離子交換分離操作
❶ 離子交換分離法
磺酸型陽離子交換樹脂在稀鹽酸介質中,可吸附鋯氧離子,經1~2mol/LHCl淋洗,僅釷和內稀土留在交換柱上,鈦容則部分分離,其他多數元素均能分離。再用4mol/LHCl淋洗,即可使鋯與釷和稀土分離。
此外,在鹽酸-過氧化氫溶液中,鋯(鉿)均可吸附於陽離子交換柱上,再用檸檬酸或草酸淋洗可進行定量分離。
某些陰離子交換樹脂在鹽酸溶液中,能吸附鋯、鉿、鈾和鈰,釷不被吸附。在氫氟酸介質中,鋯被吸附而與鋁、鐵分離。
❷ 離子交換層析的具體操作
對於離子交換纖維素要用流水洗去少量碎的不易沉澱的顆粒,以保證有較好的均勻度,對於已溶脹好的產品則不必經這一步驟。溶脹的交換劑使用前要用稀酸或稀鹼處理,使之成為帶H+或OH-的交換劑型。陰離子交換劑常用「鹼-酸-鹼」處理,使最終轉為-OH-型或鹽型交換劑;對於陽離子交換劑則用「酸-鹼-酸」處理,使最終轉為-H-型交換劑。
洗滌好的纖維素使用前必須平衡至所需的pH和離子強度。已平衡的交換劑在裝柱前還要減壓除氣泡。為了避免顆粒大小不等的交換劑在自然沉降時分層,要適當加壓裝柱,同時使柱床壓緊,減少死體積,有利於解析度的提高。
柱子裝好後再用起始緩沖液淋洗,直至達到充分平衡方可使用。 加樣:
層析所用的樣品應與起始緩沖液有相同的pH和離子強度,所選定的pH值應落在交換劑與被結合物有相反電荷的范圍,同時要注意離子強度應低,可用透析、凝膠過濾或稀釋法達此目的。樣品中的不溶物應在透析後或凝膠過濾前,以離心法除去。為了達到滿意的分離效果,上樣量要適當,不要超過柱的負荷能力。柱的負荷能力可用交換容量來推算,通常上樣量為交換劑交換總量的1%-5%。 已結合樣品的離子交換前,可通過改變溶液的pH或改變離子強度的方法將結合物洗脫,也可同時改變pH與離子強度。為了使復雜的組份分離完全,往往需要逐步改變pH或離子強度,其中最簡單的方法是階段洗脫法,即分次將不同pH與離子強度的溶液加入,使不同成分逐步洗脫。由於這種洗脫pH與離子強度的變化大,使許多洗脫體積相近的成分同時洗脫,純度較差,不適宜精細的分離。最好的洗脫方法是連續梯度洗脫,洗脫裝置見圖16-6.兩個容器放於同一水平上,第一個容器盛有一定pH的緩沖液,第二個容器含有高鹽濃度或不同pH的緩沖液,兩容器連通,第一個容器與柱相連,當溶液由第一容器流入柱時,第二容器中的溶液就會自動來補充,經攪拌與第一容器的溶液相混合,這樣流入柱中的緩沖液的洗脫能力即成梯度變化。第一容器中任何時間的濃度都可用下式進行計算:
C=C2-(C2-C1)(1-V)A2/A1
式中A1、A2分別代表兩容器的截面積:C1、C2分別表示容器中溶液的濃度;V為流出體積對總體積之比。當A1=A2時為線性梯度,當A1>A2時為凹形梯度,A1>A2時為凸形梯度。
洗脫時應滿足以下要求:
①洗脫液體積應足夠大,一般要幾十倍於床體積,從而使分離的各峰不至於太擁擠。
②梯度的上限要足夠高,使緊密吸附的物質能被洗脫下來。
③梯度不要上升太快,要恰好使移動的區帶在快到柱末端時達到解吸狀態。目的物的過早解吸,會引起區帶擴散;而目的物的過晚解吸會使峰形過寬。
洗脫餾份的分析按一定體積(5-10ml/管)收集的洗脫液可逐管進行測定,得到層析圖譜。依實驗目的的不同,可採用適宜的檢測方法(生物活性測定、免疫學測定等)確定圖譜中目的物的位置,並回收目的物。
離子交換劑的再生與保存離子交換劑可在柱上再生。如離子交換纖維素可用2mol/:NaCl淋洗柱,若有強吸附物則可用0.1mol/LNaOH洗柱;若有脂溶性物質則可用非離子型去污劑洗柱後再生,也可用乙醇洗滌,其順序為:0.5mol/LNaOH-水-乙醇-水-20%NaOH-水。保存離子交換劑時要加防腐劑。對陰離子交換劑宜用0.002%氯已定(洗必泰),陽離子交換劑可用乙基硫柳汞(0.005%)。有些產品建議用0.02%疊氮鈉。
❸ 離子交換的過程是如何進行的
離子交換是藉助於固體離子交換劑中的離子與稀溶液中的離子進行交換,以達到提取或去除溶液中某些離子的目的。它是一種屬於傳質分離過程的單元操作。
離子交換法
一、前言
離子交換法(ion
exchange
process)是液相中的離子和固相中離子間所進行的的一種可逆性化學反應,當液相中的某些離子較為離子交換固體所喜好時,便會被離子交換固體吸附,為維持水溶液的電中性,所以離子交換固體必須釋出等價離子回溶液中。
離子交換樹脂一般呈現多孔狀或顆粒狀,其大小約為0.1~1mm,其離子交換能力依其交換能力特徵可分:
1.
強酸型陽離子交換樹脂:主要含有強酸性的反應基如磺酸基(-SO3H),此離子交換樹脂可以交換所有的陽離子。
2.
弱酸型陽離子交換樹脂:具有較弱的反應基如羧基(-COOH基),此離子交換樹脂僅可交換弱鹼中的陽離子如Ca2+、Mg2+,對於強鹼中的離子如Ca2+、K+等無法進行交換。
3.
強鹼型陰離子交換樹脂:主要是含有較強的反應基如具有四面體銨鹽官能基之-N+(CH3)3,在氫氧形式下,-N+(CH3)3OH-中的氫氧離子可以迅速釋出,以進行交換,強鹼型陰離子交換樹脂可以和所有的陰離子進行交換去除。
4.
弱鹼型陰離子交換樹脂:具有較弱的反應基如氨基,僅能去除強酸中的陰離子如SO42-,Cl-或NO3-,對於HCO3-,CO32-或SiO42-則無法去除。
不論是離子交換樹脂或是沸石,都有其一定的可交換基濃度,稱為離子交換容量(ion
exchange
capacity)。對陽離子交換樹脂而言,大約在200~500meq/100g。因為陽離子交換為一化學反應,故必須遵守質量平衡定律。離子交換樹脂的一般方程式可以表示如下:
全文請看:
http://www.qlhw.cn/ShiYan/UploadFiles/200501/20050106235836920.doc
離子交換的基本知識
為了除去水中離子態雜質,現在採用得最普遍的方法是離子交換。這種方法可以將水中離子態雜質清除得以較徹底,因而能製得很純的水。所以,在熱力發電廠鍋爐用水的制備工藝中,它是一個必要的步驟。
離子交換處理,必須用一種稱做離子交換劑的物質(簡稱交換劑)來進行。這種物質遇水時,可以將其本身所具有的某種離子和水中同符號的離子相互交換,離子交換劑的種類很多,有天然和人造、有機和無機、陽離子型和陰離子型等之分,大概情況如表所示。此外,按結構特徵來分,還有大孔型和凝膠型等。
全文請看:
http://www.qlhw.cn/ShiYan/UploadFiles/200501/20050107000541376.doc
❹ 離子交換分離法的特點
1 分離效率高,既能實現相反電荷離子的分離,又能實現相近電荷離子的分離。
2 應用范圍廣,可以用於分離、富集、純化。
3 使用方便,處理量大,多數可再生利用。
4 操作比較麻煩,周期長。
❺ 如何用離子交換樹脂進行分離
用百分之3的酸HCL泡陽樹脂3-4個小時,用百分之4的鹼NaOH泡陰樹脂3-4個小時。用軟水洗,洗到PH為7左右,反復三次,樹脂就可以混合在一起做水用了。
❻ 離子交換分離法包括哪幾個過程
【1】樹脂的選擇與處理;
【2】裝柱過程;
【3】交換過程;
【4】洗脫過程;
❼ 吸附分離操作的一般步驟是什麼
萃取是利用系統中組分在溶劑中有不同的溶解度來分離混合物的單元操作,利用相似相溶原理,萃取有兩種方式:液-液萃取,用選定的溶劑分離液體混合物中某種組分,溶劑必須與被萃取的混合物液體不相溶,具有選擇性的溶解能力,而且必須有好的熱穩定性和化學穩定性,並有小的毒性和腐蝕性。如用苯分離煤焦油中的酚;用有機溶劑分離石油餾分中的烯烴;用CCl4萃取水中的Br2.固-液萃取,也叫浸取,用溶劑分離固體混合物中的組分,如用水浸取甜菜中的糖類;用酒精浸取黃豆中的豆油以提高油產量;用水從中葯中浸取有效成分以製取流浸膏叫「滲瀝」或「浸瀝」。雖然萃取經常被用在化學試驗中,但它的操作過程並不造成被萃取物質化學成分的改變(或說化學反應),所以萃取操作是一個物理過程。萃取是有機化學實驗室中用來提純和純化化合物的手段之一。通過萃取,能從固體或液體混合物中提取出所需要的化合物。這里介紹常用的液-液萃取。利用化合物在兩種互不相溶(或微溶)的溶劑中溶解度或分配系數的不同,使化合物從一種溶劑內轉移到另外一種溶劑中。經過反復多次萃取,將絕大部分的化合物提取出來。分配定律是萃取方法理論的主要依據,物質對不同的溶劑有著不同的溶解度。同時,在兩種互不相溶的溶劑中,加入某種可溶性的物質時,它能分別溶解於兩種溶劑中,實驗證明,在一定溫度下,該化合物與此兩種溶劑不發生分解、電解、締合和溶劑化等作用時,此化合物在兩液層中之比是一個定值。不論所加物質的量是多少,都是如此。屬於物理變化。用公式表示。CA/CB=KCA.CB分別表示一種化合物在兩種互不相溶地溶劑中的量濃度。K是一個常數,稱為「分配系數」。有機化合物在有機溶劑中一般比在水中溶解度大。用有機溶劑提取溶解於水的化合物是萃取的典型實例。在萃取時,若在水溶液中加入一定量的電解質(如氯化鈉),利用「鹽析效應」以降低有機物和萃取溶劑在水溶液中的溶解度,常可提高萃取效果。要把所需要的化合物從溶液中完全萃取出來,通常萃取一次是不夠的,必須重復萃取數次。利用分配定律的關系,可以算出經過萃取後化合物的剩餘量。設:V為原溶液的體積w0為萃取前化合物的總量w1為萃取一次後化合物的剩餘量w2為萃取二次後化合物的剩餘量w3為萃取n次後化合物的剩餘量S為萃取溶液的體積經一次萃取,原溶液中該化合物的濃度為w1/V;而萃取溶劑中該化合物的濃度為(w0-w1)/S;兩者之比等於K,即:w1/V=Kw1=w0KV(w0-w1)/SKV+S同理,經二次萃取後,則有w2/V=K即(w1-w2)/Sw2=w1KV=w0KVKV+SKV+S因此,經n次提取後:wn=w0(KV)KV+S當用一定量溶劑時,希望在水中的剩餘量越少越好。而上式KV/(KV+S)總是小於1,所以n越大,wn就越小。也就是說把溶劑分成數次作多次萃取比用全部量的溶劑作一次萃取為好。但應該注意,上面的公式適用於幾乎和水不相溶地溶劑,例如苯,四氯化碳等。而與水有少量互溶地溶劑乙醚等,上面公式只是近似的。但還是可以定性地指出預期的結果。萃取可分為以下幾種:一、雙水相萃取雙水相萃取技術((Two-aqueousphaseextraction,簡稱ATPS)是指親水性聚合物水溶液在一定條件下可以形成雙水相,由於被分離物在兩相中分配不同,便可實現分離"被廣泛用於生物化學細胞生物學和生物化工等領域的產品分離和提取"雙水相萃取技術設備投資少,操作簡單"該類雙水相體系多為聚乙二醇-葡萄糖和聚乙二醇-無機鹽兩種"由於水溶性高聚物難以揮發,使反萃取必不可少,且鹽進入反萃取劑中,對隨後的分析測定帶來很大的影響"另外水溶性高聚物大多黏度較大,不易定量操作,也給後續研究帶來麻煩"事實上,普通的能與水互溶的有機溶劑在無機鹽的存在下也可生成雙水相體系,並已用於血清銅和血漿鉻的形態分析"基於與水互溶的有機溶劑和鹽水相的雙水相萃取體系具有價廉!低毒!較易揮發而無需反萃取和避免使用黏稠水溶性高聚物等特點。二、有機溶劑萃取水洗分液法是用水將有機相中溶於水的雜質分離出來,達到純化有機相的目的。有機溶劑萃取法就是常說的萃取,即用有機溶劑把水相、固相(或其它不溶於該溶劑的相)中溶於該溶劑的組分分離出來的方法。理論部分見Afeastforeye的內容。一般萃取實驗中,萃取後的有機相(含所需化合物)還要用水或飽和食鹽水洗,進一步純化有機相。這兩種方法都需要分液漏斗,操作過程基本相同,只需確定哪一層(相)需要保留。三、超臨界萃取超臨界萃取所用的萃取劑為超臨界流體,超臨界流體是介於氣液之間的一種既非氣態又非液態的物態,這種物質只能在其溫度和壓力超過臨界點時才能存在。超臨界流體的密度較大,與液體相仿,而它的粘度又較接近於氣體。因此超臨界流體是一種十分理想的萃取劑。超臨界流體的溶劑強度取決於萃取的溫度和壓力。利用這種特性,只需改變萃取劑流體的壓力和溫度,就可以把樣品中的不同組分按在流體中溶解度的大小,先後萃取出來,在低壓下弱極性的物質先萃取,隨著壓力的增加,極性較大和大分子量的物質與基本性質,所以在程序升壓下進行超臨界萃取不同萃取組分,同時還可以起到分離的作用。溫度的變化體現在影響萃取劑的密度與溶質的蒸汽壓兩個因素,在低溫區(仍在臨界溫度以上),溫度升高降低流體密度,而溶質蒸汽壓增加不多,因此,萃取劑的溶解能力時的升溫可以使溶質從流體萃取劑中析出,溫度進一步升高到高溫區時,雖然萃取劑的密度進一步降低,但溶質蒸汽壓增加,揮發度提高,萃取率不但不會減少反而有增大的趨勢。除壓力與溫度外,在超臨界流體中加入少量其他溶劑也可改變它對溶質的溶解能力。其作用機理至今尚未完全清楚。通常加入量不超過10%,且以極性溶劑甲醇、異丙醇等居多。加入少量的極性溶劑,可以使超臨界萃取技術的適用范圍進一步擴大到極性較大化合物。超臨界流體萃取過程簡介將萃取原料裝入萃取釜。採用二氧化碳為超臨界溶劑。二氧化碳氣體經熱交換器冷凝成液體,用加壓泵把壓力提升到工藝過程所需的壓力(應高於二氧化碳的臨界壓力),同時調節溫度,使其成為超臨界二氧化碳流體。二氧化碳流體作為溶劑從萃取釜底部進入,與被萃取物料充分接觸,選擇性溶解出所需的化學成分。含溶解萃取物的高壓二氧化碳流體經節流閥降壓到低於二氧化碳臨界壓力以下進入分離釜(又稱解析釜),由於二氧化碳溶解度急劇下降而析出溶質,自動分離成溶質和二氧化碳氣體二部分,前者為過程產品,定期從分離釜底部放出,後者為循環二氧化碳氣體,經過熱交換器冷凝成二氧化碳液體再循環使用。整個分離過程是利用二氧化碳流體在超臨界狀態下對有機物有特異增加的溶解度,而低於臨界狀態下對有機物基本不溶解的特性,將二氧化碳流體不斷在萃取釜和分離釜間循環,從而有效地將需要分離提取的組分從原料中分離出來。四、液膜萃取是一項新的萃取技術。以水為連續相,分散以表面活性劑和有機相包覆有水相內核的液滴,形成一乳狀液。在外水相中某些組分被液滴外的有機相萃取後進入液滴內的水相,實現萃取分離。由於液滴的直徑只幾微米,液膜的比表面大,加以被萃取組分很快從有機相轉入內水相,傳質推動力大、傳質不受外水相與表機相平衡濃度的限制,故萃取效率很高。技術的難點是破乳。目前在高壓靜電場下破乳是最有效的。可用在金屬離子分離、生物產品分離以及污水處理等方面。五、固相萃取固相萃取法是色譜法的一個重要的應用。在此方法中,使一定體積的樣品溶液通過裝有固體吸附劑的小柱,樣品中與吸附劑有強作用的組分被完全吸附;然後,用強洗脫溶劑將被吸附的組分洗脫出來,定容成小體積被測樣品溶液。使用固相萃取法,可以使樣品中的組分得到濃縮,同時可初步除去對感興趣組分有干擾的成分,從而提高了分析的靈敏度。固相萃取不僅可用於色譜分析中的樣品預處理,而且可用於紅外光譜、質譜、核磁共振、紫外和原子吸收等各種分析方法的樣品預處理。C18固相萃取小柱具有疏水作用,對非極性的組分有吸附作用,因此可以從水中將多核芳烴萃取出來,完成濃縮樣品的作用。固相萃取小柱還有其他類型,如極性、離子交換等。六、液固萃取利用填充了細顆粒吸附劑的小柱作液-固萃取(1iquid~solidextraction,LSE)的方法很快就把液一液萃取方法比了下去,在樣品基質的簡化和痕量樣品的富集等方面建立起自己的地位。液一液萃取有這樣的一些問題:勞動力密集;經常受到乳化等實際問題的困擾;傾向於消耗大量的高純度溶劑,這些溶劑往往對操作者健康和環境造成危害;在排放的時候帶來額外的費用。液一固萃取則有廉價、省時、溶劑消耗和處理的步驟簡單的優點。液一固萃取步驟可以很容易利用專用的流程單元組,自動地在多通道中同時萃取樣品並把樣品制備成適自動進樣的樣品;或利用離心式分析器批量處理大批樣品,達到增加樣品的通量、減少勞動力的費用的目的。液一固萃取用於現場采樣很方便,它使人們不必把大量樣品送到實驗室中去處理,最大程度地減少樣品運輸和儲存的問題。液一固萃取技術不是沒有它的問題,但這些問題和在液一液萃取中遇到的問題是不一樣的,這兩種技術可以看作是互補的。
❽ 離子交換分離
離子交換分離法的基礎,幾乎都是在氫氟酸介質中使金屬氟化物被離子交換樹回脂或纖維素所吸附,答然後用含有不同濃度氫氟酸的酮類溶液從離子交換樹脂柱上將鈮、鉭有選擇地淋洗出來。此方法不僅可以使鈮、鉭和其他元素分離,也可以使鈮、鉭互相分離。