當前位置:首頁 » 凈水方式 » 離子交換容量與磺化度計算

離子交換容量與磺化度計算

發布時間: 2021-02-08 22:50:35

Ⅰ 理論離子交換容量如何計算實驗法是使用滴定法,但是含磺酸基的聚合物理論的離子交換容量如何計算呢

離子交換容量就是IEC
IEC=每個結構單元所含的平均磺酸基團個數X磺酸基的分子專量/結構單元屬的平均分子量

如果你把滴定的看作為實驗法得到的數據,想知道理論的,那也就是用核磁 1H NMR進行表徵,在用積分面積求 每個結構單元所含的平均磺酸基團個數,然後帶入上面公式

或如果你是用磺化單體按比例聚合得到的聚合物,再忽略反應帶來的誤差的情況下,可以直接按投料比算出 每個結構單元所含的平均磺酸基團個數,然後帶入公式

Ⅱ 計算用98%的濃硫酸磺化2kmol苯以制備磺酸,問該硫酸的最低理論用量是多少(已知苯的п=66.4

引入SO3基團的方法有以下幾種:
1.有機分子與SO3或含有SO3的化合物作用版;
2.有機分子與含有SO2的化合物作用;
3.通過縮合或權聚合的方法;
4.含硫有機化合物的氧化。
向有機分子中引入磺基,可以賦予有機化合物水溶性、酸化、乳化、濕潤和發泡等功能, 這些特性被廣泛用來合成表面活性劑、水溶性染料、食用香料和某些葯物。
引入磺基的另外一個目的是為了把磺基置換成羥基、氨基或氰基、或是將磺基轉化為磺酸衍生物,如磺醯氯、磺醯胺等。[1]
常用磺化劑
所用磺化劑通常有三氧化硫,濃硫酸,發煙硫酸等。有時也用氯磺酸、二氧化硫加氯氣、二氧化硫加氧以及亞硫酸鈉等作為磺化劑。磺化方法有液相磺化法和氣相磺化法。
反應類型
磺化過程中磺酸基取代碳原子上的氫稱為直接磺化;磺酸基取代碳原子上的鹵素或硝基,稱為間接磺化。
直接磺化
用硫酸進行磺化是可逆反應,在一定條件下生成的磺酸又會水解。在很多情況下,磺化溫度會影響磺基進入芳環的位置。例如,萘用濃硫酸在低溫下進行磺化,主要生成易水解的萘-1-磺酸,而高溫磺化則主要生成難水解的萘-2-磺酸。

Ⅲ 理論離子交換容量如何計算實驗法是使用滴定法,但是含磺酸基的聚合物理論的離子交換容量如何計算呢

離子交換容量就是IEC
IEC=每個結構單元所含的平均磺酸基團個數X磺酸基的分子量/結構單元的平均分子量
如果你把滴定的看作為實驗法得到的數據,想知道理論的,那也就是用核磁 1H NMR進行表徵,在用積分面積求 每個結構單元所含的平均磺酸基團個數,然後帶入上面公式
或如果你是用磺化單體按比例聚合得到的聚合物,再忽略反應帶來的誤差的情況下,可以直接按投料比算出 每個結構單元所含的平均磺酸基團個數,然後帶入公式

Ⅳ 離子交換色譜的原理以及陰陽離子交換樹脂的特性

離子交換樹脂的結構:

離子交換樹脂主要由高分子骨架和活性基團兩部分組成,高分子骨架是惰性的網狀結構骨架,是不溶於酸或鹼的高分子物質,常用的離子交換樹脂是由苯乙烯和二乙烯苯聚合得到樹脂的骨架。

而活性基團不能自由移動的官能團離子和可以自由移動的可交換離子兩部分組成,可交換離子能夠決定樹脂所吸附的離子,比如可交換離子為H型陽離子交換樹脂,那麼這個樹脂能夠吸附的離子,就是H型陽離子,而官能團離子能夠決定樹脂的「酸"、「鹼"性和交換能力的強弱,比如官能團離子是強酸性離子,那麼樹脂就是強酸性離子交換樹脂。


離子交換樹脂的內部結構:

1.凝膠型樹脂是由純單體混合物經縮合或聚合而成的,結構為微孔狀,合成的工藝比較簡單,孔徑大概在1-2nm左右,凝膠型樹脂的操作容量高,產水量高,物理強度好,且再生效率高,被廣泛應用在食品飲料加工,超純水制備,飲用水過濾,硬水軟化,製糖業,制葯等領域。

2.大孔型樹脂的孔徑一般在10nm左右,在樹脂中孔徑是比較大的,所以被稱為大孔型樹脂,且孔徑不會隨著周圍的環境而變化,能夠彌補凝膠型樹脂不能在非水系統中使用的缺點,吸附能力非常強大,不易碎裂,耐氧化好,操作容量高,能夠應用在醫葯領域、除重金屬污染、葯品純化、水處理中除去碳酸硬度、冷凝水精處理等領域。

詳情點擊:網頁鏈接

Ⅳ 如何計算磺化度

不知你是對什麼物質磺化,磺化產品是否溶於水。如果是溶於水的,可以將已知含量版的溶液權通過陰離子交換樹脂,將該產品吸附到樹脂上,然後用適當的溶劑把該產品從樹脂上洗脫下來,再測定它的硫含量,磺基(-SO3)含量就可計算出來,這就是「磺化度」。如果產物是不溶於水的,可把它洗滌干凈後直接測定硫含量即可。硫的測定方法很多,可自行查閱。

Ⅵ 磺化是什麼

一種向有機分子中引入磺酸基(—SO2H)或磺醯氯基(—SO3Cl)的反應過程。磺化過程中磺酸基取代碳原子上的氫稱為直接磺化;磺酸基取代碳原子上的鹵素或硝基,稱為間接磺化。

磺化劑 通常用濃硫酸或發煙硫酸作為磺化劑,有時也用三氧化硫、氯磺酸、二氧化硫加氯氣、二氧化硫加氧以及亞硫酸鈉等作為磺化劑。

類型 可分為直接磺化和間接磺化兩大類。

直接磺化 用硫酸進行磺化是可逆反應,在一定條件下生成的磺酸又會水解。在很多情況下,磺化溫度會影響磺基進入芳環的位置。例如,萘用濃硫酸在低溫下進行磺化,主要生成易水解的萘-1-磺酸,而高溫磺化則主要生成難水解的萘-2-磺酸。

磺化是放熱反應,低溫磺化時需要冷卻,而高溫磺化則需要加熱保溫。

根據所用磺化劑的不同而區分為:

①過量硫酸磺化 大多數芳香族化合物的磺化採用此法。用濃硫酸磺化時,反應通式為:

式中Ar表示芳基。反應生成的水使硫酸濃度下降、反應速率減慢,因此要用過量很多的磺化劑。難磺化的芳烴要用發煙硫酸磺化。這時主要利用其中的游離三氧化硫,因此也要用過量很多的磺化劑。

Ar-H+SO3—→Ar-SO3H

②三氧化硫磺化 優點是磺化時不生成水,三氧化硫用量可接近理論量,反應快、廢液少。但三氧化硫過於活潑,在磺化時易於生成碸類等副產物,因此常常要用空氣或溶劑稀釋使用。主要用於由十二烷基苯制十二烷基苯磺酸鈉等表面活性劑的磺化過程。

③共沸去水磺化 用於從苯和氯苯制苯磺酸和對氯苯磺酸。特點是將過量6~8倍的苯蒸氣在120~180℃通入濃硫酸中,利用共沸原理由未反應的苯蒸氣將反應生成的水不斷地帶出,使硫酸濃度不致下降太多,此法硫酸的利用率高。因磺化時用苯蒸氣,又簡稱氣相磺化。

④烘焙磺化 用於某些芳伯胺的磺化。特點是將芳伯胺與等摩爾比的濃硫酸先製成固態硫酸鹽,然後在180~230℃烘焙,或是將芳伯胺與等摩爾比的硫酸,在三氯苯介質中在180℃加熱,並蒸出反應生成的水。如從苯胺制對氨基苯磺酸。

⑤氯磺酸磺化 用等摩爾比的氯磺酸使芳烴磺化可製得芳磺酸。用摩爾比為1:4~5或更多的氯磺酸,可製得芳磺醯氯。

Ar-H+ClSO□H—→ArSO□H+HCl

□例如:從2-萘酚制2-萘酚-1-磺酸,從乙醯苯胺制對乙醯胺基苯磺氯。

⑥用三氧化硫加氯氣或加臭氧磺化 脂肪族化合物一般不能用三氧化硫或其水合物進行磺化,因為它或是不起作用,或是使脂肪族化合物發生氧化分解,從而生成復雜的混合物。烷烴可用二氧化硫加氯氣或加臭氧的混合物作磺化劑,在紫外光照射下進行磺氯化或磺氧化。

R—H+SO2+Cl2—→R—SO2Cl+HCl

R—H+SO2+1/2O2—→R—SO3H式中R表示烷基。若將磺醯氯進行鹼水解,可得烷基磺酸鹽(洗滌劑)。

⑦加成磺化 某些烯烴化合物可以與亞硫酸氫鹽發生加成磺化。例如順丁烯二酸二異辛酯與亞硫酸氫鈉在水介質中在 110~120℃可反應而得琥珀酸二辛酯-2-磺酸鈉鹽(滲透劑T):

間接磺化 有機化合物分子中碳原子上的鹵素或硝基比較活潑時,如果與亞硫酸鈉作用可被磺基所置換;

R—X+Na2SO3—→R—SO3Na+NaX

ArX+Na2SO3—→ArSO3Na+NaX式中R為烷基;Ar為芳基;X為鹵素或硝基。用此法可從2,4-二硝基氯苯制2,4-二硝基苯磺酸,從1-硝基蒽醌制蒽醌-1-磺酸,從1,2-二氯乙烷制2-氯乙磺酸鈉。

磺化反應器 以硫酸、氯磺酸或三氧化硫在液相磺化時一般用釜式反應器。以氣態三氧化硫使十二烷基苯磺化時用膜式反應器。以SO2+Cl2或SO2+O2使烷烴磺氯化或磺氧化時,用氣液鼓泡反應器。

產品用途 在有機分子中引入磺酸基可增加產物的水溶性和酸性。大部分水溶性染料(如直接染料、酸性染料和活性染料等)都含有磺酸基。有些磺酸鹽是陰離子表面活性劑,如洗滌劑、潤濕劑、滲透劑、乳化劑、增溶劑等。聚合物的磺酸鹽包括有分散劑、強酸性離子交換樹脂、彈性體、水溶性合成膠和增稠劑等。芳環上的磺基還可轉化為羥基、氨基、氯基、氰基等,從而製得一系列中間體。有時,為了定位或有利於其他反應的進行,可先在芳環上暫時引入磺酸基,完成特定反應後,再進行磺酸基水解。磺醯氯基是活潑基團,從芳磺醯氯可製得芳磺醯胺和芳磺酸酯等一系列產物。
在有機物分子中引入磺基(-SO3H)的反應叫磺化。脂肪族化合物通常用間接的方法磺化。

芳香族化合物主要用直接磺化(親電取代反應)。常用的磺化劑有濃硫酸、發煙硫酸等。磺化反應一般按下列歷程進行。
http://www.biox.cn/content/20050612/16906.htm
參考資料:http://www.hg001.com/hgbase/f/fk.htm

Ⅶ 離子交換實驗中,不同交換速度下處理出水的總硬度應如何變化為什麼

水的硬度是指水中含有鹽的量,量越大,則表明硬度越高,檢驗水硬度最方便的方法是取要檢驗的水,然後讓肥皂在水中溶解,之後攪拌,觀察是否有泡末產生,泡末越多表明硬度越小,反之則越大。所謂軟水處理就是除掉其中的鹽分,方法就很多的比如:蒸餾,用活性炭等。1、煮沸法(只適用於暫時硬水)煮沸暫時硬水時的反應: Ca(HCO3)2 =CaCO3 ↓+H2O+CO2↑ Mg(HCO3)2 =MgCO3↓ +H2O+CO2↑ 由於CaCO3不溶,MgCO3 微溶,所以碳酸鎂在進一步加熱的條件下還可以與水反應生成更難溶的氫氧化鎂: MgCO3 +H2O = Mg(OH)2 ↓+CO2↑ 由此可見水垢的主要成分為CaCO3和Mg(OH)2 2、葯劑軟化法工業上的經典水質處理方法是葯劑軟化法,如加入石灰(CaO)、磷酸鈉等。加入石灰,可使水中的二氧化碳、碳酸氫鈣和碳酸氫鎂生成碳酸鈣和氫氧化鎂的沉澱,對永久硬度大的硬水,可再加適量純鹼。軟化時石灰添加量,根據經驗,每降低一千升水中暫時硬度一度,需加純氧化鈣10克。反應過程中,鎂都是以氫氧化鎂的形式沉澱,而鈣都是以碳酸鈣的形式沉澱。 3、離子交換法它是利用離子交換劑,把水中的離子與離子交換劑中可擴散的離子進行交換作用,使水得到軟化的方法。飲料用水大都採用有機合成離子交換樹脂作離子交換劑。在處理水時,先讓水從陽柱自上而下通過,使水中的金屬離子被陽離子交換樹脂吸附,陽離子交換樹脂中的氫離子被交換到水中去;然後再通過陰柱,使水中的陰離子被陰離子樹脂吸附,陰離子樹脂將氫氧根離子交換到水中,和氫離子化合成水,使水得到凈化。工業上用於軟化水的離子交換劑有磺化煤、離子交換樹脂等。它們都是具有復雜結構的物質,為簡便起,用NaR表示。當硬水通過裝有離子交換劑的裝置時,發生離子交換作用: 2NaR+Ca2+ --> CaR2+2Na+ 2NaR+Mg2+ --> MgR2+2Na+ 硬水中的Ca2+、Mg2+被離子交換劑吸附而離開溶液,因此從裝置中流出的水就成為軟水。離子交換劑因離子交換作用的不斷進行而逐步喪失功能,因此需要在一定時間內進行再生,即用Na+把它所吸附的Ca2+、Mg2+置換出來,從而恢復它軟化水的能力。 4、電滲析和超濾技術電滲析法是在外加直流電場的作用下,利用陰、陽離子交換膜對水中離子的選擇透過性,使水中陰、陽離子分別通過陰、陽離子交換膜向陽極和陰極移動,從而達到凈化作用。這項技術常用於將自來水制備初級純水。反滲透法(超濾技術)是以壓力為驅動力,提高水的壓力來克服滲透壓,使水穿過功能性的半透膜而除鹽凈化。反滲透法也能除去膠體物質,對水的利用率可達75%以上;反滲透法產水能力大,操作簡便,能有效使水凈化到符合國家標准。 5、蒸餾法:只適用於制備少量無Ca2+、Mg2+的特殊用水。 6、離子膜電解法:是在離子交換樹脂基礎上發展起來的新技術,主要用於海水和苦鹹水的淡化、工業用水和超純水的制備。

Ⅷ 離子交換樹脂利用率可達到多少

離子交換樹脂是帶有官能團(有交換離子的活性基團)、具有網狀結構、不溶性的高分子化合物。通常是球形顆粒物。
目錄
1基本介紹
2基本分類
3命名方式
4製造廠家
5基本類型
▪ 強酸性陽離子樹脂
▪ 弱酸性陽離子樹脂
▪ 強鹼性陰離子樹脂
▪ 弱鹼性陰離子樹脂
▪ 離子樹脂的轉型
6基體組成
7物理結構
8交換容量
9吸附選擇
▪ 對陽離子的吸附
▪ 對陰離子的吸附
▪ 對有色物的吸附
10物理性質
▪ 樹脂顆粒尺寸
▪ 樹脂的密度
▪ 樹脂的溶解性
▪ 膨脹度
▪ 耐用性
11應用領域
12其他補充
13保存方法
14物化信息
1基本介紹編輯

離子交換樹脂形態
離子交換樹脂的全名稱由分類名稱、骨架(或基因)名稱、基本名稱組成。孔隙結構分凝膠型和大孔型兩種,凡具有物理孔結構的稱大孔型樹脂,在全名稱前加「大孔」。分類屬酸性的應在名稱前加「陽」,分類屬鹼性的,在名稱前加「陰」。如:大孔強酸性苯乙烯系陽離子交換樹脂。
2基本分類編輯
離子交換樹脂還可以根據其基體的種類分為苯乙烯系樹脂和丙烯酸系樹脂。樹脂中化學活性基團的種類決定了樹脂的主要性質和類別。首先區分為陽離子樹脂和陰離子樹脂兩大類,它們可分別與溶液中的陽離子和陰離子進行離子交換。陽離子樹脂又分為強酸性和弱酸性兩類,陰離子樹脂又分為強鹼性和弱鹼性兩類 (或再分出中強酸和中強鹼性類)。

離子交換樹脂 基本形態
3命名方式編輯
離子交換樹脂的命名方式:
離子交換產品的型號以三位阿拉伯數字組成,第一位數字代表產品的分類,第二位數字代表骨架的差異,第三位數字為順序號用以區別基因、交聯劑等的差異。第一、第二位

濕離子交換樹脂
數字的意義,見表8-1。
表8-1 樹脂型號中的一、二位數字的意義
代號 0 1 2 3 4 5 6
分類名稱 強酸性 弱酸性 強鹼性 弱鹼性 螫合性 兩性 氧化還原性
骨架名稱 苯乙烯系丙烯酸系 醋酸系 環氧系 乙烯吡啶系 脲醛系 氯乙烯系
大孔樹脂在型號前加「D」,凝膠型樹脂的交聯度值可在型號後用「×」號連接阿拉伯數字表示。如D011×7,表示大孔強酸性丙烯酸系陽離子交換樹脂,其交聯度為7。
國外一些產品用字母C代表陽離子樹脂(C為cation的第一個字母),A代表陰離子樹脂(A為Anion的第一個字母),如Amberlite的IRC和IRA分別為陽樹脂和陰樹脂,亦分別代表陽樹脂和陰樹脂。
4製造廠家編輯
離子交換樹脂在國內外都有很多製造廠家和很多品種。國內製造廠有數十家,主要的有上海樹脂有限公司、南開化工廠、安徽皖東化工有限人司,浙江爭光實業股份有限公司、晨光化工研究院樹脂廠、江蘇色可賽思樹脂有限公司等;國外較著名的如美國Rohm & Hass公司生產的Amberlite系列、Success公司生產Ionresin系列、Dow化學公司的Dowex系列、法國Duolite系列和Asmit系列、日本的Diaion系列,還有Ionac系列、Allassion系列等。樹脂的牌號多數由各製造廠或所在國自行規定。
5基本類型編輯
強酸性陽離子樹脂
這類樹脂含有大量的強酸性基團,如磺酸基-SO3H,容易在溶液中離解出H+,故呈強酸性。樹脂離解後,本體所含的負電基團,如SO3-,能吸附結合溶液中的其他陽離子。這兩個

離子交換樹脂
反應使樹脂中的H+與溶液中的陽離子互相交換。強酸性樹脂的離解能力很強,在酸性或鹼性溶液中均能離解和產生離子交換作用。
樹脂在使用一段時間後,要進行再生處理,即用化學葯品使離子交換反應以相反方向進行,使樹脂的官能基團回復原來狀態,以供再次使用。如上述的陽離子樹脂是用強酸進行再生處理,此時樹脂放出被吸附的陽離子,再與H+結合而恢復原來的組成。
弱酸性陽離子樹脂
這類樹脂含弱酸性基團,如羧基-COOH,能在水中離解出H+ 而呈酸性。樹脂離解後餘下的負電基團,如R-COO-(R為碳氫基團),能與溶液中的其他陽離子吸附結合,從而產生陽離子交換作用。這種樹脂的酸性即離解性較弱,在低pH下難以離解和進行離子交換,只能在鹼性、中性或微酸性溶液中(如pH5~14)起作用。這類樹脂亦是用酸進行再生(比強酸性樹脂較易再生)。
強鹼性陰離子樹脂
這類樹脂含有強鹼性基團,如季胺基(亦稱四級胺基)-NR3OH(R為碳氫基團),能在水中離解出OH-而呈強鹼性。這種樹脂的正電基團能與溶液中的陰離子吸附結合,從而產生陰離子交換作用。
這種樹脂的離解性很強,在不同pH下都能正常工作。它用強鹼(如NaOH)進行再生。
弱鹼性陰離子樹脂
這類樹脂含有弱鹼性基團,如伯胺基(亦稱一級胺基)-NH2、仲胺基(二級胺基)-NHR、或叔胺基(三級胺基)-NR2,它們在水中能離解出OH-而呈弱鹼性。這種樹脂的正電基團能與溶液

離子交換樹脂
中的陰離子吸附結合,從而產生陰離子交換作用。這種樹脂在多數情況下是將溶液中的整個其他酸分子吸附。它只能在中性或酸性條件(如pH1~9)下工作。它可用Na2CO3、NH4OH進行再生。
離子樹脂的轉型
以上是樹脂的四種基本類型。在實際使用上,常將這些樹脂轉變為其他離子型式運行,以適應各種需要。例如常將強酸性陽離子樹脂與NaCl作用,轉變為鈉型樹脂再使用。工作時鈉型樹脂放出Na+與溶液中的Ca2+、Mg2+等陽離子交換吸附,除去這些離子。反應時沒有放出H+,可避免溶液pH下降和由此產生的副作用(如蔗糖轉化和設備腐蝕等)。這種樹脂以鈉型運行使用後,可用鹽水再生(不用強酸)。又如陰離子樹脂可轉變為氯型再使用,工作時放出Cl-而吸附交換其他陰離子,它的再生只需用食鹽水溶液。氯型樹脂也可轉變為碳酸氫型(HCO3-)運行。強酸性樹脂及強鹼性樹脂在轉變為鈉型和氯型後,就不再具有強酸性及強鹼性,但它們仍然有這些樹脂的其他典型性能,如離解性強和工作的pH范圍寬廣等。
6基體組成編輯
離子交換樹脂(ionresin)的基體(matrix),製造原料主要有苯乙烯和丙烯酸(酯)兩大類,它們分別與交聯劑二乙烯苯產生聚合反應,形成具有長分子主鏈及交聯橫鏈的網路骨

離子交換樹脂
架結構的聚合物。苯乙烯系樹脂是先使用的,丙烯酸系樹脂則用得較後。
這兩類樹脂的吸附性能都很好,但有不同特點。丙烯酸系樹脂能交換吸附大多數離子型色素,脫色容量大,而且吸附物較易洗脫,便於再生,在糖廠中可用作主要的脫色樹脂。苯乙烯系樹脂擅長吸附芳香族物質,善於吸附糖汁中的多酚類色素(包括帶負電的或不帶電的);但在再生時較難洗脫。因此,糖液先用丙烯酸樹脂進行粗脫色,再用苯乙烯樹脂進行精脫色,可充分發揮兩者的長處。
樹脂的交聯度,即樹脂基體聚合時所用二乙烯苯的百分數,對樹脂的性質有很大影響。通常,交聯度高的樹脂聚合得比較緊密,堅牢而耐用,密度較高,內部空隙較少,對離子的選擇性較強;而交聯度低的樹脂孔隙較大,脫色能力較強,反應速度較快,但在工作時的膨脹性較大,機械強度稍低,比較脆而易碎。工業應用的離子樹脂的交聯度一般不低於4%;用於脫色的樹脂的交聯度一般不高於8%;單純用於吸附無機離子的樹脂,其交聯度可較高。
除上述苯乙烯系和丙烯酸系這兩大系列以外,離子交換樹脂還可由其他有機單體聚合製成。如酚醛系(FP)、環氧系(EPA)、乙烯吡啶系(VP)、脲醛系(UA)等。
7物理結構編輯
離子樹脂常分為凝膠型和大孔型兩類。
凝膠型樹脂的高分子骨架,在乾燥的情況下內部沒有毛細孔。它在吸水時潤脹,在大分子鏈節間形成很微細的孔隙,通常稱為顯微孔(micro-pore)。濕潤樹脂的平均孔徑為2~4nm(2×10-6 ~4×10-6mm)。

離子交換樹脂
這類樹脂較適合用於吸附無機離子,它們的直徑較小,一般為0.3~0.6nm。這類樹脂不能吸附大分子有機物質,因後者的尺寸較大,如蛋白質分子直徑為5~20nm,不能進入這類樹脂的顯微孔隙中。
大孔型樹脂是在聚合反應時加入致孔劑,形成多孔海綿狀構造的骨架,內部有大量永久性的微孔,再導入交換基團製成。它並存有微細孔和大網孔(macro-pore),潤濕樹脂的孔徑達100~500nm,其大小和數量都可以在製造時控制。孔道的表面積可以增大到超過1000m2/g。這不僅為離子交換提供了良好的接觸條件,縮短了離子擴散的路程,還增加了許多鏈節活性中心,通過分子間的范德華引力(van de Waals force)產生分子吸附作用,能夠象活性炭那樣吸附各種非離子性物質,擴大它的功能。一些不帶交換功能團的大孔型樹脂也能夠吸附、分離多種物質,例如化工廠廢水中的酚類物。
大孔樹脂內部的孔隙又多又大,表面積很大,活性中心多,離子擴散速度快,離子交換速度也快很多,約比凝膠型樹脂快約十倍。使用時的作用快、效率高,所需處理時間縮短。大孔樹脂還有多種優點:耐溶脹,不易碎裂,耐氧化,耐磨損,耐熱及耐溫度變化,以及對有機大分子物質較易吸附和交換,因而抗污染力強,並較容易再生。
8交換容量編輯
離子交換樹脂進行離子交換反應的性能,表現在它的「離子交換容量」,即每克干樹脂或每毫升濕樹脂所能交換的離子的毫克當量數,meq/g(干)或 meq/mL(濕);當離子為一價時,毫克當量數即是毫克分子數(對二價或多價離子,前者為後者乘離子價數)。它又有「總交換容量」、「工作交換容量」和「再生交換容量」等三種表示方式。
1、總交換容量,表示每單位數量(重量或體積)樹脂能進行離子交換反應的化學基團的總量。

離子交換樹脂塔
2、工作交換容量,表示樹脂在某一定條件下的離子交換能力,它與樹脂種類和總交換容量,以及具體工作條件如溶液的組成、流速、溫度等因素有關。
3、再生交換容量,表示在一定的再生劑量條件下所取得的再生樹脂的交換容量,表明樹脂中原有化學基團再生復原的程度。
通常,再生交換容量為總交換容量的50~90%(一般控制70~80%),而工作交換容量為再生交換容量的30~90%(對再生樹脂而言),後一比率亦稱為樹脂的利用率。
在實際使用中,離子交換樹脂的交換容量包括了吸附容量,但後者所佔的比例因樹脂結構不同而異。現仍未能分別進行計算,在具體設計中,需憑經驗數據進行修正,並在實際運行時復核之。
離子樹脂交換容量的測定一般以無機離子進行。這些離子尺寸較小,能自由擴散到樹脂體內,與它內部的全部交換基團起反應。而在實際應用時,溶液中常含有高分子有機物,它們的尺寸較大,難以進入樹脂的顯微孔中,因而實際的交換容量會低於用無機離子測出的數值。這種情況與樹脂的類型、孔的結構尺寸及所處理的物質有關。
9吸附選擇編輯
離子交換樹脂對溶液中的不同離子有不同的親和力,對它們的吸附有選擇性。各種離子受樹脂交換吸附作用的強弱程度有一般的規律,但不同的樹脂可能略有差異。主要規律如下:
對陽離子的吸附
高價離子通常被優先吸附,而低價離子的吸附較弱。在同價的同類離子中,直徑較大的離子的被吸附較強。一些陽離子被吸附的順序如下:
Fe3+ > Al3+ > Pb2+ > Ca2+ > Mg2+ > K+ > Na+ > H+
對陰離子的吸附
強鹼性陰離子樹脂對無機酸根的吸附的一般順序為:
SO42-> NO3- > Cl- > HCO3- > OH-
弱鹼性陰離子樹脂對陰離子的吸附的一般順序如下:
OH-> 檸檬酸根3- > SO42- > 酒石酸根2- >;草酸根2- > PO43- >NO2- > Cl- >;醋酸根- > HCO3-
對有色物的吸附
糖液脫色常使用強鹼性陰離子樹脂,它對擬黑色素(還原糖與氨基酸反應產物)和還原糖的鹼性分解產物的吸附較強,而對焦糖色素的吸附較弱。這被認為是由於前兩者通常帶負電,而焦糖的電荷很弱。
通常,交聯度高的樹脂對離子的選擇性較強,大孔結構樹脂的選擇性小於凝膠型樹脂。這種選擇性在稀溶液中較大,在濃溶液中較小。
10物理性質編輯
離子交換樹脂的顆粒尺寸和有關的物理性質對它的工作和性能有很大影響。
樹脂顆粒尺寸
離子交換樹脂通常製成珠狀的小顆粒,它的尺寸也很重要。樹脂顆粒較細者,反應速度較大,但細顆粒對液體通過的阻力較大,需要較高的工作壓力;特別是濃糖液粘度高,這種影響更顯著。因此,樹脂顆粒的大小應選擇適當。如果樹脂粒徑在0.2mm(約為70目)以下,會明顯增大流體通過的阻力,降低流量和生產能力。
樹脂顆粒大小的測定通常用濕篩法,將樹脂在充分吸水膨脹後進行篩分,累計其在20、30、40、50……目篩網上的留存量,以90%粒子可以通過其相對應的篩孔直徑,稱為樹脂的「有效粒徑」。多數通用的樹脂產品的有效粒徑在0.4~0.6mm之間。
樹脂顆粒是否均勻以均勻系數表示。它是在測定樹脂的「有效粒徑」坐標圖上取累計留存量為40%粒子,相對應的篩孔直徑與有效粒徑的比例。如一種樹脂(IR-120)的有效粒徑為0.4~0.6mm,它在20目篩、30目篩及40目篩上留存粒子分別為:18.3%、41.1%、及31.3%,則計算得均勻系數為2.0。
樹脂的密度
樹脂在乾燥時的密度稱為真密度。濕樹脂每單位體積(連顆粒間空隙)的重量稱為視密度。樹脂的密度與它的交聯度和交換基團的性質有關。通常,交聯度高的樹脂的密度較高,強酸性或強鹼性樹脂的密度高於弱酸或弱鹼性者,而大孔型樹脂的密度則較低。例如,苯乙烯系凝膠型強酸陽離子樹脂的真密度為1.26g/mL,視密度為0.85g/mL;而丙烯酸系凝膠型弱酸陽離子樹脂的真密度為1.19g/mL,視密度為0.75g/mL。
樹脂的溶解性
離子交換樹脂應為不溶性物質。但樹脂在合成過程中夾雜的聚合度較低的物質,及樹脂分解生成的物質,會在工作運行時溶解出來。交聯度較低和含活性基團多的樹脂,溶解傾向較大。
膨脹度
離子交換樹脂含有大量親水基團,與水接觸即吸水膨脹。當樹脂中的離子變換時,如陽離子樹脂由H+轉為Na+,陰樹脂由Cl-轉為OH-,都因離子直徑增大而發生膨脹,增大樹脂的體積。通常,交聯度低的樹脂的膨脹度較大。在設計離子交換裝置時,必須考慮樹脂的膨脹度,以適應生產運行時樹脂中的離子轉換發生的樹脂體積變化。
耐用性
樹脂顆粒使用時有轉移、摩擦、膨脹和收縮等變化,長期使用後會有少量損耗和破碎,故樹脂要有較高的機械強度和耐磨性。通常,交聯度低的樹脂較易碎裂,但樹脂的耐用性更主要地決定於交聯結構的均勻程度及其強度。如大孔樹脂,具有較高的交聯度者,結構穩定,能耐反復再生。
11應用領域編輯
1)水處理
水處理領域離子交換樹脂的需求量很大,約占離子交換樹脂產量的90%,用於水中的各種陰陽離子的去除。目前,離子交換樹脂的最大消耗量是用在火力發電廠的純水處理上,其次是原子能、半導體、電子工業等。
2)食品工業
離子交換樹脂可用於製糖、味精、酒的精製、生物製品等工業裝置上。例如:高果糖漿的製造是由玉米中萃出澱粉後,再經水解反應,產生葡萄糖與果糖,而後經離子交換處理,可以生成高果糖漿。離子交換樹脂在食品工業中的消耗量僅次於水處理。
3)制葯行業
制葯工業離子交換樹脂對發展新一代的抗菌素及對原有抗菌素的質量改良具有重要作用。鏈黴素的開發成功即是突出的例子。近年還在中葯提成等方面有所研究。
4)合成化學和石油化學工業
在有機合成中常用酸和鹼作催化劑進行酯化、水解、酯交換、水合等反應。用離子交換樹脂代替無機酸、鹼,同樣可進行上述反應,且優點更多。如樹脂可反復使用,產品容易分離,反應器不會被腐蝕,不污染環境,反應容易控制等。
甲基叔丁基醚(MTBE)的制備,就是用大孔型離子交換樹脂作催化劑,由異丁烯與甲醇反應而成,代替了原有的可對環境造成嚴重污染的四乙基鉛。
5)環境保護
離子交換樹脂已應用在許多非常受關注的環境保護問題上。目前,許多水溶液或非水溶液中含有有毒離子或非離子物質,這些可用樹脂進行回收使用。如去除電鍍廢液中的金屬離子,回收電影製片廢液里的有用物質等。
6)濕法冶金及其他
離子交換樹脂可以從貧鈾礦里分離、濃縮、提純鈾及提取稀土元素和貴金屬。
12其他補充編輯
離子交換技術有相當長的歷史,某些天然物質如泡沸石和用煤經過磺化製得的磺化煤都可用作離子交換劑。但是,隨著現代有機合成工業技術的迅速發展,研究製成了許多種性能優良的離子交換樹脂,並開發了多種新的應用方法,離子交換技術迅速發展,在許多行業特別是高新科技產業和科研領域中廣泛應用。近年國內外生產的樹脂品種達數百種,年產量數十萬噸。
在工業應用中,離子交換樹脂的優點主要是處理能力大,脫色范圍廣,脫色容量高,能除去各種不同的離子,可以反復再生使用,工作壽命長,運行費用較低(雖然一次投入費用較大)。以離子交換樹脂為基礎的多種新技術,如色譜分離法、離子排斥法、電滲析法等,各具獨特的功能,可以進行各種特殊的工作,是其他方法難以做到的。離子交換技術的開發和應用還在迅速發展之中。
離子交換樹脂的應用,是近年國內外製糖工業的一個重點研究課題,是糖業現代化的重要標志。膜分離技術在糖業的應用也受到廣泛的研究。
離子交換樹脂都是用有機合成方法製成。常用的原料為苯乙烯或丙烯酸(酯),通過聚合反應生成具有三維空間立體網路結構的骨架,再在骨架上導入不同類型的化學活性基團(通常為酸性或鹼性基團)而製成。
離子交換樹脂不溶於水和一般溶劑。大多數製成顆粒狀,也有一些製成纖維狀或粉狀。樹脂顆粒的尺寸一般在0.3~1.2mm 范圍內,大部分在0.4~0.6mm之間。它們有較高的機械強度(堅牢性),化學性質也很穩定,在正常情況下有較長的使用壽命。
離子交換樹脂中含有一種(或幾種)化學活性基團,它即是交換官能團,在水溶液中能離解出某些陽離子(如H+或Na+)或陰離子(如OH-或Cl-),同時吸附溶液中原來存有的其他陽離子或陰離子。即樹脂中的離子與溶液中的離子互相交換,從而將溶液中的離子分離出來。
離子交換樹脂的品種很多,因化學組成和結構不同而具有不同的功能和特性,適應於不同的用途。應用樹脂要根據工藝要求和物料的性質選用適當的類型和品種。
相關搜索詞條:
離子交換樹脂再生
離子交換樹脂預處理
注意事項:
1、 離子交換樹脂含有一定水份,不宜露天存放,儲運過程中應保持濕潤,以免風干脫水,使樹脂破碎,如貯存過程中樹脂脫水了,應先用濃食鹽水(10%)浸泡,再逐漸稀釋,不得直接放入水中,以免樹脂急劇膨脹而破碎。
2、 冬季儲運使用中,應保持在5-40℃的溫度環境中,避免過冷或過熱,影響質量,若冬季沒有保溫設備時,可將樹脂貯存在食鹽水中,食鹽水濃度可根據氣溫而定。
3、 離子交換樹脂的工業產品中,常含有少量低聚合物和未參加反應的單體,還含有鐵、鉛、銅等無機雜質,當樹脂與水、酸、鹼或其它溶液接觸時,上述物質就會轉入溶液中,影響出水質量,因此,新樹脂在使用前必須進行預處理,一般先用水使樹脂充分膨脹,然後,對其中的無機雜質(主要是鐵的化合物)可用4-5%的稀鹽酸除去,有機雜質可用2-4%稀氫氧化鈉溶液除去,洗到近中性即可。如在醫葯制備中使用,須用乙醇浸泡處理。
4、 樹脂在使用中,防止與金屬(如鐵、銅等)油污、有機分子微生物、強氧化劑等接觸,免使離子交換能力降低,甚至失去功能,因此,須根據情況對樹脂進行不定期的活化處理,活化方法可根據污染情況和條件而定,一般陽樹脂在軟化中易受Fe的污染可用鹽酸浸泡,然後逐步稀釋,陰樹脂易受有機物污染,可用10%NaC1+2-5%NaOH混合溶液浸泡或淋洗,必要時可用1%雙氧水溶液泡數分鍾,其它,也可採用酸鹼交替處理法,漂白處理法,酒精處理及各種滅菌法等等。
5、 新樹脂的預處理:離子交換樹脂的工業產品中,常含有少量低聚物和未參加反應的單體,還含有鐵、鉛、銅等無機雜質。當樹脂與水、酸、鹼或其它溶液接觸時,上述物質就會轉入溶液中,影響出水質量。因此,新樹脂在使用前必須進行預處理。一般先用水使樹脂膨脹,然後,對其中的無機雜質(主要是鐵的化合物)可用4-5%的稀鹽酸除去,有機雜質可用2-4%稀氫氧化鈉溶液除去洗到近中性即可。
13保存方法編輯
離子交換樹脂不能露天存放,存放處的溫度為0-40℃,當存放處溫度稍低於0℃時,應向包裝袋內加入澄清的飽和食鹽水、浸泡樹脂。此外,當存放處溫度過高時,不但使樹脂易於脫水,還會加速陰樹脂的降解。一旦樹脂失水,使用時不能直接加水,可用澄清的飽和食鹽水浸泡,然後再逐步加水稀釋,洗去鹽分,貯存期間應使其保持濕潤。
14物化信息編輯
中文名稱:離子交換樹脂
英文名稱:Amberlite XAD-16
英文別名:Amberlite(r) xad-16; amberlite(r) xad-16 nonionic polymeric adsorbent; supelclean envi-chrom p, 50 grams; amberchrom 161c, 50gm; amberchrom 161c 100ml; amberlite xad-16, -7, -4 resin; amberlite xad-15 nonionic polymeric adsorbent; amberlitet la-2, ion exchange resin, liquid grade; amberlite la-2; ion exchange resin[1]
CAS:104219-63-8;11128-96-4

Ⅸ 磺化溫度的控制方法有哪些

在磺化生產中,轉化塔的SO2轉化SO3的轉化率的高低,對產品的質量及產量有很大關系,而轉化率的高低與轉化塔各層的溫度密切相關,控制好了各層的溫度就能得到較高的轉化率,而SO2冷卻器和一段冷卻器是利用冷卻風換熱來帶走熱量的,控制了冷卻風量也就控制了SO2及混合氣體的溫度,因配管的需要蝶閥都安裝在距地面5-6米高度,調節冷卻風的風量只能是用鏈條帶動鏈輪來調節蝶閥的開度。
目前國內外採用的方法是,當操作人員在操作員站的屏幕上觀察到溫度偏離目標溫度時,要從控制室至生產現場,靠多年積累的經驗調節蝶閥的開度,回到控制室再觀察溫度變化,這樣操作需要經過幾次才能使溫度達到目標溫度,費時費力,不能較快使溫度恢復目標溫度,影響轉化率。
因此,需要一種用於磺化轉化塔的自動溫度控制系統,用於減輕操作人員的勞動強度,提高了溫度控制精度,縮短溫度偏離回復時間,提高了產品質量和產量。

技術實現要素:
本實用新型的目的是提供一種用於磺化轉化塔的自動溫度控制系統,用於解決傳統磺化轉化塔的溫度控制,操作人員勞動強度大,溫度控制不精確,溫度偏離回復時間長的問題。
本實用新型提供了如下的技術方案:
一種用於磺化轉化塔的自動溫度控制系統,包括SO2冷卻器、一段冷卻器、轉化塔、冷卻風機,所述轉化塔上設有轉化塔一層和轉化塔二層,所述轉化塔一層的進口處設有第一熱電偶,所述轉化塔二層的進口處設有第二熱電偶,所述SO2冷卻器上連接有第一電動蝶閥,所述一段冷卻器上連接有第二電動蝶閥,所述第一電動蝶閥與所述第二電動蝶閥分別與所述冷卻風機相連,所述第一熱電偶上連接有PLC模塊,所述PLC模塊上連接有PID控制器,所述PID控制器與所述第一電動蝶閥連接,所述第二熱電偶與所述PLC模塊相連,所述PLC模塊與所述PID控制器相連,所述PID控制器與所述第二電動蝶閥連接。
優選的,所述第一電動蝶閥與所述第二電動蝶閥均採用220V交流供電,為第一電動蝶閥與第二電動蝶閥供電。
優選的,所述PLC模塊產生的控制信號為4-20mA,通過電流信號,精確調節第一電動蝶閥與第二電動蝶閥的開度。
優選的,所述PID控制器上設有顯示模塊和按鈕,便於設置合適的PID參數,實現整個系統的自動溫度控制。
優選的,所述第一電動蝶閥和第二電動蝶閥是低負荷電動蝶閥,功耗低可通過PLC模塊自由調節開度。

熱點內容
丁度巴拉斯情人電影推薦 發布:2024-08-19 09:13:07 瀏覽:886
類似深水的露點電影 發布:2024-08-19 09:10:12 瀏覽:80
《消失的眼角膜》2電影 發布:2024-08-19 08:34:43 瀏覽:878
私人影院什麼電影好看 發布:2024-08-19 08:33:32 瀏覽:593
干 B 發布:2024-08-19 08:30:21 瀏覽:910
夜晚看片網站 發布:2024-08-19 08:20:59 瀏覽:440
台灣男同電影《越界》 發布:2024-08-19 08:04:35 瀏覽:290
看電影選座位追女孩 發布:2024-08-19 07:54:42 瀏覽:975
日本a級愛情 發布:2024-08-19 07:30:38 瀏覽:832
生活中的瑪麗類似電影 發布:2024-08-19 07:26:46 瀏覽:239