當前位置:首頁 » 凈水方式 » 協同過濾擴展性

協同過濾擴展性

發布時間: 2021-02-22 23:35:32

A. 協同過濾演算法有哪些 slope

協同過濾演算法是這一領域的主流。作為基於內容的演算法執行方式,協同過濾在准確專性上具有相屬當的優勢,但無法冷啟動、同質化和運算效率低使其依然存在很多不足。
協同過濾演算法的名稱來源於化學上的過濾操作。
原理
利用物質的溶解性差異,將液體和不溶於液體的固體分離開來的一種方法。如用過濾法除去粗食鹽中少量的泥沙

過濾實驗儀器
漏斗、燒杯、玻璃棒、鐵架台(含鐵圈)、濾紙。

過濾操作要領
要做到「一貼、二低、三靠」。
一貼
即使濾紙潤濕,緊貼漏斗內壁,中間不要留下氣泡。(防止氣泡減慢過濾速度。)
二低
1.濾紙邊緣略低於漏斗邊緣。
2.液面低於濾紙邊緣。(防止液體過濾不凈。)
三靠
1.傾倒時燒杯杯口要緊靠玻璃棒上。
2.玻璃棒下端抵靠在三層濾紙處。
3.漏斗下端長的那側管口緊靠燒杯內壁。

過濾注意事項
1.燒杯中的混合物在過濾前應用玻璃棒攪拌,然後進行過濾。
2.過濾後若溶液還顯渾濁,應再過濾一次,直到溶液變得透明為止。
3.過濾器中的沉澱的洗滌方法:用燒瓶或滴管向過濾器中加蒸餾水,使水面蓋沒沉澱物,待溶液全部濾出後,重復2~3次。
希望我能幫助你解疑釋惑。

B. 個性化推薦系統的基本框架

個性化推薦系統的基本框架如下:
參考國內最具代表性的百分點推薦系統框架來講,個性化推薦系統的推薦引擎在個性化演算法的框架基礎之上,還引入場景引擎、規則引擎和展示引擎,形成全新的百分點推薦引擎的技術框架,系統通過綜合並利用用戶的興趣偏好、屬性,商品的屬性、內容、分類,以及用戶之間的社交關系等等,挖掘用戶的喜好和需求,主動向用戶推薦其感興趣或者需要的商品。
基於雲計算的個性化推薦平台。消除數據孤島,建立基於用戶全網興趣偏好軌跡的精準雲計算分析模型,打通用戶在多個網站的興趣偏好,形成成用戶行為偏好大數據中心。
多種智能演算法庫。基於多維度的數據挖掘、統計分析,進行演算法模型的建立和調優。綜合利用基於內容、基於用戶行為和基於社交關系網路的多種演算法,為用戶推薦其喜歡的商品、服務或內容。
電子商務推薦系統的主要演算法有:
(1) 基於關聯規則的推薦演算法(Association Rule-based Recommendation)
(2) 基於內容的推薦演算法 (Content-based Recommendation)
內容過濾主要採用自然語言處理、人工智慧、概率統計和機器學習等技術進行過濾。
通過相關特徵的屬性來定義項目或對象,系統基於用戶評價對象的特徵學慣用戶的興趣,依據用戶資料與待預測項目的匹配程度進行推薦,努力向客戶推薦與其以前喜歡的產品相似的產品。如新聞組過濾系統News Weeder。
基於內容過濾的系統其優點是簡單、有效。尤其對於推薦系統常見的冷啟動(Cold Start)問題,Content-based方法能夠比較好的進行解決。因為該演算法不依賴於大量用戶的點擊日誌,只需要使用待推薦對象(item)本身的屬性、類目、關鍵詞等特徵,因此該方法在待推薦對象數量龐大、變化迅速、積累點擊數稀少等應用場景下有較好的效果。但該方法的缺點是對推薦物的描述能力有限,過分細化,推薦結果往往局限與原對象相似的類別中,無法為客戶發現新的感興趣的資源,只能發現和客戶已有興趣相似的資源。這種方法通常被限制在容易分析內容的商品的推薦,而對於一些較難提取出內容的商品,如音樂CD、電影等就不能產生滿意的推薦效果。
(3) 協同過濾推薦演算法 (Collaborative Filtering Recommendation)
協同過濾是在信息過濾和信息系統中正迅速成為一項很受歡迎的技術。與傳統的基於內容過濾直接分析內容進行推薦不同,協同過濾分析用戶興趣,在用戶群中找到指定用戶的相似(興趣)用戶,綜合這些相似用戶對某一信息的評價,形成系統對該指定用戶對此信息的喜好程度預測。
與傳統文本過濾相比,協同過濾有下列優點:
1)能夠過濾難以進行機器自動基於內容分析的信息。如藝術品、音樂;
2)能夠基於一些復雜的,難以表達的概念(信息質量、品位)進行過濾;
3)推薦的新穎性。 正因為如此,協同過濾在商業應用上也取得了不錯的成績。Amazon,CDNow,MovieFinder,都採用了協同過濾的技術來提高服務質量。
協同過濾推薦演算法,可進一步細分為基於用戶的協同過濾(user-based collaborative filtering)和基於物品的協同過濾(item-based collaborative filtering)。
基於用戶的協同過濾的基本思想是:根據所有用戶對物品或者信息的偏好,發現與當前用戶口味和偏好相似的「鄰居」用戶群,在一般的應用中是採用計算「K- 鄰居」的演算法;然後,基於這 K 個鄰居的歷史偏好信息,為當前用戶進行物品的推薦。
基於物品的協同過濾的基本原理也類似,該方法根據用戶和物品直接歷史點擊或購買記錄,來計算物品和物品之間的相似度,然後根據用戶的歷史偏好的物品信息,將挖掘到的類似的物品推薦給用戶
基於用戶的協同過濾和基於物品的協同過濾各自有其適用場景。總的來看,協同過濾方法的缺點是:
1)稀疏性問題:如果用戶對商品的評價非常稀疏,這樣基於用戶的評價所得到的用戶間的相似性可能不準確;
2)可擴展性問題:隨著用戶和商品的增多,系統的性能會越來越低;
3)冷啟動問題:如果從來沒有用戶對某一商品加以評價,則這個商品就不可能被推薦。
4)長尾問題:對微小市場的推薦。
因此,現在的電子商務推薦系統都採用了幾種技術相結合的推薦技術。

C. 協同過濾的演算法簡介

電子商務推薦系統的一種主要演算法。
協同過濾推薦(Collaborative Filtering recommendation)是在信息過濾和信息系統中正迅速成為一項很受歡迎的技術。與傳統的基於內容過濾直接分析內容進行推薦不同,協同過濾分析用戶興趣,在用戶群中找到指定用戶的相似(興趣)用戶,綜合這些相似用戶對某一信息的評價,形成系統對該指定用戶對此信息的喜好程度預測。
與傳統文本過濾相比,協同過濾有下列優點:
(1)能夠過濾難以進行機器自動基於內容分析的信息。如藝術品、音樂;
(2)能夠基於一些復雜的,難以表達的概念(信息質量、品位)進行過濾;
(3)推薦的新穎性。
正因為如此,協同過濾在商業應用上也取得了不錯的成績。Amazon,CDNow,MovieFinder,都採用了協同過濾的技術來提高服務質量。
缺點是:
(1)用戶對商品的評價非常稀疏,這樣基於用戶的評價所得到的用戶間的相似性可能不準確(即稀疏性問題);
(2)隨著用戶和商品的增多,系統的性能會越來越低;
(3)如果從來沒有用戶對某一商品加以評價,則這個商品就不可能被推薦(即最初評價問題)。
因此,現在的電子商務推薦系統都採用了幾種技術相結合的推薦技術。
案例: AMAZON個性化推薦系統先驅 (基於協同過濾)
AMAZON是一個虛擬的網上書店,它沒有自己的店面,而是在網上進行在線銷售。它提供了高質量的綜合節目資料庫和檢索系統,用戶可以在網上查詢有關圖書的信息。如果用戶需要購買的話,可以把選擇的書放在虛擬購書籃中,最後查看購書籃中的商品,選擇合適的服務方式並且提交訂單,這樣讀者所選購的書在幾天後就可以送到家。
AMAZON書店還提供先進的個性化推薦功能,能為不同興趣偏好的用戶自動推薦盡量符合其興趣需要的書籍。 AMAZON使用推薦軟體對讀者曾經購買過的書以及該讀者對其他書的評價進行分析後,將向讀者推薦他可能喜歡的新書,只要滑鼠點一下,就可以買到該書;AMAZON能對顧客購買過的東西進行自動分析,然後因人而異的提出合適的建議。讀者的信息將被再次保存,這樣顧客下次來時就能更容易的買到想要的書。此外,完善的售後服務也是AMAZON的優勢,讀者可以在拿到書籍的30天內,將完好無損的書和音樂光碟退回AMAZON,AMAZON將原價退款。當然AMAZON的成功還不止於此,如果一位顧客在AMAZON購買一本書,下次他再次訪問時,映入眼簾的首先是這位顧客的名字和歡迎的字樣。

D. 協同過濾演算法屬於自然語言處理方向嗎

協同來過濾演算法是這一領源域的主流。作為基於內容的演算法執行方式,協同過濾在准確性上具有相當的優勢,但無法冷啟動、推薦同質化和運算效率低使其依然存在很多不足。
協同過濾演算法的名稱來源於化學上的過濾操作。
原理
利用物質的溶解性差異,將液體和不溶於液體的固體分離開來的一種方法。如用過濾法除去粗食鹽中少量的泥沙

過濾實驗儀器
漏斗、燒杯、玻璃棒、鐵架台(含鐵圈)、濾紙。

過濾操作要領
要做到「一貼、二低、三靠」。
一貼
即使濾紙潤濕,緊貼漏斗內壁,中間不要留下氣泡。(防止氣泡減慢過濾速度。)
二低
1.濾紙邊緣略低於漏斗邊緣。
2.液面低於濾紙邊緣。(防止液體過濾不凈。)
三靠
1.傾倒時燒杯杯口要緊靠玻璃棒上。
2.玻璃棒下端抵靠在三層濾紙處。
3.漏斗下端長的那側管口緊靠燒杯內壁。

過濾注意事項
1.燒杯中的混合物在過濾前應用玻璃棒攪拌,然後進行過濾。
2.過濾後若溶液還顯渾濁,應再過濾一次,直到溶液變得透明為止。
3.過濾器中的沉澱的洗滌方法:用燒瓶或滴管向過濾器中加蒸餾水,使水面蓋沒沉澱物,待溶液全部濾出後,重復2~3次。
希望我能幫助你解疑釋惑。

E. 協同過濾中的可擴展性問題是什麼

協同過濾演算法能夠容易地為幾千名用戶提供較好的推薦,但是對於電子商務網站,往往需要給成百上千萬的用戶提供推薦,這就一方面需要提高響應時間的要求,能夠為用戶實時地進行推薦;另一方面還應考慮到存儲空間的要求,盡量減少推薦系統運行的負擔。

1.3 可擴展性問題

在協同過濾推薦演算法中,全局數值演算法能及時利用最新的信息為用戶產生相對准確的用戶興趣度預測或進行推薦,但是面對日益增多的用戶,數據量的急劇增加,演算法的擴展性問題(即適應系統規模不斷擴大的問題)成為制約推薦系統實施的重要因素。雖然與基於模型的演算法相比,全局數值演算法節約了為建立模型而花費的訓練時間,但是用於識別「最近鄰居」演算法的計算量隨著用戶和項的增加而大大增加,對於上百萬的數目,通常的演算法會遇到嚴重的擴展性瓶頸問題。該問題解決不好,直接影響著基於協同過濾技術的推薦系統實時向用戶提供推薦問題的解決,而推薦系統的實時性越好,精確度越高,該系統才會被用戶所接受。

基於模型的演算法雖然可以在一定程度上解決演算法的可擴展性問題,但是該類演算法往往比較適於用戶的興趣愛好比較穩定的情況,因為它要考慮用戶模型的學習過程以及模型的更新過程,對於最新信息的利用比全局數值演算法要差些。

分析以上協同過濾在推薦系統實現中面臨的兩個問題,它們的共同點是均考慮到了最近鄰居的形成問題(包括用戶信息獲得的充分性、計算耗費等)。但是應該看到協同過濾在推薦系統的實現中,要獲得最近鄰居用戶,必須通過一定的計算獲得用戶之間的相似度,然後確定最佳的鄰居個數,形成鄰居用戶集。而在這一過程中,如果對全部數據集進行相似性計算,雖然直接,但是運算量和時間花費都極大,無法適應真實的商務系統。如果通過對訓練集數據(整個數據集的某一子集)進行實驗獲得,雖然不必對整個數據集進行計算,但是必須通過將多次實驗結果統計出來才可能得到,這無疑也增加了推薦結果獲得的代價和誤差。並且如果考慮到數據集的動態變化,這一形成最近鄰居用戶集技術的實際應用價值越來越小。因此,考慮使用更為有效的最近鄰居用戶形成辦法,對於協同過濾的應用非常必要。

F. 協同過濾中的實時性定義及解決思路

自從第一台IoT設備於1990年問世以來,物聯網已經有了長足的發展,這是一種可以在互聯網上開啟和關閉的烤麵包機。27年之後,聯網設備已經從新奇產品變成了日常生活中必不可少的一部分。

最近的預估顯示,成年人平均每天花在智能手機上的時間超過4個小時,只能手機也是一種裝有物聯網感測器數據的設備。目前,81%的成年人擁有智能手機。想像一下,當81%的成年人擁有智能汽車和智能家居時,我們將會收到多少數據。
今天,IoT設備的大部分數據都在雲中處理,這意味著全球所有角落產生的數據都被集中發送到數據中心的少數計算機上。然而,隨著IoT設備的數量預計將在2020年猛增至200億,通過互聯網發送數據的體積和速度對雲計算方法提出了嚴峻的挑戰。

越來越多的設備連接將迫使IoT製造商在2018年將雲計算模式從雲計算模式轉移到一種稱為「霧計算」的新模式。

越來越多的數據訪問,雲計算問題明顯
物聯網和人工智慧的發展將帶來價值數以億計的數據。分布廣泛的感測器、智能終端等每時每刻都在產生大量的數據。盡管雲計算擁有「無限」的計算和存儲資源池,但雲數據中心往往是集中化的且距離終端設備較遠,當面對大量的分布廣泛的終端設備及所採集的海量數據時,雲不可避免地遇到了三大難題:
網路擁塞,如果大量的物聯網和人工智慧應用部署在雲中,將會有海量的原始數據不間斷地湧入核心網路,造成核心網路擁塞;
高延遲,終端設備與雲數據中心的較遠距離將導致較高的網路延遲,而對實時性要求高的應用則難以滿足需求;
可靠性無法保證,對可靠性和安全性要求較高的應用,由於從終端到雲平台的距離遠,通信通路長,因而風險大,雲中備份的成本也高。

因此,為滿足物聯網和人工智慧等應用的需求,作為雲計算的延伸擴展,霧計算(Fog Computing)的概念應運而生。霧計算最早由思科提出,它是一種分布式的計算模型,作為雲數據中心和物聯網設備 / 感測器之間的中間層,它提供計算、網路和存儲設備,讓基於雲的服務可以離物聯網設備和感測器更近。
霧計算主要使用邊緣網路中的設備,可以是傳統網路設備,如網路中的路由器、交換機、網關等,也可以是專門部署的本地伺服器。這些設備的資源能力都遠小於一個數據中心,但是它們龐大的數量可以彌補單一設備資源的不足。
在物聯網中,霧可以過濾、聚合用戶消息,匿名處理用戶數據以保證隱秘性,初步處理數據以便實時決策,提供臨時存儲以提升用戶體驗,而雲則可以負責大運算量或長期存儲任務,與霧計算優勢互補。通過霧計算,可以將一些並不需要放到雲上的數據在網路邊緣層直接進行處理和存儲,提高數據分析處理的效率,降低時延,減少網路傳輸壓力,提升安全性。霧計算以其廣泛的地理分布、帶有大量網路節點的大規模感測器網路、支持高移動性和實時互動以及多樣化的軟硬體設備和雲在線分析等特點,迅速被物聯網和人工智慧應用領域的企業所接受並獲得廣泛應用,例如,M2M、人機協同、智能電網、智能交通、智能家居、智能醫療、無人駕駛等應用。
與邊緣計算(Edge Computing)不同的是,霧計算可以將基於雲的服務 , 如 IaaS、 PaaS、 SaaS,拓展到網路邊緣,而邊緣計算更多地專注於終端設備端。霧計算可以進行邊緣計算,但除了邊緣網路,霧計算也可以拓展到核心網路,也就是邊緣和核心網路的組件都可以作為霧計算的基礎設施。

「雲」和「霧」典型案例和應用場景
融合雲平台和霧計算,一方面可通過雲降低傳統 IT采購、管理和運維的開支,將 IaaS、 PaaS、 SaaS作為雲服務輸出;另一方面,通過霧計算可保證邊緣端數據的實時搜集、提取和分析速度,提高網路資源部署使用和管理效率,有助於提高人機協同效率,為企業業務創新、服務品質提升提供技術支持。以下是四個行業「雲」和「霧」的典型案例和應用場景。

工業
GE基於 Pivotal Cloud Foundry打造了 Predix 物聯網 PaaS平台,結合戴爾智能模擬技術,實現了「數據雙胞胎」。基於雲計算,GE 實現了飛機發動機生產過程中的調優,同時,基於霧計算,GE 實現了飛機飛行過程中的「自愈」。
GE Predix 作為物聯網 PaaS 平台,還助力製造企業將大數據、物聯網和人工智慧轉化為智能製造能力,實現數據創新。GE Predix 平台,融合雲計算和霧計算以及」數字雙胞胎「,幫助製造企業實現「虛擬 - 現實」的設計生產融合,並為其提供雲計算服務。
農業
Chitale Dairy是一家乳製品廠。基於戴爾科技虛擬化技術,Chitale Dairy實現了 ERP雲部署。他們基於霧計算,通過為奶牛裝上感測器,進行近實時數據採集分析、處理,實現精細化運營,保證乳製品生產全流程的監控、管理、優化。同時,Chitale Dairy 通過基於雲的乳業生命周期管理平台,實現了乳製品生產流程自動化管理,通過物聯網和大數據分析,對每頭奶牛從食料、喂養、健康、牛奶質量和產量進行全流程監控分析,實現精細化和自動化乳業生產。
將雲的整體業務管理和霧端的優化農場間協作以及奶源監控管理緊密連接起來,在提高乳製品生命周期管理效率的同時,提升了協同和協作效率,加速企業業務創新的速度。

服務業
TopGolf 是一家高爾夫俱樂部。通過採用戴爾科技的虛擬化和超融合技術,形成了高爾夫數字化高端服務輸出能力。他們通過向數字化轉型,打破了傳統高爾夫的業務模式。通過物聯網,將 RFID 晶元嵌入高爾夫球里,實現對每次擊球、每個隊員和賽事進行實時監控,並基於霧計算,實時跟蹤和分析每個擊球動作和球的路徑,實現實時積分。
TopGolf 的業務模式融合了雲計算和霧計算,實現了跨數據中心、雲和邊緣應用的實時數據監控、交互和管理,滿足賽事實時監控、場上場下互動、賽前球員積分分析、社交媒體、會員個性化數據管理等大數據分析的需求。

交通業
在智能交通中,可通過感測器搜集信息,進行實時數據分析和交通部署,以提高公共安全。通過霧計算,智能交通控制系統中的一個霧節點可以共享收集到的交通信息,以緩解高峰時段的交通擁堵、定位交通事故,並可以通過遠程式控制制緩解交通擁堵區域的交通狀況。同時,在每個用戶的電話和公共交通中,基於霧計算的應用程序允許用戶在沒有持續網路連接的情況下,共享並通過附近的用戶下載內容。
此外,自動化車輛的安全系統、道路上的監控系統以及公共交通的票務系統,都可以從感測器和視頻數據中收集大量信息。聚合後的數據將傳輸到雲上,根據用戶的需求進行數據提取和分析,再基於霧計算實現邊緣數據實時分析,從而為用戶快速提供精準信息,以保障公共交通的暢通和安全。

未來霧計算將扮演重大角色
從商業運營模式到工作生活方式,智能物聯網技術正深刻改變著人類社會。要讓物聯網擁有無處不在的智能,就必須充分利用網路環境中分散存在的計算、存儲、通信和控制等能力,通過資源共享機制和協同服務架構來有效提升生產效率或用戶體驗。

當前,霧計算技術的研究和標准化工作剛剛起步。我們面臨的主要技術挑戰和研究熱點為:如何在霧計算節點之間建立信任關系,如何在它們之間推動資源充分共享,如何在雲—霧—邊緣等多層次之間實現高效通信和緊密協作,如何在異構節點之間完成復雜任務的公平按需分配等。
可以預見,隨著霧計算技術的不斷發展成熟和普及應用,智能物聯網將越來越便捷、越來越真實地借鑒和映射人類社會的組織架構和決策機制,從而能用更自然和更熟悉的方式為每個人提供觸手可及、無處不在的智能服務。

G. 矩陣分解在協同過濾推薦演算法中的應用

矩陣分解在協同過濾推薦演算法中的應用
推薦系統是當下越來越熱的一個研究問題,無論在學術界還是在工業界都有很多優秀的人才參與其中。近幾年舉辦的推薦系統比賽更是一次又一次地把推薦系統的研究推向了高潮,比如幾年前的Neflix百萬大獎賽,KDD CUP 2011的音樂推薦比賽,去年的網路電影推薦競賽,還有最近的阿里巴巴大數據競賽。這些比賽對推薦系統的發展都起到了很大的推動作用,使我們有機會接觸到真實的工業界數據。我們利用這些數據可以更好地學習掌握推薦系統,這些數據網上很多,大家可以到網上下載。
推薦系統在工業領域中取得了巨大的成功,尤其是在電子商務中。很多電子商務網站利用推薦系統來提高銷售收入,推薦系統為Amazon網站每年帶來30%的銷售收入。推薦系統在不同網站上應用的方式不同,這個不是本文的重點,如果感興趣可以閱讀《推薦系統實踐》(人民郵電出版社,項亮)第一章內容。下面進入主題。
為了方便介紹,假設推薦系統中有用戶集合有6個用戶,即U={u1,u2,u3,u4,u5,u6},項目(物品)集合有7個項目,即V={v1,v2,v3,v4,v5,v6,v7},用戶對項目的評分結合為R,用戶對項目的評分范圍是[0, 5]。R具體表示如下:

推薦系統的目標就是預測出符號「?」對應位置的分值。推薦系統基於這樣一個假設:用戶對項目的打分越高,表明用戶越喜歡。因此,預測出用戶對未評分項目的評分後,根據分值大小排序,把分值高的項目推薦給用戶。怎麼預測這些評分呢,方法大體上可以分為基於內容的推薦、協同過濾推薦和混合推薦三類,協同過濾演算法進一步劃分又可分為基於基於內存的推薦(memory-based)和基於模型的推薦(model-based),本文介紹的矩陣分解演算法屬於基於模型的推薦。
矩陣分解演算法的數學理論基礎是矩陣的行列變換。在《線性代數》中,我們知道矩陣A進行行變換相當於A左乘一個矩陣,矩陣A進行列變換等價於矩陣A右乘一個矩陣,因此矩陣A可以表示為A=PEQ=PQ(E是標准陣)。
矩陣分解目標就是把用戶-項目評分矩陣R分解成用戶因子矩陣和項目因子矩陣乘的形式,即R=UV,這里R是n×m, n =6, m =7,U是n×k,V是k×m。直觀地表示如下:

高維的用戶-項目評分矩陣分解成為兩個低維的用戶因子矩陣和項目因子矩陣,因此矩陣分解和PCA不同,不是為了降維。用戶i對項目j的評分r_ij =innerproct(u_i, v_j),更一般的情況是r_ij =f(U_i, V_j),這里為了介紹方便就是用u_i和v_j內積的形式。下面介紹評估低維矩陣乘積擬合評分矩陣的方法。
首先假設,用戶對項目的真實評分和預測評分之間的差服從高斯分布,基於這一假設,可推導出目標函數如下:

最後得到矩陣分解的目標函數如下:

從最終得到得目標函數可以直觀地理解,預測的分值就是盡量逼近真實的已知評分值。有了目標函數之後,下面就開始談優化方法了,通常的優化方法分為兩種:交叉最小二乘法(alternative least squares)和隨機梯度下降法(stochastic gradient descent)。
首先介紹交叉最小二乘法,之所以交叉最小二乘法能夠應用到這個目標函數主要是因為L對U和V都是凸函數。首先分別對用戶因子向量和項目因子向量求偏導,令偏導等於0求駐點,具體解法如下:

上面就是用戶因子向量和項目因子向量的更新公式,迭代更新公式即可找到可接受的局部最優解。迭代終止的條件下面會講到。
接下來講解隨機梯度下降法,這個方法應用的最多。大致思想是讓變數沿著目標函數負梯度的方向移動,直到移動到極小值點。直觀的表示如下:

其實負梯度的負方向,當函數是凸函數時是函數值減小的方向走;當函數是凹函數時是往函數值增大的方向移動。而矩陣分解的目標函數L是凸函數,因此,通過梯度下降法我們能夠得到目標函數L的極小值(理想情況是最小值)。
言歸正傳,通過上面的講解,我們可以獲取梯度下降演算法的因子矩陣更新公式,具體如下:

(3)和(4)中的γ指的是步長,也即是學習速率,它是一個超參數,需要調參確定。對於梯度見(1)和(2)。
下面說下迭代終止的條件。迭代終止的條件有很多種,就目前我了解的主要有
1) 設置一個閾值,當L函數值小於閾值時就停止迭代,不常用
2) 設置一個閾值,當前後兩次函數值變化絕對值小於閾值時,停止迭代
3) 設置固定迭代次數
另外還有一個問題,當用戶-項目評分矩陣R非常稀疏時,就會出現過擬合(overfitting)的問題,過擬合問題的解決方法就是正則化(regularization)。正則化其實就是在目標函數中加上用戶因子向量和項目因子向量的二范數,當然也可以加上一范數。至於加上一范數還是二范數要看具體情況,一范數會使很多因子為0,從而減小模型大小,而二范數則不會它只能使因子接近於0,而不能使其為0,關於這個的介紹可參考論文Regression Shrinkage and Selection via the Lasso。引入正則化項後目標函數變為:

(5)中λ_1和λ_2是指正則項的權重,這兩個值可以取一樣,具體取值也需要根據數據集調參得到。優化方法和前面一樣,只是梯度公式需要更新一下。
矩陣分解演算法目前在推薦系統中應用非常廣泛,對於使用RMSE作為評價指標的系統尤為明顯,因為矩陣分解的目標就是使RMSE取值最小。但矩陣分解有其弱點,就是解釋性差,不能很好為推薦結果做出解釋。
後面會繼續介紹矩陣分解演算法的擴展性問題,就是如何加入隱反饋信息,加入時間信息等。

H. 求基於用戶的協同過濾演算法matlab代碼

什麼是推薦演算法
推薦演算法最早在1992年就提出來了,但是火起來實際上是最近這些年的事情,因為互聯網的爆發,有了更大的數據量可以供我們使用,推薦演算法才有了很大的用武之地。
最開始,所以我們在網上找資料,都是進yahoo,然後分門別類的點進去,找到你想要的東西,這是一個人工過程,到後來,我們用google,直接搜索自己需要的內容,這些都可以比較精準的找到你想要的東西,但是,如果我自己都不知道自己要找什麼腫么辦?最典型的例子就是,如果我打開豆瓣找電影,或者我去買說,我實際上不知道我想要買什麼或者看什麼,這時候推薦系統就可以派上用場了。
推薦演算法的條件
推薦演算法從92年開始,發展到現在也有20年了,當然,也出了各種各樣的推薦演算法,但是不管怎麼樣,都繞不開幾個條件,這是推薦的基本條件
根據和你共同喜好的人來給你推薦
根據你喜歡的物品找出和它相似的來給你推薦
根據你給出的關鍵字來給你推薦,這實際上就退化成搜索演算法了
根據上面的幾種條件組合起來給你推薦
實際上,現有的條件就這些啦,至於怎麼發揮這些條件就是八仙過海各顯神通了,這么多年沉澱了一些好的演算法,今天這篇文章要講的基於用戶的協同過濾演算法就是其中的一個,這也是最早出現的推薦演算法,並且發展到今天,基本思想沒有什麼變化,無非就是在處理速度上,計算相似度的演算法上出現了一些差別而已。
基於用戶的協同過濾演算法
我們先做個詞法分析基於用戶說明這個演算法是以用戶為主體的演算法,這種以用戶為主體的演算法比較強調的是社會性的屬性,也就是說這類演算法更加強調把和你有相似愛好的其他的用戶的物品推薦給你,與之對應的是基於物品的推薦演算法,這種更加強調把和你你喜歡的物品相似的物品推薦給你。
然後就是協同過濾了,所謂協同就是大家一起幫助你啦,然後後面跟個過濾,就是大家是商量過後才把結果告訴你的,不然信息量太大了。。
所以,綜合起來說就是這么一個演算法,那些和你有相似愛好的小夥伴們一起來商量一下,然後告訴你什麼東西你會喜歡。
演算法描述
相似性計算
我們盡量不使用復雜的數學公式,一是怕大家看不懂,難理解,二是我是用mac寫的blog,公式不好畫,太麻煩了。。
所謂計算相似度,有兩個比較經典的演算法
Jaccard演算法,就是交集除以並集,詳細可以看看我這篇文章。
餘弦距離相似性演算法,這個演算法應用很廣,一般用來計算向量間的相似度,具體公式大家google一下吧,或者看看這里
各種其他演算法,比如歐氏距離演算法等等。
不管使用Jaccard還是用餘弦演算法,本質上需要做的還是求兩個向量的相似程度,使用哪種演算法完全取決於現實情況。
我們在本文中用的是餘弦距離相似性來計算兩個用戶之間的相似度。
與目標用戶最相鄰的K個用戶
我們知道,在找和你興趣愛好相似的小夥伴的時候,我們可能可以找到幾百個,但是有些是好基友,但有些只是普通朋友,那麼一般的,我們會定一個數K,和你最相似的K個小夥伴就是你的好基友了,他們的愛好可能和你的愛好相差不大,讓他們來推薦東西給你(比如肥皂)是最好不過了。

I. 協同過濾,基於內容推薦有什麼區別

舉個簡單的小例子,我們已知道
用戶喜歡的電影是A,B,C
用戶u2喜歡的電影是A, C, E, F
用戶u3喜歡的電影是B,D
我們需要解決的問題是:決定對u1是不是應該推薦F這部電影
基於內容的做法:要分析F的特徵和u1所喜歡的A、B、C的特徵,需要知道的信息是A(戰爭片),B(戰爭片),C(劇情片),如果F(戰爭片),那麼F很大程度上可以推薦給u1,這是基於內容的做法,你需要對item進行特徵建立和建模。
協同過濾的辦法:那麼你完全可以忽略item的建模,因為這種辦法的決策是依賴user和item之間的關系,也就是這里的用戶和電影之間的關系。我們不再需要知道ABCF哪些是戰爭片,哪些是劇情片,我們只需要知道用戶u1和u2按照item向量表示,他們的相似度比較高,那麼我們可以把u2所喜歡的F這部影片推薦給u1。
根據數據源的不同推薦引擎可以分為三類
1、基於人口的統計學推薦(Demographic-based Recommendation)
2、基於內容的推薦(Content-based Recommendation)
3、基於協同過濾的推薦(Collaborative Filtering-based Recommendation)
基於內容的推薦:
根據物品或內容的元數據,發現物品或內容的相關性,然後基於用戶以前的喜好記錄推薦給用戶相似的物品
基於內容推薦的一個典型的例子,電影推薦系統,首先我們需要對電影的元數據有一個建模,這里只簡單的描述了一下電影的類型;然後通過電影的元數據發現電影間的相似度,因為類型都是「愛情,浪漫」電影 A 和 C 被認為是相似的電影(當然,只根據類型是不夠的,要得到更好的推薦,我們還可以考慮電影的導演,演員等等);最後實現推薦,對於用戶 A,他喜歡看電影 A,那麼系統就可以給他推薦類似的電影 C。

J. 個性化推薦演算法——協同過濾

有三種:協同過濾
用戶歷史行為
物品相似矩陣

熱點內容
丁度巴拉斯情人電影推薦 發布:2024-08-19 09:13:07 瀏覽:886
類似深水的露點電影 發布:2024-08-19 09:10:12 瀏覽:80
《消失的眼角膜》2電影 發布:2024-08-19 08:34:43 瀏覽:878
私人影院什麼電影好看 發布:2024-08-19 08:33:32 瀏覽:593
干 B 發布:2024-08-19 08:30:21 瀏覽:910
夜晚看片網站 發布:2024-08-19 08:20:59 瀏覽:440
台灣男同電影《越界》 發布:2024-08-19 08:04:35 瀏覽:290
看電影選座位追女孩 發布:2024-08-19 07:54:42 瀏覽:975
日本a級愛情 發布:2024-08-19 07:30:38 瀏覽:832
生活中的瑪麗類似電影 發布:2024-08-19 07:26:46 瀏覽:239