件靈活地加以應用。

(4)分離純化

從細胞中提取出來的生物大分子是不夠純凈的,常含許多同類的或異類的物質,必需進一步分離純化才能獲得純品。生物大分子制備工作中,分離純化這一步既重要又復雜,主要方法可歸納為兩類:

①對異類物質的分離:常採用專一性酶水解,有機溶劑抽提,選擇性分部沉澱和液固相轉化透析分離等方法。

②對同類物質的分離:常採用鹽析、有機溶劑沉澱、等電點沉澱、結晶、電泳、超離心、柱層析和吸附等方法。

(5)濃縮與結晶

①濃縮是指低濃度溶液通過除去溶劑(包括水)變為高濃度溶液的過程,常在提取後結晶

前進行,有時也貫穿在整個制備過程中。濃縮的方法常採用:

A.蒸發法:薄膜蒸發濃縮,減壓加溫蒸發濃縮,空氣流過蒸發濃縮。

B.冰凍法。

C.吸收法。

D.超濾法。

②結晶是指使溶質呈晶態從溶液中析出的過程。結晶除作為生化制備一種純化手段外,其結晶化合物還常常是生物大分子結構的分析研究的材料,常用以下幾種方法進行結晶。

A,鹽析法:加固體鹽法、加飽和鹽溶液法、透析法。

B.有機溶劑法。

C.等電點法。

D.脫鹽結晶法。

E.加金屬離子結晶法。

(6)乾燥與保存:

乾燥是指將潮濕的固體、半固體或濃縮液中的水分(或溶劑)蒸發除去的過程,最常用的方法是真空乾燥和冷凍乾燥。

保存是指樣品如何存放的問題,保存方法與生物大分子的穩定性密切相關,常採用干態貯藏和液態貯藏的方法。干態貯藏法就是將乾燥後的樣品置於乾燥器內(內裝有乾燥劑)密封,保持0—4℃冰箱中即可;液態儲藏法,首先免去煩雜的乾燥過程,生物大分子的活性和結構破壞較少,但應注意樣品不能太稀,必須濃縮到一定濃度才能封裝儲藏,必需加入防腐劑和穩定劑。常用的防腐劑有甲苯、苯甲酸、氯仿、百里酚等。蛋白質和酶常用的穩定劑有硫酸銨糊、蔗糖、甘油等。另外要求儲藏溫度較低,大多數在0℃左右冰箱保存,有的則要求更低的溫度。但不管採用哪種方法,都必須避免長期暴露在空氣中,以防微生物的污染。

(二)鑒定

經過一系列的分離純化,所得到的物質是不是我們所需要的,樣品的純度如何,都需要進行進一步的鑒定,包括純度鑒定、性質與功能鑒定,結構鑒定等,鑒定的方法也很多,具體實驗中可根據研究的需要選擇某些方法。

1.純度鑒定

(1)電泳法:純的蛋白質、核酸樣品在它穩定的范圍內,在一系列不同的PH條件下進行電泳時,都以單一的泳動速度移動,因此在區帶電泳中,它的電泳圖譜只有一個條帶,蛋白質一般採用聚丙烯醯胺凝膠電泳、醋纖薄膜電泳等,核酸樣品一般採用瓊脂糖電泳。

(2)沉降分析法:純的蛋白質、核酸樣品在離心力的影響下,以單一的沉降速度運動,離心後只能得到一個條帶。

(3)恆溶度法:純的蛋白質在一定的溶劑系統中具有恆定的溶解度,而不依賴於存在於溶液中未溶解固體的數量。在嚴格規定的條件下,以加入的固體蛋白質的量為橫座標,以溶解的蛋白質的量為縱座標作圖,如果蛋白質樣品是純的,那麼溶解度曲線只呈現一個折點,在折點之前,直線的斜率為l,在折點以後,斜率為零,不純的蛋白質的溶解度曲線常常呈現兩個或兩個以上的折點。

2.性質與功能鑒定

(1)分子量測定:蛋白質、核酸樣品都可以通過適當的實驗方法,測定出樣品的分子量。蛋白質可以採用滲透壓法、沉降分析法、通透層析法、SDS-PAGE電泳法等,核酸樣品可採用瓊脂糖電泳法、聚丙烯醯胺凝膠電泳法等。

(2)蛋白質等電點測定:可通過等電聚焦電泳法。

(3)功能鑒定:具有酶或激素性質的樣品可以利用它們的酶活性或激素活性來測定含量,

而不具有酶或激素活性的蛋白質,可以先用來免疫適當動物,一般會產生抗體,利用抗原—抗體反應,也可以測定某一特定蛋白質的含量,這些生物學方法的測定和總蛋白質測定配合起來,可以用來研究蛋白質分離過程中某一特定蛋白質的提純程度,提純程度常用這一特定成分與總蛋白之比來表示,提純工作一直要進行到這個比例不再增加為止。

3.結構鑒定

(1)末端測定:可採用DNS—氨基酸或DNP—氨基酸聚醯胺薄膜層析法測定。

(2)組成分析:把樣品完全水解後進行氨基酸或核苷酸的組成分析,並計算出各種氨基酸或核苷酸的分子比。

(3)「指紋」分析:將制備的樣品與標准樣品在相同條件下用蛋白酶或核酸內切酶進行部分水解,再進行電泳,通過電泳圖譜的比較,可以判斷所分離到的樣品是否是所需要的成分。

(4)序列測定。

(5)探針技術:把電泳分離的組分從凝膠轉移至一種固相支持體,然後用已放射性標記或酶標記的針對特定氨基酸序列或核苷酸序列的特異性試劑作為探針檢測之。探針技術特異性強,靈敏度高,而且樣品無需經過復雜的分離純化即可進行鑒定,因此在分子生物學中得到了廣泛的應用。目前主要有三種技術:

①Southern blotting:1975年由Southern提出的轉移技術,通常用來對DNA特定序列進行定位、鑒定。先將DNA樣品通過瓊脂糖凝膠電泳按大小分離,隨後使DNA在原位發生變性,並從凝膠轉移至一固相支持體(通常是硝酸纖維膜或尼龍膜)上。DNA轉移至固相支持體的過程中,各個DNA片段的相對位置保持不變,用放射性標記的DNA或RNA片段作為探針與固著在固相支持體上的DNA進行雜交,經放射自顯影後可以確定與探針互補的DNA片段的電泳條帶的位置。

②Northern blotting:1977年由Alwine等提出的轉移技術,可用於測定總RNA或poly

(A)+RNA樣品中特定mRNA分子的大小和豐度。 RNA分子在變性瓊脂糖凝膠中按其大小不同而相互分離,隨後將RNA轉移至活化纖維素、硝酸纖維膜、玻璃或尼龍膜,用放射性標記的與待測RNA分子互補的DNA或RNA探針進行雜交和放射自顯影,以對待測的RNA分子進行作圖。

③Western blotting:1979年由Towbin等人提出的蛋白質轉移技術,用於對非放射性標

記蛋白組成的復雜混合物中的某些特定蛋白質進行鑒別和定量。通常使用的探針是抗體,它可與附著於固相支持體的靶蛋白所呈現的抗原表位發生特異性反應,先將待測樣品溶於含有去污劑和還原劑的溶液中,經過SDS聚丙烯醯胺凝膠電泳後被轉移到固相支持體上(常用硝酸纖維濾膜)然後可被染色,隨後濾膜可與抗靶蛋白的非標記抗體反應,最後結合上的抗體可用多種放射性標記或酶偶聯的二級免疫學試劑進行檢測。

『肆』 污水經過超濾後到厭氧到好氧生化就產生很多泡沫漫天飛舞無法消除造成COD超標,該用什麼辦法解決

可以投加消泡劑或者投加少量的柴油

『伍』 生化葯物制備過程中需要注意哪幾個方面

國內在生化葯物的研究方面存在較多的問題,主要表現在以下幾個方面:、對原材料沒有進行嚴格的控制;2、無病毒滅活的工藝步驟;3、質量研究內容不夠全面等。致使審評人員難以把握其質量,且產生了更多的安全性擔憂。
一、生化葯物的制備方法生化制葯就是將動物、植物或微生物機體內的生物活性物質在其結構和功能不遭破壞的前提下,採用多種生化分離的方法提取、純化的工藝過程。生化制葯的六個階段:1、原料的選擇和預處理;2、組織及細胞的破碎;3、從破碎的細胞中提取有效成分製成粗品;4、採用多種生化技術從粗品中將目的物精製出來;5、乾燥及保存;6、制劑。以上各階段在不同的生化葯物制備中,根據所選材料的不同,可靈活取捨選擇使用。
生化葯物的分離純化方法主要有五類:1、根據分子大小和形狀不同進行分離,如凝膠過濾法、透析和超濾法、密度梯度離心法等;2、根據分子的帶電性質進行分離,如離子交換層析法、電泳法、等電聚焦法;3、根據分子極性大小及溶解度不同進行分離,如等電點沉澱法、鹽析法、有機溶劑沉澱法、逆流分配法等;4、根據配體特異性進行分離,如親和層析法;5、根據物質吸附性質不同進行分離,如選擇性吸附和吸附層析法。
二、生化葯物質量控制研究要點生化葯物復雜多樣,在此僅針對臟器提取的多組分生化葯物進行討論,其它生化葯物可參考。
(一)、臟器生化葯物臟器生化葯是指從動物來源的生化葯物,即從動物的組織、器官、腺體、體液、分泌物以及胎盤、毛、皮、角和蹄甲等提取的葯物。臟器生化葯物中多數有效成分不明確,多屬高分子物質,現在多數還不能用合成的方法生產,有的物質還需要有同時存在的其它物質的協同作用才能發揮較好的生理功能。主要的臟器生化葯物1、
組織和器官來源大腦:膽固醇、腦磷脂、卵磷脂、P-物質和多種腦啡肽等;丘腦:生長激素釋放因子和生長激素抑制因子等;心臟和動脈管:細胞色素C、輔酶Q10和輔酶A等;肝臟:核糖核酸、肝注射液、肝提取物、肝水解物和輔酶A等;肺臟:抑肽酶等;脾臟:脾注射液、肝-脾提取物和脫氧核苷酸鈉注射液等;胃:胃膜素和胃蛋白酶等;腸及腸粘膜:P-物質、肝素和其它肝素(低分子肝素)等;眼:眼生素和眼寧等全眼提取物;骨:硫酸軟骨素、硫酸軟骨素A、骨肽注射液和蛋白腖等;皮:明膠和阿膠等;2、
腺體來源腦垂體:促皮質素、促卵泡激素、促黃體生成激素、生長激素、促乳激素、催產素、加壓素和垂體前葉激素等;胰腺:胰島素、胰高血糖素、胰蛋白酶、糜蛋白酶、結晶糜胰蛋白酶、胰酶、蛋白酶抑制劑、激肽釋放酶(血管舒緩素)、彈性酶(彈性蛋白酶)、膠原酶、胰類肝素等;唾液腺:唾液腺素等;頜下腺:激肽釋放酶等;腮腺:腮腺素等;甲狀腺:降鈣素、甲狀腺素和乾燥甲狀腺提取物等;胸腺:胸腺素(胸腺肽)、胸腺生成素Ⅰ、Ⅱ和胸腺體液因子等;腎上腺:腎上腺皮質激素等;甲狀旁腺:甲狀旁腺素等;卵巢:鬆弛肽和子宮鬆弛因子等;睾丸:透明質酸酶等;松果體:松果體激素等;3、
體液和分泌物來源血液:組氨酸、賴氨酸、精氨酸和水解蛋白等;膽汁:人工牛黃、去氫膽酸、鵝去氧膽酸、膽酸鈉、膽黃素等;尿:尿激酶和絨毛膜激素等;4、
其他來源胎盤:胎盤提取物、胎盤球蛋白和白蛋白等;毛:胱氨酸、半胱氨酸、賴氨酸和精氨酸等;角和蹄甲:羚羊角、犀角代用品和婦樂寧等;蛋:溶菌酶等。
(二)、臟器生化葯物的研究和質量控制要點因動物的來源復雜(包括動物的種屬、健康狀況、飼養環境、年齡、採集時間、採集方法等),提取純化工藝簡單,其有效成分的含量和比例會產生較大的差異,因此,單靠質量標准不能全面控制產品的質量,而需要控制源頭和工藝過程,再結合質量標准才能較有效地控制產品的質量,確保臨床應用的安全性和有效性。換句話說,生化葯物的質量控制重點就是要保證生產產品與臨床研究樣品質量一致,這種質量的一致性單憑質量標准中的質量控制指標不能全面地反映出來(這一點不同於化學葯物),必須通過嚴格地控制源頭和工藝過程來實現,這一點類似於生物製品。1、臟器生化葯物研究的一般過程研究臟器生化葯物首先要固定源頭(原材料),包括動物的種屬、健康狀況、飼養環境(封閉飼養)、年齡、採集時間和採集方法等,並制訂原材料的質量標准。然後研究合適的提取純化方法,包括動物源性病毒的滅活和驗證,確定原液(或半成品)的生產工藝;研究原液(或半成品)中的主要成分、含量、主成分的比例,以及其它成分的控制方法等,制訂原液(或半成品)的質量標准。進行制劑的處方工藝研究,最後製成臨床應用的制劑(成品),並進行相應的質量研究,制訂成品的質量標准。2、動物源性病毒的滅活工藝及驗證因組織來源動物的種類不同,其自然攜帶或者感染病毒的種類也會有所不同,再加上目前動物來源的原材料可控性較差,故必須要對動物源性病毒進行滅活或去除,並對滅活或去除工藝進行驗證。滅活或去除動物源性病毒,首先要了解選定動物的病毒情況,重點關注已確認對人類具有感染和致病能力的病毒(例如牛和豬的口蹄疫病毒,豬的乙型腦炎病毒等)及已有試驗提示與人類疾病具有關聯性的病毒(例如牛腹瀉病毒,豬的戊肝病毒等),了解病毒的生物學和對理化因素敏感性等方面的特性。檢驗原材料中病毒的污染程度和負載量,為採取相應的處理工藝提供研究數據。如果已知原材料中污染了對人感染或者致病的病毒,或者檢出了內源性逆轉錄病毒、具有種屬特異性的其它污染病毒,則必須廢棄該原材料並妥善處理。(1)病毒的檢測方法病毒的檢測方法主要有體外法(採用不同種屬的多種敏感細胞系進行共培養檢測,在適宜的培養時間點取樣檢測感染性病毒,至少應盲傳3代)、體內法(在沒有可靠的體外試驗方法時,可採用適宜的動物進行接種盲傳試驗,採用敏感的方法檢測感染性病毒)、動物抗體產生試驗(對尚沒有合適的體內和體外試驗方法檢測的病毒,可採用不同動物觀察種特異病毒的抗體產生情況,抗體產生試驗特別有助於檢出嚙齒類動物病毒)、其他方法(電鏡、ELISA、PCR、RT方法等)。病毒的檢測方法應結合品種的特點和具體生產情況,綜合分析後進行設計和選擇,通常應有合理的依據和支持性資料。(2)病毒滅活/去除工藝盡量設計與實際生產工藝相關的及合理的病毒滅活/去除研究試驗方案,尤其是特定的生產工藝步驟,模擬的工藝在試驗參數及控制條件方面應與實際工藝嚴格保持一致。也就是說模擬的生產工藝應當盡可能代表實際生產工藝的情況;如果產生了不可避免的偏差,應對試驗結果可能產生的影響給予合理的解釋。有關病毒滅活/去除的技術方法,可參見《血液製品病毒去除/滅活病毒技術方法及驗證指導原則》。(3)病毒滅活/去除工藝驗證研究病毒滅活/去除工藝驗證研究的目的是要獲取充足的試驗研究數據,以證明生產工藝中包含有效的病毒滅活/去除工藝步驟。其基本原則是生產工藝必須包含有效的病毒滅活/去除工藝步驟,若生產工藝無有效的滅活/去除病毒的作用,應根據產品的不同,在生產工藝過程中增加特定的病毒滅活/去除步驟。對臟器生化葯物應包含兩種機制上能夠互補的有效工藝步驟。經過多年的實踐,已經獲得普遍認可的作法是將已知量的指示用活病毒,加入到模擬的原液或者不同生產工藝階段的中間產品中,然後定量測定經特定工藝步驟或技術方法處理後病毒滴度下降的幅度,據此評價工藝滅活/去除病毒的效果。一般驗證採用普通指示病毒,試驗結果用於說明工藝步驟對一般病毒的滅活/去除能力,在適宜的范圍內能夠代表對同類病毒相似的清除能力;特定驗證採用特定病毒(已發現的污染病毒)或者與特定病毒相似的病毒作為替代,試驗結果用於說明工藝步驟對特定病毒的滅活/去除能力,生產工藝必須具有足夠的清除該病毒的能力。因為特定病毒與一般病毒在理化因素敏感性、病毒結構特點、病毒顆粒大小及其它方面有差異,因此,普通指示病毒與特定病毒或特定病毒相似的病毒不具備可比性和一致性,難以互相替代。(4)指示病毒的選擇指示病毒選擇的原則:指示病毒應具有代表性和合理性,可用於正確評價生產工藝的病毒安全性。選擇指示病毒應考慮的幾個方面:1)根據生產過程中污染病毒的來源、污染環節和程度、致病性質和特點,以及其它應考慮的各種實際因素,同時結合能夠用於評價驗證效果的指示病毒的可獲得性與相關培養試驗條件,盡可能地選擇具有一般代表性和特定模擬意義的多種指示病毒。2)盡可能選擇可培養到高滴度的病毒;並應有可靠、有效的檢測方法。3)應當考慮指示病毒可能對操作人員形成的健康危害,並採取必要的防護措施;必須注意指示病毒本身的安全性,應遵守國家有關的管理規定,屬於烈性傳染病毒不能使用。4)在選擇普通指示病毒或/和特定指示病毒時,至少都應當包括RNA和DNA病毒、脂包膜和非脂包膜病毒。5)以生物組織原材料或組織原材料勻漿中可能出現的病毒為核心,綜合考慮生產工藝、污染病毒及滅活/去除技術方法本身等各方面的特點進行選擇。(5)病毒滅活/去除有效工藝步驟的評價首先要有病毒滅活/去除驗證的試驗資料,並證實在生產工藝過程中某特定步驟能夠有效地滅活/去除病毒。對於可能起作用的每個步驟都應進行必要的評價,明確是否具有確切的病毒滅活/去除作用,並確定有效的工藝步驟。在有效的病毒滅活/去除工藝步驟後,不得進行可能引入新污染(如添加動物來源的材料)的操作(除非證明該操作完全排除病毒污染的可能性),嚴格防止再污染的發生。一般將病毒感染性滴度減少4log以上的處理步驟認可為有效的病毒滅活/去除工藝步驟。但如果檢測方法的最低檢測限為103TCID50,即使病毒起始滴度為106TCID50,經處理後未檢出病毒,也不宜算作特定的有效工藝步驟,因為處理後病毒的實際滴度有可能大於102TCID50,因此只能根據檢測方法的靈敏度表示為未檢出。病毒感染量的降低可以從病毒顆粒清除的量或病毒被滅活的情況兩方面來評價。可能的情況下,應明確病毒滴度的下降是物理清除還是直接滅活。(6)病毒安全性的追蹤觀察由於檢測方法、監測時間及靈敏性等各種因素的影響,臨床前研究中即使動物試驗,甚至是靈長類動物試驗結果為陰性,也難以完全排除人類感染潛在污染病毒的風險(如潛伏期長的病毒、致病過程緩慢的病毒、感染特異性檢測指標未知的病毒等)。因為不同階段,人們對病毒危害的認識深入程度和全面性等不同,可提供的試驗研究支持性資料及側重點也有所不同;所以對動物來源的生化葯物,不論是在臨床研究的過程中,還是上市後均應進行必要的病毒安全性追蹤觀察。具體方法:針對可能污染的病毒,注意觀察並設立病毒感染的評價指標。包括已知對原材料來源動物有致病性的病毒,在體內、體外試驗中能夠感染人類組織細胞的病毒,特別是隱性感染的病毒等;通過血清學或培養分離等臨床檢測,發現和驗證在生產過程中未能發現的新病毒及感染特徵。採用的檢測方法應能夠鑒別出人與動物病毒的區別,並經過驗證確保方法的敏感性和特異性。在臨床研究方案中應有對可疑致病病毒的檢測實施方案,包括:急性感染、慢性感染、常規篩查臨床隱性感染和血清陽轉情況,以及用葯前後檢測結果的對比。通過主動檢測和被動檢測及時發現無症狀隱性感染患者,避免在人群中可能發生的大規模播散。由於許多未知的和不確定因素的存在,最終確定污染病毒的致病性仍需要進行大量的基礎研究和臨床驗證工作,因此,使用動物來源產品的患者,應該知道:經過病毒安全性控制的產品,雖然已經將感染病毒的風險減小到極低的程度,但並不能完全排除這種風險。3、臟器生化葯物的質量控制要點根據臟器生化葯物研究的一般過程,其質量控制要點主要分以下三個方面:1)固定源頭(原材料),包括動物的種屬、健康狀況、飼養環境(封閉飼養)、年齡、採集時間和採集方法等,並制訂原材料的質量標准。2)研究合適的提取純化方法,包括動物源性病毒的滅活和驗證,確定原液(或半成品)的生產工藝;研究原液(或半成品)中的主要成分、含量、主成分的比例,以及其它成分的控制方法等,制訂原液(或半成品)的質量標准。3)進行制劑的處方工藝研究,製成臨床應用的制劑(成品),並進行相應的質量研究,制訂成品的質量標准。總之,臟器生化葯物質量控制的核心就是全程式控制制(從源頭到終產品,工藝過程式控制制和質量標准控制)。
三、生化葯物研究應注意的問題因生化葯物的來源復雜,不同的原材料和生產工藝得到的產品的質量會有差異,包括主要成分的含量、比例,以及其它成分的種類和/或含量等,而這些差異往往質量標准反映不出來,從嚴格意義上說,生化葯物沒有仿製。所以,在進行生化葯物研究時首先要基於「不可仿製」來考慮問題。1、注重原材料和工藝過程式控制制,結合質量標准,較全面地控制產品的質量。2、產品上市後不要輕易更換原材料、變更生產工藝、改換劑型(尤其是水針、粉針、大輸液互換)、延長有效期等。如果需要進行以上變更,應針對變更情況對產品的質量、安全性和有效性的影響(這種影響是指產品的真實質量,並不只是質量標准中的質量控制指標)進行相應的研究工作,包括葯學、葯理毒理和臨床研究。3、因為生化葯物的質量是靠全程式控制制來保證,其原液(或半成品)應不可以自由銷售,否則不僅增大了流通環節再次染菌的可能性,又不利於成品全程的質量控制。4、動物源性病毒的滅活工藝及驗證是一個需要研發者、審評人員,以及有關方面的專家共同研究和探討的課題。因為人們對動物源性病毒的認識,以及動物源性病毒與人類感染性疾病的關系的認識是在逐步地深入,對病毒的滅活和工藝驗證也會隨著人們認識的提高而不斷地趨於更科學和合理。以上簡要介紹了生化葯物的一般制備方法、工藝過程和質量研究,以及在研究過程中應注意的問題,目的是使研發者進一步了解生化葯物的特性和質量控制要點,在進行生化葯物研究時重視源頭控制和工藝過程式控制制,建立生化葯物全程式控制制的理念,尤其是在產品上市後,如果補充申請進行某些變更時,需要針對變更對產品的質量、安全性和有效性的影響進行相應的葯學、葯理毒理和臨床研究.

『陸』 透析袋和超濾膜有什麼不同

透析是生物化學實驗室最簡便最常用的分離純化技術之一。在生物大分子的制備過程中,除鹽、除少量有機溶劑、除去生物小分子雜質和濃縮樣品等都要用到透析的技術。
透析只需要使用專用的半透膜即可完成。通常是將半透膜製成袋狀,將生物大分子樣品溶液置入袋內,將此透析袋浸入水或緩沖液中,樣品溶液中的大分子量的生物大分子被截留在袋內,而鹽和小分子物質不斷擴散透析到袋外,直到袋內外兩邊的濃度達到平衡為止。保留在透析袋內未透析出的樣品溶液稱為「保留液」,袋(膜)外的溶液稱為「滲出液」或「透析液」。

透析膜可用動物膜和玻璃紙等,但用的最多的還是用纖維素製成的透析膜, 商品透析袋製成管狀,其扁平寬度為23 mm~50 mm不等。為防乾裂,出廠時都用10%的甘油處理過,並含有極微量的硫化物、重金屬和一些具有紫外吸收的雜質,它們對蛋白質和其它生物活性物質有害,用前必須除去。洗凈涼乾的透析袋彎折時易裂口,用時必須仔細檢查,不漏時方可重復使用。

超濾是介於微濾和納濾之間的一種膜過程,膜孔徑在0.05um至1000分子量之間。超濾是一種能夠將溶液進行凈化、分離、濃縮的膜分離技術,超濾過程通常可以理解成與膜孔徑大小相關的篩分過程。以膜兩側的壓力差為驅動力,以超濾膜為過濾介質。在一定的壓力下,當水流過膜表面時,只允許水及比膜孔徑小的小分子物質通過,達到溶液的凈化、分離、與濃縮的目的。

超濾膜一般分為板框式(板式)、中空纖維、管式、卷式等多種結構。

『柒』 生化棉和過濾棉的區別是什麼

1、使用范圍的不同:

生化棉:生化棉是一種使用范圍很廣的濾材,主要起回到生化過濾的效果。答適用於海水缸、淡水缸和水草缸等觀賞類水族箱。

過濾棉:過濾棉產品一般用於表面塗裝行業,專門為噴漆室末端過濾而設計,由抗斷裂的合成纖維構成的高性能熱熔法無紡布加工而成,採取遞增的結構,就是往純凈空氣方向的纖維密度逐漸增大,過濾效率也增大,使用壽命更長。

2、過濾作用上的不同:

生化棉:用於培養硝化細菌,讓硝化菌分解水中有毒的NH₃/NH₄和NO₂,轉化成無毒的NO₃。因此可以改善水質,提高魚類成活率。

過濾棉:用過濾棉將粉塵過濾掉,只讓潔凈的空氣在相對封閉的空間里循環起來,從而達到生產運行的需要。

3、成分材料上的不同:

生化棉:利用聚醚,聚酯發泡製作而成,具有孔大、疏鬆的特點。

過濾棉:合成纖維、聚酯纖維、玻璃纖維等製成,具有孔小、緊密的特點。

『捌』 生物大分子分離方法和理論依據

2. 生物大分子
的制備

 2.1 概述
 在自然科學,尤其是生命科學高度發展的今天,蛋白質、酶和核酸等生物大分子的結構與功能的研究是探求生命奧秘的中心課題,而生物大分子結構與功能的研究,必須首先解決生物大分子的制備問題,有能夠達到足夠純度的生物大分子的制備工作為前題,結構與功能的研究就無從談起。然而生物大分子的分離純化與制備是一件十分細致而困難的工作。

 與化學產品的分離制備相比較,生物大分子的制備有以下主要特點:
 ⑴生物材料的組成極其復雜,常常包含有數百種乃至幾千種化合物。
 ⑵許多生物大分子在生物材料中的含量極微,分離純化的步驟繁多,流程長。
 ⑶許多生物大分子一旦離開了生物體內的環境時就極易失活,因此分離過程中如何防止其失活,就是生物大分子提取制備最困難之處。
 ⑷生物大分子的制備幾乎都是在溶液中進行的,溫度、pH值、離子強度等各種參數對溶液中各種組成的綜合影響,很難准確估計和判斷。

 生物大分子的制備通常可按以下步驟進行:
 ①確定要制備的生物大分子的目的和要求,是進行科研、開發還是要發現新的物質。
 ②建立相應的可靠的分析測定方法,這是制備生物大分子的關鍵。
 ③通過文獻調研和預備性實驗,掌握生物大分子目的產物的物理化學性質。
 ④生物材料的破碎和預處理。
 ⑤分離純化方案的選擇和探索,這是最困難的過程。
 ⑥生物大分子制備物的均一性(即純度)的鑒定,要求達到一維電泳一條帶,二維電泳一個點,或HPLC和毛細管電泳都是一個峰。
 ⑦產物的濃縮,乾燥和保存。


 分析測定的方法主要有兩類:
 即生物學和物理、化學的測定方法。
 生物學的測定法主要有:酶的各種測活方法、蛋白質含量的各種測定法、免疫化學方法、放射性同位素示蹤法等;
 物理、化學方法主要有:比色法、氣相色譜和液相色譜法、光譜法(紫外/可見、紅外和熒光等分光光度法)、電泳法、以及核磁共振等。
 實際操作中盡可能多用儀器分析方法,以使分析測定更加快速、簡便。

要了解的生物大分子的物理、化學性質主要有:
 ①在水和各種有機溶劑中的溶解性。
 ②在不同溫度、pH 值和各種緩沖液中生物大分子的穩定性。
 ③固態時對溫度、含水量和凍干時的穩定性。
 ④各種物理性質:如分子的大小、穿膜的能力、帶電的情況、在電場中的行為、離心沉降的表現、在各種凝膠、樹脂等填料中的分配系數。
 ⑤其他化學性質:如對各種蛋白酶、水解酶的穩定性和對各種化學試劑的穩定性。
 ⑥對其他生物分子的特殊親和力。

 制備生物大分子的分離純化方法多種多樣,主要是利用它們之間特異性的差異,如分子的大小、形狀、酸鹼性、溶解性、溶解度、極性、電荷和與其他分子的親和性等。
 各種方法的基本原理可以歸納為兩個方面:
 ①利用混合物中幾個組分分配系數的差異,把它們分配到兩個或幾個相中,如鹽析、有機溶劑沉澱、層析和結晶等;
 ②將混合物置於某一物相(大多數是液相)中,通過物理力場的作用,使各組分分配於不同的區域,從而達到分離的目的,如電泳、離心、超濾等。
 目前純化蛋白質等生物大分子的關鍵技術是電泳、層析和高速與超速離心。

 2.2 生物大分子制備的前處理
 2.2.1 生物材料的選擇
 制備生物大分子,首先要選擇適當的生物材料。材料的來源無非是動物、植物和微生物及其代謝產物。
 選擇的材料應含量高、來源豐富、制備工藝簡單、成本低,盡可能保持新鮮,盡快加工處理。
 動物組織要先除去結締組織、脂肪等非活性部分,絞碎後在適當的溶劑中提取,如果所要求的成分在細胞內,則要先破碎細胞。
 植物要先去殼、除脂。
 微生物材料要及時將菌體與發酵液分開。
 生物材料如暫不提取,應冰凍保存。動物材料則需深度冷凍保存。

 2.2.2 細胞的破碎
 不同的生物體或同一生物體的不同部位的組織,其細胞破碎的難易不一,使用的方法也不相同,如動物臟器的細胞膜較脆弱,容易破碎,植物和微生物由於具有較堅固的纖維素、半纖維素組成的細胞壁,要採取專門的細胞破碎方法。
 (1)機械法:
 1) 研磨:將剪碎的動物組織置於研缽或勻漿器中,加入少量石英砂研磨或勻漿。
 2) 組織搗碎器:這是一種較劇烈的破碎細胞的方法,通常可先用家用食品加工機將組織打碎,然後再用10000r/min~20000r/min的內刀式組織搗碎機(即高速分散器)將組織的細胞打碎。

 (2)物理法:
 1) 反復凍融法:將待破碎的細胞冷至-15℃到-20℃,然後放於室溫(或40℃)迅速融化,如此反復凍融多次,由於細胞內形成冰粒使剩餘胞液的鹽濃度增高而引起細胞溶脹破碎。
 2) 超聲波處理法:此法是藉助超聲波的振動力破碎細胞壁和細胞器。破碎微生物細菌和酵母菌時,時間要長一些。
 3) 壓榨法:這是一種溫和的、徹底破碎細胞的方法。在1000×105Pa~2000×105Pa 的高壓下使細胞懸液通過一個小孔突然釋放至常壓,細胞將徹底破碎。
 4) 冷熱交替法:從細菌或病毒中提取蛋白質和核酸時可用此法。在90℃左右維持數分鍾,立即放入冰浴中使之冷卻,如此反復多次,絕大部分細胞可以被破碎。

 (3)化學與生物化學方法:
 1) 自溶法:將新鮮的生物材料存放於一定的pH和適當的溫度下,細胞結構在自身所具有的各種水解酶(如蛋白酶和酯酶等)的作用下發生溶解,使細胞內含物釋放出來。
 2) 溶脹法:細胞膜為天然的半透膜,在低滲溶液和低濃度的稀鹽溶液中,由於存在滲透壓差,溶劑分子大量進入細胞,將細胞膜脹破釋放出細胞內含物。
 3) 酶解法:利用各種水解酶,如溶菌酶、纖維素酶、蝸牛酶和酯酶等,於37℃,pH8,處理15分鍾,可以專一性地將細胞壁分解。
 4) 有機溶劑處理法:利用氯仿、甲苯、丙酮等脂溶性溶劑或SDS(十二烷基硫酸鈉)等表面活性劑處理細胞,可將細胞膜溶解,從而使細胞破裂,此法也可以與研磨法聯合使用。


 2.2.3 生物大分子的提取
 「提取」是在分離純化之前將經過預處理或破碎的細胞置於溶劑中,使被分離的生物大分子充分地釋放到溶劑中,並盡可能保持原來的天然狀態不丟失生物活性的過程。
 影響提取的因素主要有:
 目的產物在提取的溶劑中溶解度的大小;
 由固相擴散到液相的難易;
 溶劑的pH值和提取時間等。
 通常:
 極性物質易溶於極性溶劑,非極性物質易溶於非極性溶劑;
 鹼性物質易溶於酸性溶劑,酸性物質易溶於鹼性溶劑;
 溫度升高,溶解度加大;
 遠離等電點的pH值,溶解度增加。
 提取時所選擇的條件應有利於目的產物溶解度的增加和保持其生物活性。

 ⑴ 水溶液提取:
 蛋白質和酶的提取一般以水溶液為主。稀鹽溶液和緩沖液對蛋白質的穩定性好,溶解度大,是提取蛋白質和酶最常用的溶劑。用水溶液提取生物大分子應注意的幾個主要影響因素是:
 1) 鹽濃度(即離子強度):
 離子強度對生物大分子的溶解度有極大的影響,有些物質,如DNA-蛋白復合物,在高離子強度下溶解度增加。
 絕大多數蛋白質和酶,在低離子強度的溶液中都有較大的溶解度,如在純水中加入少量中性鹽,蛋白質的溶解度比在純水時大大增加,稱為「鹽溶」現象。鹽溶現象的產生主要是少量離子的活動,減少了偶極分子之間極性基團的靜電吸引力,增加了溶質和溶劑分子間相互作用力的結果。
 為了提高提取效率,有時需要降低或提高溶劑的極性。向水溶液中加入蔗糖或甘油可使其極性降低,增加離子強度(如加入KCl、NaCl、NH4Cl或(NH4)2SO4)可以增加溶液的極性。


 2) pH值:蛋白質、酶與核酸的溶解度和穩定性與pH值有關。過酸、過鹼均應盡量避免,一般控制在pH=6~8范圍內,提取溶劑的pH應在蛋白質和酶的穩定范圍內,通常選擇偏離等電點的兩側。
 3) 溫度:為防止變性和降解,制備具有活性的蛋白質和酶,提取時一般在0℃~5℃的低溫操作。
 4) 防止蛋白酶或核酸酶的降解作用:加入抑制劑或調節提取液的pH、離子強度或極性等方法使相應的水解酶失去活性,防止它們對欲提純的蛋白質、酶及核酸的降解作用。

 5) 攪拌與氧化:攪拌能促使被提取物的溶解,一般採用溫和攪拌為宜,速度太快容易產生大量泡沫,增大了與空氣的接觸面,會引起酶等物質的變性失活。因為一般蛋白質都含有相當數量的巰基,有些巰基常常是活性部位的必需基團,若提取液中有氧化劑或與空氣中的氧氣接觸過多都會使巰基氧化為分子內或分子間的二硫鍵,導致酶活性的喪失。在提取液中加入少量巰基乙醇或半胱氨酸以防止巰基氧化。

 ⑵ 有機溶劑提取
 一些和脂類結合比較牢固或分子中非極性側鏈較多的蛋白質和酶難溶於水、稀鹽、稀酸、或稀鹼中,常用不同比例的有機溶劑提取。
 常用的有機溶劑有乙醇、丙酮、異丙醇、正丁酮等,這些溶劑可以與水互溶或部分互溶,同時具有親水性和親脂性。
 有些蛋白質和酶既溶於稀酸、稀鹼,又能溶於含有一定比例的有機溶劑的水溶液中,在這種情況下,採用稀的有機溶液提取常常可以防止水解酶的破壞,並兼有除去雜質提高純化效果的作用。
例如,胰島素(見講義p36)。

 2.3 生物大分子的分離純化
 由於生物體的組成成分是如此復雜,數千種乃至上萬種生物分子又處於同一體系中,因此不可能有一個適合於各類分子的固定的分離程序,但多數分離工作關鍵部分的基本手段是相同的。
 為了避免盲目性,節省實驗探索時間,要認真參考和借鑒前人的經驗,少走彎路。常用的分離純化方法和技術有:
 沉澱法(包括:鹽析、有機溶劑沉澱、選擇性沉澱等)、離心、吸附層析、凝膠過濾層析、離子交換層析、親和層析、快速制備型液相色譜以及等電聚焦制備電泳等。本章以介紹沉澱法為主。

 2.3.1 沉澱法
 沉澱是溶液中的溶質由液相變成固相析出的過程。沉澱法(即溶解度法)操作簡便,成本低廉,不僅用於實驗室中,也用於某些生產目的的制備過程,是分離純化生物大分子,特別是制備蛋白質和酶時最常用的方法。通過沉澱,將目的生物大分子轉入固相沉澱或留在液相,而與雜質得到初步的分離。
 其基本原理是根據不同物質在溶劑中的溶解度不同而達到分離的目的,不同溶解度的產生是由於溶質分子之間及溶質與溶劑分子之間親和力的差異而引起的,溶解度的大小與溶質和溶劑的化學性質及結構有關,溶劑組分的改變或加入某些沉澱劑以及改變溶液的pH值、離子強度和極性都會使溶質的溶解度產生明顯的改變。

 在生物大分子制備中最常用的幾種沉澱方法是:
 ⑴中性鹽沉澱(鹽析法):多用於各種蛋白質和酶的分離純化。
 ⑵有機溶劑沉澱:多用於蛋白質和酶、多糖、核酸以及生物小分子的分離純化。
 ⑶選擇性沉澱(熱變性沉澱和酸鹼變性沉澱):多用於除去某些不耐熱的和在一定pH值下易變性的雜蛋白。
 ⑷等電點沉澱:用於氨基酸、蛋白質及其他兩性物質的沉澱,但此法單獨應用較少,多與其他方法結合使用。
 ⑸有機聚合物沉澱: 是發展較快的一種新方法, 主要使用PEG聚乙二醇(Polyethyene glycol)作為沉澱劑。

 2.3.1.1 中性鹽沉澱(鹽析法)
 在溶液中加入中性鹽使生物大分子沉澱析出的過程稱為「鹽析」。除了蛋白質和酶以外,多肽、多糖和核酸等都可以用鹽析法進行沉澱分離。
 鹽析法應用最廣的還是在蛋白質領域,已有八十多年的歷史,其突出的優點是:
 ①成本低,不需要特別昂貴的設備。
 ②操作簡單、安全。
 ③對許多生物活性物質具有穩定作用。

 ⑴ 中性鹽沉澱蛋白質的基本原理
 蛋白質和酶均易溶於水,因為該分子的-COOH、-NH2和-OH都是親水基團,這些基團與極性水分子相互作用形成水化層,包圍於蛋白質分子周圍形成1nm~100nm顆粒的親水膠體,削弱了蛋白質分子之間的作用力,蛋白質分子表面極性基團越多,水化層越厚,蛋白質分子與溶劑分子之間的親和力越大,因而溶解度也越大。親水膠體在水中的穩定因素有兩個:即電荷和水膜。因為中性鹽的親水性大於蛋白質和酶分子的親水性,所以加入大量中性鹽後,奪走了水分子,破壞了水膜,暴露出疏水區域,同時又中和了電荷,破壞了親水膠體,蛋白質分子即形成沉澱。鹽析示意圖如下頁「圖 4」所示。

 ⑵ 中性鹽的選擇
 常用的中性鹽中最重要的是(NH4)2SO4,因為它與其他常用鹽類相比有十分突出的優點:
 1) 溶解度大:尤其是在低溫時仍有相當高的溶解度,這是其他鹽類所不具備的。由於酶和各種蛋白質通常是在低溫下穩定,因而鹽析操作也要求在低溫下(0~4℃)進行。由下表可以看到, 硫銨在0℃時的溶解度,遠遠高於其它鹽類:
 表2-1 幾種鹽在不同溫度下的溶解度(克/100毫升水)
 0℃ 20℃ 80℃ 100 ℃
(NH4)2SO4 70.6 75.4 95.3 103
 Na2SO4 4.9 18.9 43.3 42.2
 NaH2PO4 1.6 7.8 93.8 101






 2) 分離效果好:有的提取液加入適量硫酸銨
鹽析,一步就可以除去75%的雜蛋白,純
度提高了四倍。
 3) 不易引起變性,有穩定酶與蛋白質結構的
作用。有的酶或蛋白質用2~3mol/L濃度的
(NH4)2SO4保存可達數年之久。
 4) 價格便宜,廢液不污染環境。

 ⑶ 鹽析的操作方法
 最常用的是固體硫酸銨加入法。將其研成細粉,在攪拌下緩慢均勻少量多次地加入,接近計劃飽和度時,加鹽的速度更要慢一些,盡量避免局部硫酸銨濃度過大而造成不應有的蛋白質沉澱。鹽析後要在冰浴中放置一段時間,待沉澱完全後再離心與過濾。
 在低濃度硫酸銨中鹽析可採用離心分離,高濃度硫酸銨常用過濾方法。
 各種飽和度下需加固體硫酸銨的量可由附錄中查出。

 ⑷ 鹽析曲線的製作
 如果要分離一種新的蛋白質和酶,沒有文獻數據可以借鑒,則應先確定沉澱該物質的硫酸銨飽和度。具體操作方法如下(講義p39):

蛋白質量(mg)或酶活力

10 20 30 40 50 60 70 80 90 100 硫銨飽
和度%

 ⑸鹽析的影響因素
 1) 蛋白質的濃度:高濃度的蛋白質用稍低的硫酸銨飽和度沉澱,若蛋白質濃度過高,易產生各種蛋白質的共沉澱作用。低濃度的蛋白質,共沉澱作用小,但回收率降低。較適中的蛋白質濃度是2.5%~3.0%,相當於25 mg/mL~30mg/mL。
 2) pH值對鹽析的影響:在等電點處溶解度小,pH值常選在該蛋白質的等電點附近。
 3) 溫度的影響:對於蛋白質、酶和多肽等生物大分子,在高離子強度溶液中,溫度升高,它們的溶解度反而減小。在低離子強度溶液或純水中蛋白質的溶解度大多數還是隨濃度升高而增加的。一般情況下,可在室溫下進行。但對於某些對溫度敏感的酶,要求在0℃~4℃下操作,以避免活力喪失。


 2.3.1.2 有機溶劑沉澱法
 ⑴基本原理
 有機溶劑對於許多蛋白質(酶)、核酸、多糖和小分子生化物質都能發生沉澱作用,是較早使用的沉澱方法之一。其原理主要是:
 ①降低水溶液的介電常數,向溶液中加入有機溶劑能降低溶液的介電常數,減小溶劑的極性,從而削弱了溶劑分子與蛋白質分子間的相互作用力,導致蛋白質溶解度降低而沉澱。
 ②由於使用的有機溶劑與水互溶,它們在溶解於水的同時從蛋白質分子周圍的水化層中奪走了水分子,破壞了蛋白質分子的水膜,因而發生沉澱作用。


 有機溶劑沉澱法的優點是:
 ①分辨能力比鹽析法高,即一種蛋白質或其他溶質只在一個比較窄的有機溶劑濃度范圍內沉澱。
 ②沉澱不用脫鹽,過濾比較容易(如有必要,可用透析袋脫有機溶劑)。因而在生化制備中有廣泛的應用。
 其缺點是對某些具有生物活性的大分子容易引起變性失活,操作需在低溫下進行。
 ⑵有機溶劑的選擇和濃度的計算
 用於生化制備的有機溶劑的選擇首先是要能與水互溶。沉澱蛋白質和酶常用的是乙醇、甲醇和丙酮。
 為了獲得沉澱而不著重於進行分離,可用溶液體積的倍數:如加入一倍、二倍、三倍原溶液體積的有機溶劑,來進行有機溶劑沉澱。

 ⑶有機溶劑沉澱的影響因素
 1) 溫度:多數生物大分子如蛋白質、酶和核酸在有機溶劑中對溫度特別敏感,溫度稍高就會引起變性,且有機溶劑與水混合時產生放熱反應,因此必須預冷,操作要在冰鹽浴中進行,加入有機溶劑時必須緩慢且不斷攪拌以免局部過濃。
 一般規律是溫度越低,得到的蛋白質活性越高。
 2) 樣品濃度:低濃度樣品回收率低,要使用比例更大的有機溶劑進行沉澱。高濃度樣品,可以節省有機溶劑,減少變性的危險,但雜蛋白的共沉澱作用大。
 通常使用5mg/mL~20mg/mL的蛋白質初濃度為宜。


 3) pH值:選擇在樣品穩定的pH值范圍內,通常是選在等電點附近,從而提高此沉澱法的分辨能力。
 4) 離子強度:鹽濃度太大或太小都有不利影響,通常鹽濃度以不超過5%為宜,使用乙醇的量也以不超過原蛋白質水溶液的2倍體積為宜,少量的中性鹽對蛋白質變性有良好的保護作用,但鹽濃度過高會增加蛋白質在水中的溶解度,降低了沉澱效果,通常是在低濃度緩沖液中沉澱蛋白質。
 沉澱所得的固體樣品,如果不是立即溶解進行下一步的分離,則應盡可能抽干沉澱,減少其中有機溶劑的含量,如若必要可以裝透析袋透析脫有機溶劑,以免影響樣品的生物活性。

 2.3.1.3 選擇性變性沉澱法
 這一方法是利用生物大分子與非目的生物大分子在物理化學性質等方面的差異,選擇一定的條件使雜蛋白等非目的物變性沉澱而得到分離提純。
 ⑴ 熱變性
 利用生物大分子對熱的穩定性不同,加熱升高溫度使非目的生物大分子變性沉澱而保留目的物在溶液中。
 ⑵ 表面活性劑和有機溶劑變性
 使那些對表面活性劑和有機溶劑敏感性強的雜蛋白變性沉澱。通常在冰浴或冷室中進行。
 ⑶ 選擇性酸鹼變性
 利用對pH值的穩定性不同而使雜蛋白變性沉澱。通常是在分離純化流程中附帶進行的分離純化步驟。

 2.3.1.4 等電點沉澱法
 利用具有不同等電點的兩性電解質,在達到電中性時溶解度最低,易發生沉澱,從而實現分離的方法。氨基酸、蛋白質、酶和核酸都是兩性電解質,可以利用此法進行初步的沉澱分離。
 由於許多蛋白質的等電點十分接近,而且帶有水膜的蛋白質等生物大分子仍有一定的溶解度,不能完全沉澱析出,因此,單獨使用此法解析度較低,因而此法常與鹽析法、有機溶劑沉澱法或其他沉澱劑一起配合使用,以提高沉澱能力和分離效果。
 此法主要用於在分離純化流程中去除雜蛋白,而不用於沉澱目的物。

 2.3.1.5 有機聚合物沉澱法
 有機聚合物是六十年代發展起來的一類重要的沉澱劑,最早應用於提純免疫球蛋白和沉澱一些細菌和病毒。近年來廣泛用於核酸和酶的純化。其中應用最多的是
「聚乙二醇」【HOCH2(CH2OCH2)nCH2OH (n >4)】( Polyethylene Glycol 簡寫為 PEG ),它的親水性強,溶干水和許多有機溶劑,對熱穩定,有廣泛圍的分子量,在生物大分子制備中,用的較多的是分子量為6000~20000的 PEG。
 本方法的優點是:
 ①操作條件溫和,不易引起生物大分子變性。
 ②沉澱效能高,使用很少量的P「EG即可以沉澱相當多
的生物大分子。
 ③沉澱後有機聚合物容易去除。

 2.3.2 透析
 自Thomas Graham 1861年發明透析方法至今已有一百多年。透析已成為生物化學實驗室最簡便最常用的分離純化技術之一。在生物大分子的制備過程中,除鹽、除少量有機溶劑、除去生物小分子雜質和濃縮樣品等都要用到透析的技術。
 透析只需要使用專用的半透膜即可完成。保留在透析袋內未透析出的樣品溶液稱為「保留液」,袋(膜)外的溶液稱為「滲出液」或「透析液」。截留分子量MwCO通常為1萬左右。
 用1% BaCl2檢查(NH4)2SO4,用1% AgNO3 檢查NaCl、KCl等。

 2.3.3 超濾
 超過濾即超濾,自20年代問世後,直至60年代以來發展迅速,很快由實驗室規模的分離手段發展成重要的工業單元操作技術。超濾現已成為一種重要的生化實驗技術,廣泛用於含有各種小分子溶質的各種生物大分子(如蛋白質、酶、核酸等)的濃縮、分離和純化。
 超濾是一種加壓膜分離技術,即在一定的壓力下,使小分子溶質和溶劑穿過一定孔徑的特製的薄膜,而使大分子溶質不能透過,留在膜的一邊,從而使大分子物質得到了部分的純化。

 超濾根據所加的操作壓力和所用膜的平均孔徑的不同,可分為微孔過濾、超濾和反滲透三種。
 微孔過濾所用的操作壓通常小於4×104Pa,膜的平均孔徑為500埃~14微米(1微米=104埃),用於分離較大的微粒、細菌和污染物等。
 超濾所用操作壓為4×104Pa~7×105Pa,膜的平均孔徑為10—100埃,用於分離大分子溶質。
 反滲透所用的操作壓比超濾更大,常達到35×105Pa~140×105Pa,膜的平均孔徑最小,一般為10埃以下,用於分離小分子溶質,如海水脫鹽,制高純水等。

 超濾技術的優點是操作簡便,成本低廉,不需增加任何化學試劑,尤其是超濾技術的實驗條件溫和,與蒸發、冰凍乾燥相比沒有相的變化,而且不引起溫度、pH的變化,因而可以防止生物大分子的變性、失活和自溶。
 在生物大分子的制備技術中,超濾主要用於生物大分子的脫鹽、脫水和濃縮等。
 超濾法也有一定的局限性,它不能直接得到乾粉制劑。對於蛋白質溶液,一般只能得到10~50%的濃度。

 超濾技術的關鍵是膜。
 常用的膜是由乙酸纖維或硝酸纖維或此二者的混合物製成。近年來發展了非纖維型的各向異性膜,例如聚碸膜、聚碸醯胺膜和聚丙烯腈膜等。這種膜在pH 1~14都是穩定的,且能在90℃下正常工作。超濾膜通常是比較穩定的,能連續用1~2年。
 超濾膜的基本性能指標:水通量(cm3/(cm2•h));截留率(以百分率%表示);化學物理穩定性(包括機械強度)等。
 超濾裝置由若干超濾組件構成。分為板框式、管式、螺旋卷式和中空纖維式四種主要類型。
 由於超濾法處理的液體多數是含有水溶性生物大分子、有機膠體、多糖及微生物等。這些物質極易粘附和沉積於膜表面上,造成嚴重的濃差極化和堵塞,這是超濾法最關鍵的問題,要克服濃差極化,通常可加大液體流量,加強湍流和加強攪拌。

 2.3.4 冰凍乾燥
 冰凍乾燥機是生化與分子生物學實驗室必備的儀器之一,因為大多數生物大分子分離純化後的最終產品多數是水溶液,要從水溶液中得到固體產品,最好的辦法就是冰凍乾燥,

『玖』 透析技術與超濾技術在生物製品中去除雜質的優缺點對比

透析和超濾基本原理差不多,都是利用半透膜分離大小不同的分子。但是也有一些區別,主要是應用范圍不同。具體介紹如下:
透析
自Thomas Graham 1861年發明透析方法至今已有一百多年。透析已成為生物化學實驗室最簡便最常用的分離純化技術之一。在生物大分子的制備過程中,除鹽、除少量有機溶劑、除去生物小分子雜質和濃縮樣品等都要用到透析的技術。
透析只需要使用專用的半透膜即可完成。通常是將半透膜製成袋狀,將生物大分子樣品溶液置入袋內,將此透析袋浸入水或緩沖液中,樣品溶液中的大分子量的生物大分子被截留在袋內,而鹽和小分子物質不斷擴散透析到袋外,直到袋內外兩邊的濃度達到平衡為止。保留在透析袋內未透析出的樣品溶液稱為"保留液",袋(膜)外的溶液稱為"滲出液"或"透析液"。
透析的動力是擴散壓,擴散壓是由橫跨膜兩邊的濃度梯度形成的。透析的速度反比於膜的厚度,正比於欲透析的小分子溶質在膜內外兩邊的濃度梯度,還正比於膜的面積和溫度,通常是4℃透析,升高溫度可加快透析速度。
透析膜可用動物膜和玻璃紙等,但用的最多的還是用纖維素製成的透析膜,目前常用的是美國Union Carbide (聯合碳化物公司)和美國光譜醫學公司生產的各種尺寸的透析管,截留分子量MwCO(即留在透析袋內的生物大分子的最小分子量,縮寫為MwCO)通常為1萬左右。商品透析袋製成管狀,其扁平寬度為23 mm~50 mm不等。為防乾裂,出廠時都用10%的甘油處理過,並含有極微量的硫化物、重金屬和一些具有紫外吸收的雜質,它們對蛋白質和其它生物活物質有害,用前必須除去。可先用50%乙醇煮沸1小時,再依次用50%乙醇、0.01 mol/L碳酸氫鈉和0.001 mol/L EDTA溶液洗滌,最後用蒸餾水沖洗即可使用。實驗證明,50%乙醇處理對除去具有紫外吸收的雜質特別有效。使用後的透析袋洗凈後可存於4℃蒸餾水中,若長時間不用,可加少量NaN2,以防長菌。洗凈涼乾的透析袋彎折時易裂口,用時必須仔細檢查,不漏時方可重復使用。
新透析袋如不作如上地殊處理,則可用沸水煮五至十分鍾,再用蒸餾水洗凈,即可使用。使用時,一端用橡皮筋或線繩扎緊,也可以使用特製的透析袋夾夾緊,由另一端灌滿水,用手指稍加壓,檢查不漏,方可裝入待透析液,通常要留三分之一至一半的空間,以防透析過程中,透析的小分子量較大時,袋外的水和緩沖液過量進入袋內將袋漲破。含鹽量很高的蛋白質溶液透析過夜時,體積增加50%是正常的。為了加快透析速度,除多次更換透析液外,還可使用磁子攪拌。透析的容器要大一些,可以使用大燒杯、大量筒和塑料桶。小量體積溶液的透析,可在袋內放一截兩頭燒園的玻璃棒或兩端封口的玻璃管,以使透析袋沉入液面以下。
檢查透析效果的方法是:用1% BaCl2檢查(NH4)2SO4,用1% AgNO3 檢查NaCl、KCl等。
為了提高透析效率,還可以使用各種透析裝置。使用者也可以自行設計與製作各種簡易的透析裝置。美國生物醫學公司(Biomed Instruments Inc.)生產的各種型號的Zeineh 透析器,由於使用對流透析的原理,使透析速度和效率大大提高。

超濾
超過濾即超濾,自20年代問世後,直至60年代以來發展迅速,很快由實驗室規模的分離手段發展成重要的工業單元操作技術。超濾現已成為一種重要的生化實驗技術,廣泛用於含有各種小分子溶質的各種生物大分子(如蛋白質、酶、核酸等)的濃縮、分離和純化。
超濾是一種加壓膜分離技術,即在一定的壓力下,使小分子溶質和溶劑穿過一定孔徑地制的薄膜,而使大分子溶質不能透過,留在膜的一邊,從而使大分子物質得到了部分的純化。超濾根據所加的操作壓力和所用膜的平均孔徑的不同,可分為微孔過濾、超濾和反滲透三種。微孔過濾所用的操作壓通常小於4×104 Pa,膜的平均孔徑為500埃~14微米(1微米=104埃),用於分離較大的微粒、細菌和污染物等。超濾所用操作壓為4×104 Pa~7×105 Pa,膜的平均孔徑為10-100埃,用於分離大分子溶質。反滲透所用的操作壓比超濾更大,常達到35×105 Pa~140×105 Pa,膜的平均孔徑最小,一般為10埃以下,用於分離小分子溶質,如海水脫鹽,制高純水等。
超濾技術的優點是操作簡便,成本低廉,不需增加任何化學試劑,尤其是超濾技術的實驗條件溫和,與蒸發、冰凍乾燥相比沒有相的變化,而且不引起溫度、pH的變化,因而可以防止生物大分子的變、失活和自溶。
在生物大分子的制備技術中,超濾主要用於生物大分子的脫鹽、脫水和濃縮等。
超濾法也有一定的局限,它不能直接得到乾粉制劑。對於蛋白質溶液,一般只能得到10~50%的濃度。
超濾技術的關鍵是膜。膜有各種不同的類型和規格,可根據工作的需要來選用。早期的膜是各向同的均勻膜,即現在常用的微孔薄膜,其孔徑通常是0.05mm 和0.025mm。近幾年來生產了一些各向異的不對稱超濾膜,其中一種各向異擴散膜是由一層非常薄的、具有一定孔徑的多孔"皮膚層"(厚約0.1mm ~1.0mm ),和一層相對厚得多的(約1mm )更易通滲的、作為支撐用的"海綿層"組成。皮膚層決定了膜的選擇,而海綿層增加了機械強度。由於皮膚層非常薄,因此高效、通透好、流量大,且不易被溶質阻塞而導致流速下降。常用的膜一般是由乙酸纖維或硝酸纖維或此二者的混合物製成。近年來為適應制葯和食品工業上滅菌的需要,發展了非纖維型的各向異膜,例如聚碸膜、聚碸醯胺膜和聚丙烯腈膜等。這種膜在pH 1~14都是穩定的,且能在90℃下正常工作。超濾膜通常是比較穩定的,若使用恰當,能連續用1~2年。暫時不用,可浸在1%甲醛溶液或0.2% 疊氮化鈉NaN3中保存。
超濾膜的基本能指標主要有:水通量(cm3/(cm2·h));截留率(以百分率%表示);化學物理穩定(包括機械強度)等。
超濾裝置一般由若干超濾組件構成。通常可分為板框式、管式、螺旋卷式和中空纖維式四種主要類型。由於超濾法處理的液體多數是含有水溶生物大分子、有機膠體、多糖及微生物等。這些物質極易粘附和沉積於膜表面上,造成嚴重的濃差極化和堵塞,這是超濾法最關鍵的問題,要克服濃差極化,通常可加大液體流量,加強湍流和加強攪拌。
國外生產超濾膜和超濾裝置最有名的廠家是美國的Milipore公司和德國的Sartorius公司。國內主要的研究機構和生產廠家是:中科院生態環境研究中心、杭州淡化和水處理開發中心、蘭州膜科學技術研究所、無錫化工研究所、上海醫葯工業研究所、天津膜分離工程研究所、北京化工廠、常熟膜分離實驗廠、無錫市超濾設備廠、無錫純水設備廠、天津超濾設備廠、湖北沙市水處理設備廠等。從膜的品種,以及從某些研究工作的深度方面看,我國與世畀先進國家的差距不很大,但在膜的質量能及商品化方面尚有較大差距。
在生物製品中應用超濾法有很高的經濟效益,例如供靜脈注射的25%人胎盤血白蛋白(即胎白)通常是用硫酸銨鹽析法、透析脫鹽、真空濃縮等工藝制備的,該工藝流程硫酸銨耗量大,能源消耗多,操詐時間長,透析過程易產生污染。改用超濾工藝後,平均回收率可達97.18%;吸附損失為1.69%;透過損失為1.23%;截留率為98.77%。大幅度提高了白蛋白的產量和質量,每年可節省硫酸銨6.2噸,自來水16000噸。
超濾技術的應用有很好的前景,應引起足夠的重視。

熱點內容
丁度巴拉斯情人電影推薦 發布:2024-08-19 09:13:07 瀏覽:886
類似深水的露點電影 發布:2024-08-19 09:10:12 瀏覽:80
《消失的眼角膜》2電影 發布:2024-08-19 08:34:43 瀏覽:878
私人影院什麼電影好看 發布:2024-08-19 08:33:32 瀏覽:593
干 B 發布:2024-08-19 08:30:21 瀏覽:910
夜晚看片網站 發布:2024-08-19 08:20:59 瀏覽:440
台灣男同電影《越界》 發布:2024-08-19 08:04:35 瀏覽:290
看電影選座位追女孩 發布:2024-08-19 07:54:42 瀏覽:975
日本a級愛情 發布:2024-08-19 07:30:38 瀏覽:832
生活中的瑪麗類似電影 發布:2024-08-19 07:26:46 瀏覽:239