離子交換復性
⑴ 蛋白質復性如果加還原劑的話需要加氧化劑嗎
蛋白質的復性
蛋白質復性的最大問題,是在復性過程中形成中間體和多聚體,中間體阻礙作用大的使蛋白質正確折疊困難,復性就困難;阻礙小或無阻礙的容易復性。降低蛋白濃度可以減少中間體形成提高復性率。減少中間體的形成,可選用添加小分子物質,又叫分子伴侶,如精氨酸、甘油、PEG等小分子物質幫助蛋白質正確折疊。避免多聚體的形成入氧化還原劑(DTT、szlig;-ME、還原型谷胱甘肽、氧化型谷胱甘肽、Cu2+等),幫助蛋白質復性中二硫鍵的正確配對,減少錯配率。
復性緩沖液的pH要遠離等電點,離子強度不易過高,10-50mmol/L,離子強度太高蛋白質易發生沉澱,也不利於離子交換層析的分離;復性液溫度不易過高在4℃-10℃較合適對於耐熱蛋白也可以室溫復性。復性時間,以天然表達的重組蛋白復性應在6hr以上,需要進行酶切的融和表達重組蛋白,至少要復性1hr以上,方可進行進一步的酶切。
復性方式:常用的有透析復性和稀釋復性。透析復性適用於小樣品制備;對於大樣品制備,採用稀釋復性法簡便、實用。一般包含體蛋白的復性濃度不易過大,不同的蛋白質有所區別,一般掌握在100-200ug/ml較合適,蛋白濃度太稀使純化流程過長,蛋白濃度太濃,蛋白質復性不完全,會直接影響蛋白的回收率。直接稀釋有困難的,也可以試用分段稀釋法。
蛋白質的復性是重組蛋白純化中最關鍵和最復雜的問題。蛋白質的性質不同,所處的環境不同,使其復性條件大不相同。任何一個蛋白質都有一個最佳的復性條件,這個最佳條件的選擇是靠大量的實驗來完成的。只有選擇到了合適的復性緩沖液,使蛋白得以正確折疊,才能使進一步的層析分離得以順利完成。
⑵ 這個怎麼寫
第一題答案,你可以簡潔的寫下就可以了。用高濃度的鹽溶液變性後的蛋白質一般用透析超濾處理除去鹽離子後能夠復性,也可以用分子篩層析除去鹽,順便根據分子量進行分離。
從頭做分離注意幾個問題:
1.查文獻或者資料庫,確定蛋白分子量大小、等電點等性質。
2.確定該蛋白質在動物體內的各個器官組織中的分布情況,在前處理時期一定要選用富含該蛋白質的動物的相應的器官和組織用作粗分離的原料。
3.確定該蛋白質是不是膜蛋白質,是的話在粉碎組織後的抽提階段要加入表面活性劑把膜蛋白質從膜上拉下來;不是膜蛋白,一般不必要用表面活性劑,至少不做電泳的話一般不要用表面活性劑增溶。
4.細分離階段根據蛋白質的特徵,安排不同的操作步驟,一般在細分離階段之前可先使用沉澱濃縮蛋白質,比如鹽析、有機試劑沉澱、聚乙二醇沉澱等,獲得蛋白質沉澱後要重新溶解,並且用過濾、超濾和透析除去沉澱劑。一般不要用強變性劑和加熱引起蛋白質沉澱,以免變性無法逆轉。離子交換層析或者疏水層析,然後用凝膠層析,如果用能夠獲得該種蛋白質的標准品的話,可以制備出抗體,則可用親和層析,或者能夠知道該蛋白的專一性配體的話(可以從資料庫獲得資料)也可以使用親和層析,否則親和層析這步就做不了,只能在檢驗該蛋白質產品純度不夠的話再做一輪或多輪離子交換層析或者疏水層析,然後用凝膠層析。當然經過了各種層析方法,純化出來的目地蛋白質的濃度要比上樣前的濃度更低不少,不過濃縮到也不難,用超濾即可。
5.檢測純度,可以用溶解法或者MS測定分子量或電泳。理論上電泳方法也可以用於分離提純,但是因為從凝膠中回收蛋白質的話還要在純化目的蛋白質,所以我不主張使用電泳方法也可以用於分離提純,尤其是若用SDS-PAGE要在上樣前加熱變性蛋白質,能夠復性很難說。
6.對於分離提純的蛋白質的所有操作一般適宜在零度到四度范圍內,可以在有空調的房間進行並將空調溫度調低,必要的話,須在有關設備周圍固著冰塊。
⑶ 用萬金油緩沖液純化蛋白要不要復性
問錯地方了.這么專業的生物知識,最好去搜索文獻.關於包涵體的文獻太多了.基本上做蛋白的都有涉及.不要在這問,自己多下載一些文獻,比這里的回答強的多.簡單找了點.1.對於尿素和鹽酸胍該怎麼選擇?尿素和鹽酸胍屬中強度變性劑,易經透析和超濾除去.它們對包涵體氫鍵有較強的可逆性變性作用,所需濃度尿素8-10M,鹽酸胍6-8M.尿素溶解包涵體較鹽酸胍慢而弱,溶解度為70-90%,尿素在作用時間較長或溫度較高時會裂解形成氰酸鹽,對重組蛋白質的氨基進行共價修飾,但用尿素溶解具有不電離,呈中性,成本低,蛋白質復性後除去不會造成大量蛋白質沉澱以及溶解的包涵體可選用多種色譜法純化等優點,故目前已被廣泛採用.鹽酸胍溶解能力達95%以上,且溶解作用快而不造成重組蛋白質的共價修飾.但它也有成本高、在酸性條件下易產生沉澱、復性後除去可能造成大量蛋白質沉澱和對蛋白質離子交換色譜有干擾等缺點.2.怎樣洗滌包涵體?通常的洗滌方法一般是洗不幹凈的,可以先把包涵體用6M鹽酸胍溶解充分,過濾除去未溶解的物質,注意留樣跑電泳,然後用水稀釋到4M,離心把沉澱和上清分別跑電泳,如此類推可以一直稀釋到合適的濃度,可以找到一個合適去除雜質的法,其實這就是梯度沉澱的方法,比通常的直接洗脫效果好.3.8M尿素溶解的包涵體溶液應如何保存?在4度放置半個月,都沒什麼問題.在室溫放置超過48小時,可能會對目的蛋白有影響,因為尿素在鹼性條件下可使一些氨基酸醯基化,所以早些處理BI溶液比較好.4.包涵體復性有什麼原則?低濃度,平緩梯度,低溫.5.復性時的蛋白濃度是?一般使用濃度為0.1-1mg/ml,太高的濃度容易形成聚體沉澱,太低的濃度不經濟,而且很多蛋白在低濃度時不穩定,很容易變性.6.復性中蛋白析出是怎麼回事?該怎麼處理?出現蛋白析出,肯定是條件變化太劇烈了.復性應該採取復性液濃度和PH值逐漸變化的方法,例如根據包涵體的溶液成分,每隔1個PH或濃度值配置一種溶液,逐步透析到正常.此外透析時必須濃度極低,條件溫和,使蛋白質能夠正確折疊.但是復性的比率應該很低.若加變性劑尿素可加到2M,鹽酸胍可加到1-1.5M;另外可將甘油濃度增加,范圍可在≤30%,且在復性樣品中也可加適量甘油.
⑷ 尿素包涵體蛋白可以用離子交換純化嗎
包涵體用8M尿素還不溶解該怎麼①包涵體就是蛋白的變性聚集後的產物,6M鹽酸胍及8M尿素專是作為溶解包涵屬體的溶劑。②復性的過程是逐步去除鹽酸胍或者尿素,從而使得蛋白天然構象逐步形成。所以一般如果起始使用的是6M鹽酸胍進行包涵體溶解,這個過程中逐步降低的是鹽酸胍的濃度。
⑸ 什麼叫蛋白質的復性
蛋白質的復性
蛋白質復性的最大問題,是在復性過程中形成中間體和多聚體,中間體阻礙作用大的使蛋白質正確折疊困難,復性就困難;阻礙小或無阻礙的容易復性。降低蛋白濃度可以減少中間體形成提高復性率。減少中間體的形成,可選用添加小分子物質,又叫分子伴侶,如精氨酸、甘油、PEG等小分子物質幫助蛋白質正確折疊。避免多聚體的形成可以加入氧化還原劑(DTT、ß-ME、還原型谷胱甘肽、氧化型谷胱甘肽、Cu2+等),幫助蛋白質復性中二硫鍵的正確配對,減少錯配率。
復性緩沖液的pH要遠離等電點,離子強度不易過高,10-50mmol/L,離子強度太高蛋白質易發生沉澱,也不利於離子交換層析的分離;復性液溫度不易過高在4℃-10℃較合適對於耐熱蛋白也可以室溫復性。復性時間,以天然表達的重組蛋白復性應在6hr以上,需要進行酶切的融和表達重組蛋白,至少要復性1hr以上,方可進行進一步的酶切。
復性方式:常用的有透析復性和稀釋復性。透析復性適用於小樣品制備;對於大樣品制備,採用稀釋復性法簡便、實用。一般包含體蛋白的復性濃度不易過大,不同的蛋白質有所區別,一般掌握在100-200ug/ml較合適,蛋白濃度太稀使純化流程過長,蛋白濃度太濃,蛋白質復性不完全,會直接影響蛋白的回收率。直接稀釋有困難的,也可以試用分段稀釋法。
蛋白質的復性是重組蛋白純化中最關鍵和最復雜的問題。蛋白質的性質不同,所處的環境不同,使其復性條件大不相同。任何一個蛋白質都有一個最佳的復性條件,這個最佳條件的選擇是靠大量的實驗來完成的。只有選擇到了合適的復性緩沖液,使蛋白得以正確折疊,才能使進一步的層析分離得以順利完成。
⑹ 軟膏與凝膠得區別
軟膏ǎngāo
(1)
[ointment]∶用於皮膚的含脂類或油脂類物質(如凡士林、豬油、羊毛脂)為基質的半固體葯物制劑
(2)
[unguent]∶潤滑劑或葯膏(如用於痛處或燒傷)gel ning jiao
又稱凍膠。溶膠或溶液中的膠體粒子或高分子在一定條件下互相連接,形成空間網狀結構,結構空隙中充滿了作為分散介質的液體(在干凝膠中也可以是氣體),這樣一種特殊的分散體系稱作凝膠。沒有流動性。內部常含有大量液體。例如血凝膠、瓊脂的含水量都可達99%以上。可分為彈性凝膠和脆性凝膠。彈性凝膠失去分散介質後,體積顯著縮小,而當重新吸收分散介質時,體積又重新膨脹,例如明膠等。脆性凝膠失去或重新吸收分散介質時,形狀和體積都不改變,例如硅膠等。由溶液或溶膠形成凝膠的過程稱為膠凝作用(gelation)。 [編輯本段]生物學和凝膠 生物分子下游純化的對象一般包括蛋白、酶、重組蛋白、單抗、抗體及抗原、肽類、病毒、核酸等。純化前首先需要測定生物分子的各物理和化學特性,然後通過實驗選擇出最有效的純化流程。
1.測定——分子量、PI
當目標蛋白的物理特性如分子量、PI等都不清楚時,可用PAGE電泳方法或層析方法加以測定。分離范圍廣闊的Superose HR預裝柱很適合測定未知蛋白的分子量。用少量離子交換介質在多個含不同PH緩沖液的試管中,可簡易地測出PI,並選擇純化用緩沖液的最佳PH.
2.選擇——層析方法
若對目標蛋白的特性或樣品成分不太了解,可嘗試幾種不同的純化方法:
一] 使用最通用的凝膠過濾方法,選擇分離范圍廣闊的介質如Superose、Sephacryl HR依據分子量將 樣品分成不同組份。
二] 用含專一配體或抗體的親和層析介質結合目標蛋白。亦可用各種活化偶聯介質偶聯目標蛋白的底物、受體等自製親和介質,再用以結合目標蛋白。一步即可得到高純度樣品。
三] 體積大的樣品,往往使用離子交換層析加以濃縮及粗純化。高鹽洗脫的樣品,可再用疏水層析純化。疏水層析利用高鹽吸附、低鹽洗脫的原理,洗脫樣品又可直接上離子交換等吸附性層析。兩種方法常被交替使用於純化流程中。
3.純化——大量粗品
處理大量原液時,為避免堵塞柱子,一般使用sepharose big beads、sepharoseXL、sepharose fast flow等大顆粒離子交換介質。擴張柱床吸附技術利用多種STREAMLINE介質,直接從含破碎細胞或組織萃取物的發酵液中俘獲蛋白。將離心、超濾、初純化結合為一。提高回收率,縮短純化周期。
4.純化——硫酸氨樣品 硫酸氨沉澱方法常被用來初步凈化樣品,經處理過的樣本處於高鹽狀態下,很適合直接上疏水層析。若作離子交換,需先用Sephadex G-25脫鹽。疏水層析是較新技術,隨著介質種類不斷增多,漸被融入各生產工藝中。利用Hitrap HIC Test Kit 和RESOURCE HIC Test Kit可在八種疏水介質中選擇最適合介質及最佳的純化條件。低鹽洗脫的樣品可稍加稀釋或直接上其它吸附性層析。
5.純水——糖類分子
固化外源凝訂素如刀豆球蛋白、花生、大麥等凝集素,可結合碳水化合物的糖類殘基,很適合用作分離糖化細胞膜組份、細胞、甚至亞細胞細胞器,純化糖蛋白等。兩種附上外源凝集素的Sepharose 6MB親和層析介質,專為俘獲整個細胞或大復合物,如膜囊等。
6.純化——膜蛋白
膜蛋白分離常使用去污劑以保持其活性。離子性去污劑應選用與目標蛋白相反電荷者,避免在作離子交換時和目標蛋白競爭交換介質,籍此除去去污劑。非離子性去污劑可以疏水層析除去。
7.純化——單抗、抗原 *單抗多為IgG.來源主要是腹水和融合瘤培養上清液。腹水有大量白蛋白、轉鐵蛋白和宿主抗體等。Mabselect、Protein G和Protein A對IgG的Fc區有專一性親和作用,能一步純化各種不同源的IgG.血清互補劑如小牛血清可先用蛋白G預處理,在培養前除去IgG.重組蛋白A介質Mabselect和rProtein A Sepharose FF對IgG有更高的載量和專一性,基團脫落更少。脫落的rProtein A用離子交換Q Sepharose HP或凝膠過濾Superdex 200,很容易去除。
*疏水層析Phenyl Sepharose HP亦很適合純化IgG.宿主抗體和污染IgG可用凝膠過濾Superdex 200在精細純化中去除。
*純化IgG抗原最有效的方法是用活化偶聯介質如CNBr、NHs activated Sepharose FF偶聯IgG,再進一步獲取IgG抗原。
*HiTrap IgM是用來純化融合瘤細胞培養的單抗IgM,結合量達5mg IgM.HiTrap IgY是專門用來純化IgY,結合量達100mg純IgY.
8.純化——重組蛋白 重組蛋白在設計、構建時應已融入純化構想。樣品多夾雜了破碎細胞或溶解產物,擴張柱床吸附技術STREAMLINE便很適合做粗分離。Amersham biosciences提供三個快速表達、一步純化的融合系統。
一] GST融合載體使要表達的蛋白和谷胱甘肽S轉移酶一起表達,然後利用Glutathione Sepharose 4B作親和層析純化,再利用凝血酶或因子Xa切開。
2. 蛋白A融合載體使要表達的蛋白和蛋白A的IgG結合部位融合在一起表達,以IgG Sepharose 6 FF純化。
二] 含組氨酸標記(Histidine-tagged)的融合蛋白可用Chelating Sepharose FF螯合Ni2+金屬,在一般或變性條件(8M尿素)下透過組氨酸螯合融合蛋白。HisTrap試劑盒提供整套His-Tag蛋白的純化方法。
9.純化——包涵體蛋白
包涵體蛋白往往需溶於6M鹽酸胍或8M尿素中。高化學穩定性的Superose 12及Sepharose 6FF凝膠過濾介質很適合在變性條件下做純化。變性純化後的蛋白需要復性至蛋白的天然構象。Superdex 75、Q Sepharose FF和Phenyl Sepharose FF分別被發現有助包涵體蛋白的復性。一般包涵體蛋白樣品的純度越高,復性效果越好。SOURCE 30 RPC反相層析介質很適合純化復性前的粗品,並可以1MnaOH重生。此方法純化後的包涵體蛋白,復性回收率明顯提高。
10.包涵體蛋白固相復性 *近年許多文獻報導將包涵體蛋白在變性條件下固定(吸附)在層析介質上,一般用各種Sepharose FF離子交換層析介質。去除變性劑後,蛋白在介質上成功復性,再將復性好的蛋白洗脫下來。固相復性避免了一般復性過程中蛋白質聚體的形成,所以復性得率更高,而且無需大量稀釋樣品,並將復性和初純化合二為一,大大節省時間及提高回收率。
*固相復性方法也被用於以HiTrap Chelating金屬螯合層析直接復性及純化包涵體形式表達的組氨酸融合蛋白;以HiTrap Heparin肝素親和層析直接復性及純化包涵體形式表達的含多個賴氨酸的融合蛋白。兩種親和層析預裝柱均可反復多次重復使用,比一般試劑盒更方便、耐用。
11.純化——中草葯有效成分
中葯的化學成分極其復雜。傳統中葯多是煎熬後服用,有效成份多較為親水,包括生物鹼、黃酮、蒽醌、皂甙、有機酸、多糖、肽和蛋白質。靈活及綜合性地利用多種層析方法。如離子交換、分子篩、反相層析,更容易分離到單一活性成分。Sephadex LH-20葡聚糖凝膠同時具備吸附性層析和分子篩功能,例:如用甲醇分離黃酮甙,三糖甙先被洗下來,二糖甙其次,單糖甙隨後,最後是甙元。Sephadex LH-20可使用水、醇、丙酮、氯仿等各種試劑,廣泛用於各種天然產物的分離,包括生物鹼、甙、黃酮、醌類、內脂、萜類、甾類等。
*生物鹼在酸性緩沖液中帶正電,成為鹽,HiTrap SP陽離子交換層析柱可以分離許多結構非常近似的生物鹼。相反,黃酮、蒽醌、皂甙、有機酸等可溶於偏鹼的緩沖液中,在HiTrap Q陰離子交換柱上分離效果良好。
*一般多糖純化大多使用分子篩如Sephadex,Sephacryl.若分子量在600KD以下,並需更高解析度,可選擇新一代的Superdex.一般植物可能含水溶性、酸溶性、鹼溶性多種多糖。綜合利用分子篩及離子交換層析有助進一步獲各組份純品。另外,多糖葯物需去除可引起過敏的蛋白質,傳統Sevag方法用丁醇脫蛋白需反復數十次。陰陽離子交換法可以一、兩步快速去除多糖中殘存的蛋白質。SOURCE5、15、30RPC反相層析也很適合各種中葯有效成分的檢測、分離和放大制備。由於中葯的成分非常復雜,SOURCE反相層析可用范圍為PH1-14 ,並可用1M NaOH,1M HCL清洗、再生。比傳統硅膠反相層析更易於工藝優化及在位清洗,壽命也更長。
12.純化——肽類
肽類的來源有天然萃取,合成肽和重組肽三種。肽容易被酶降解,但可從有機溶劑或促溶劑中復性,所以多以高選擇性的反相層析如SOURCE 30RPC、SOURCE 15RPC、SOURCE 5RPC或離子交換Minibeads、Monobeads作純化。Superdex Peptide HR是專為肽分子純化設計的凝膠過濾預裝柱,能配合反相層析做出更精美的肽圖。肽分子制備可用離子交換配合凝膠過濾Superdex 30 PG。醫學都市多功能
13.純化——核酸、病毒
核酸的純化用於去除影響測序或PCR污染物等研究。核酸可大致上分為質粒DNA、噬菌體DNA和PCR產物等。病毒也可視作核酸大分子,和質粒DNA一樣,可用分離大分子的Sephacry S-1000 SF、Superose或Sepharoce 4FF凝膠過濾介質去除雜蛋白,再配合離子交換如Mono Q、 SOURCE Q分離核酸。
14.純化——寡核苷酸寡酸苷酸多應用在反義(anti-sense)DNA、RNA測序、PCR和cDNA合成等研究。合成後含三苯甲基的寡核苷酸以陰離子交換的Mono Q或快速低反壓的SOURCE Q在PH12下可除副產物,並避免凝集和保護基的脫落。載量大大高過反相層析,可用做大量制備。不含三苯甲基的失敗序列可用反相柱ProRPC去除。
15.脫鹽、小分子去除
使用凝膠過濾介質Sephadex G10,G15,G25,G50等去除小分子,效率高,處理量可達床體積30%.只需在進樣後收集首1/3-1/2柱體積的洗脫液,就可以去除該填料分離范圍上限以下的小分子,簡單直接。由於只是去除小分子,柱高10cm以上即可。整個過程一般可於數分鍾至半小時完成。Sephadex G25系列介質專為蛋白質脫鹽而設計,預裝柱HiTrap Desalting(5ml)可用針筒操作。HiPrep Desalting(26ml)可在數分鍾為多至10ml樣品脫鹽。
16.疫苗純化 使用凝膠過濾介質Sepharose 4FF純化疫苗,去除培養基中的雜蛋白,處理量可大於床體積10%.柱高一般40-70cm,整個過程約半至一小時。目前使用此法生產的疫苗品種有乙肝、狂犬、出血熱、流感、肺結核、小兒麻痹疫苗等。分子量較小的疫苗可使用Sephacryl S-500HR,如甲肝疫苗等。
17.抗生素聚合物分析
中國葯典從2000年版起要求抗生素頭孢曲松鈉需要找出聚合物占產品的白分比,規定使用Sephadex G10凝膠過濾法測定。
18.純化-基因治療用病毒載體
SORRCE 15Q
19.純化-基因治療用質粒
Q Sepharose XL,SOURCE 15Q,STREAMLINE Q,Sephacryl S500,Plasmidselect 在下游純化中,可應用不同層析技術在純化生物分子的同時,去除各種污染物。
1.去除——內毒素
內毒素又稱熱原。含脂肪A、糖類和蛋白,是帶負電的復合大分子。
內毒素的脂肪A部份有很強的疏水性。但在高鹽下會凝集,無法上疏水層析。利用疏水層析試驗盒(17-1349-01)可選擇結合目標蛋白的介質而去除內毒素。
內毒素與陰離子交換介質Q或DEAE Sepharose Fast Flow有較強結合。可在洗脫目標蛋白後用高鹽緩沖液或NaOH去除。
利用CNBr或NHS Sepharose FF可偶聯內毒素底物如LAL,PMB,自動成親合層析介質結合內毒素。內毒素經常是多聚體,凝膠過濾層析可有效地將之去除。
2.去除——蛋白中的核酸
大量核酸增加樣本黏度,令區帶擴張,反壓增加,降低解析度和流速。葯審和食檢對核酸含量也有嚴格限制。
胞內表達蛋白的核酸問題尤其嚴重。核酸帶陰電荷,在初步純化時利用陽離子交換介質如STREAMLINESP,SP Sepharose Big Beads,SP或CM Sepharose FF,SP SepharoseXL結合目標蛋白,可除去大量核酸。
核酸在高鹽下會和蛋白解離,疏水層析介質很適合用來結合目標蛋白,在純化蛋白的同時去除核酸。
利用核酸酶將核酸切成小片斷,用凝膠過濾做精細純化時便很容易去除了。
3.去除——病毒和微生物
病毒和微生物可成為病原,應盡量減除。結合不同層析技術,使用注射用水,用NaOH定期進行儀器和凝膠的在位消毒和在位清洗,皆可避免污染物增加。
病毒大都有脂外殼。可用與目標蛋白電荷相反的S/D(solvent/detergent)處理,使病毒失活,如Triton和Tween.再用適當的離子交換介質如CM Sepharose FF結合目標蛋白,去除S/D.
其它污染物可以改變pH和離子強度使其從目標分子中解離或失活,凝膠過濾介質Superdex及多種吸附性介質,SOURCE都是很好的精細純化介質,可去除多種微量污染物。
凝膠是指顆粒大小在1埃到10埃之間的混合物。高分子溶液和某些溶膠,在適當的條件下,整個體系會轉變成一種彈性的半固體狀態的稠厚物質,失去流動性。這種現象稱為膠凝作用,所形成的產物叫做凝膠或凍膠.
「氣凝膠」是指分散系為氣態的,如:雲,霧等,「固凝膠」有煙水晶等,「液凝膠」就是呈液態的膠體,如氫氧化鐵膠體 。 [編輯本段]舉例:
食品級葡甘露膠(Gum Konjac-GM)
葡甘露膠(又稱:魔芋膠)系一種新型多用途微粒狀可食用膠。這里推出之葡甘露膠是以優質魔芋中提取的葡萄甘露聚糖為原料,經脫雜處理後採用先進技術加工而成,其中添加成分不含任何非食用化學配料或色素。與傳統的瓊脂、果膠、海藻膠等食品添加劑相比,葡甘露膠在膨脹率、粘度、增稠、穩定性及使用方便程度上皆顯著優於上述膠類,此外尚具有特殊的優點:無需添加任何凝固劑,在無糖、低糖或高糖條件下,在酸性、中性或鹼性條件下,常溫即可凝凍,凝膠性能理想;保持或強化了葡萄甘露聚糖所具有的降糖、降脂、減肥等保健功能,大大拓寬了魔芋應用的范圍;價格低廉、使用方便。
葡甘露膠能廣泛用於食品、飲料、醫葯、日用化工、科研等領域,作為瓊脂、果膠、海藻膠等的替代產品,價格低廉,且使用時無需改變原有的設備及工藝,能大幅度降低添加劑的使用成本,是一種理想的新型凝膠添加劑。為滿足不同產品開發的需要, 一、凝膠(果凍)型:能與各種天然果汁、物料及色素良好混合,作為廣譜凝膠賦型劑,是製作果凍、水晶軟糖等的極佳原料,也可作為培養基支持體,且不需再添加其它任何膠類或鹼性成份;凝膠成型條件隨意、脫杯完整,凝膠強度高、韌性大。 用量:0.7~0.9%。用法:在適量溫水中溶脹3~5分鍾,煮沸冷至70度左右時加入糖及各種配料,冷卻至室溫即成。
二、培養基型:用作替代瓊脂作為花卉及其它植物進行組織培養的支持體。組培苗根粗、苗壯,使用效果理想,成本大幅降低。用量:0.5~0.6%。用法:在溫水中溶脹3~5分鍾,煮沸後冷卻即可。 三、果肉(茶)飲料型:作為穩定劑與懸浮劑,替代瓊脂和羧甲基纖維素等,廣泛用於粒粒橙、果茶、果汁、豆奶、銀耳羹、八寶粥等異相懸浮劑等(或混合)飲料中,防止沉澱或分層。 用量:0.15~0.25%左右。用法:在適量溫水中充分溶脹後加入物料中。 四、冷凍製品型:用於冰棒、冰淇淋等各種冷凍製品,可增大膨脹,減少冰晶,提高抗熱融性,使產品更加爽口。 用量:0.15~0.25%左右。用法:在適量溫水中充分溶脹後加入物料中。 五、增稠型:用於果醬、米、面製品中,可增大膨脹率,提高韌性,改善賦型和口感。是進口洋槐豆膠的理想替代物。 用量:0.2~0.3%左右。用法:在適量溫水中充分溶脹後加入物料中。
⑺ 蛋白透析復性後,調pH變渾濁,蛋白會有影響嗎
問錯地方了。這么專業的生物知識,最好去搜索文獻。關於包涵體的文獻太多了。基本上做蛋白的都有涉及。 不要在這問,自己多一些文獻,比這里的回答強的多。
簡單找了點。
對於尿素和鹽酸胍該怎麼選擇?
尿素和鹽酸胍屬中強度變性劑,易經透析和超濾除去。它們對包涵體氫鍵有較強的可逆性變性作用,所需濃度尿素8-10M,鹽酸胍6-8M。尿素溶解包涵體較鹽酸胍慢而弱,溶解度為70-90%,尿素在作用時間較長或溫度較高時會裂解形成氰酸鹽,對重組蛋白質的氨基進行共價修飾,但用尿素溶解具有不電離,呈中性,成本低,蛋白質復性後除去不會造成大量蛋白質沉澱以及溶解的包涵體可選用多種色譜法純化等優點,故目前已被廣泛採用。
鹽酸胍溶解能力達95%以上,且溶解作用快而不造成重組蛋白質的共價修飾。但它也有成本高、在酸性條件下易產生沉澱、復性後除去可能造成大量蛋白質沉澱和對蛋白質離子交換色譜有干擾等缺點。
2. 怎樣洗滌包涵體?
通常的洗滌方法一般是洗不幹凈的,可以先把包涵體用6M鹽酸胍溶解充分,過濾除去未溶解的物質,注意留樣跑電泳,然後用水稀釋到4M,離心把沉澱和上清分別跑電泳,如此類推可以一直稀釋到合適的濃度,可以找到一個合適去除雜質的辦法,其實這就是梯度沉澱的方法,比通常的直接洗脫效果好。
3. 8M尿素溶解的包涵體溶液應如何保存?
在4度放置半個月,都沒什麼問題 。在室溫放置超過48小時,可能會對目的蛋白有影響,因為尿素在鹼性條件下可使一些氨基酸醯基化,所以早些處理BI溶液比較好。
4. 包涵體復性有什麼原則?
低濃度,平緩梯度,低溫。
5. 復性時的蛋白濃度是?
一般使用濃度為0.1-1mg/ml,太高的濃度容易形成聚體沉澱,太低的濃度不經濟,而且很多蛋白在低濃度時不穩定,很容易變性。
6. 復性中蛋白析出是怎麼回事?該怎麼處理?
出現蛋白析出,肯定是條件變化太劇烈了。復性應該採取復性液濃度和PH值逐漸變化的方法,例如根據包涵體的溶液成分,每隔1個PH或濃度值配置一種溶液,逐步透析到正常。此外透析時必須濃度極低,條件溫和,使蛋白質能夠正確折疊。但是復性的比率應該很低。
若加變性劑尿素可加到2M,鹽酸胍可加到1-1.5M;
另外可將甘油濃度增加,范圍可在≤30%,且在復性樣品中也可加適量甘油。
⑻ 蛋白質復性
問錯地方了。這么專業的生物知識,最好去搜索文獻。關於包涵體的文獻太多了。基本上做蛋白的都有涉及。 不要在這問,自己多下載一些文獻,比這里的回答強的多。
簡單找了點。
1. 對於尿素和鹽酸胍該怎麼選擇?
尿素和鹽酸胍屬中強度變性劑,易經透析和超濾除去。它們對包涵體氫鍵有較強的可逆性變性作用,所需濃度尿素8-10M,鹽酸胍6-8M。尿素溶解包涵體較鹽酸胍慢而弱,溶解度為70-90%,尿素在作用時間較長或溫度較高時會裂解形成氰酸鹽,對重組蛋白質的氨基進行共價修飾,但用尿素溶解具有不電離,呈中性,成本低,蛋白質復性後除去不會造成大量蛋白質沉澱以及溶解的包涵體可選用多種色譜法純化等優點,故目前已被廣泛採用。
鹽酸胍溶解能力達95%以上,且溶解作用快而不造成重組蛋白質的共價修飾。但它也有成本高、在酸性條件下易產生沉澱、復性後除去可能造成大量蛋白質沉澱和對蛋白質離子交換色譜有干擾等缺點。
2. 怎樣洗滌包涵體?
通常的洗滌方法一般是洗不幹凈的,可以先把包涵體用6M鹽酸胍溶解充分,過濾除去未溶解的物質,注意留樣跑電泳,然後用水稀釋到4M,離心把沉澱和上清分別跑電泳,如此類推可以一直稀釋到合適的濃度,可以找到一個合適去除雜質的辦法,其實這就是梯度沉澱的方法,比通常的直接洗脫效果好。
3. 8M尿素溶解的包涵體溶液應如何保存?
在4度放置半個月,都沒什麼問題 。在室溫放置超過48小時,可能會對目的蛋白有影響,因為尿素在鹼性條件下可使一些氨基酸醯基化,所以早些處理BI溶液比較好。
4. 包涵體復性有什麼原則?
低濃度,平緩梯度,低溫。
5. 復性時的蛋白濃度是?
一般使用濃度為0.1-1mg/ml,太高的濃度容易形成聚體沉澱,太低的濃度不經濟,而且很多蛋白在低濃度時不穩定,很容易變性。
6. 復性中蛋白析出是怎麼回事?該怎麼處理?
出現蛋白析出,肯定是條件變化太劇烈了。復性應該採取復性液濃度和PH值逐漸變化的方法,例如根據包涵體的溶液成分,每隔1個PH或濃度值配置一種溶液,逐步透析到正常。此外透析時必須濃度極低,條件溫和,使蛋白質能夠正確折疊。但是復性的比率應該很低。
若加變性劑尿素可加到2M,鹽酸胍可加到1-1.5M;
另外可將甘油濃度增加,范圍可在≤30%,且在復性樣品中也可加適量甘油。
⑼ 復性劑的存放時間對蛋白質復性的影響
蛋白質的復性 蛋白質復性的最大問題,是在復性過程中形成中間體和多聚體,中間體阻礙作用大的使蛋白質正確折疊困難,復性就困難;阻礙小或無阻礙的容易復性。降低蛋白濃度可以減少中間體形成提高復性率。減少中間體的形成,可選用添加小分子物質,又叫分子伴侶,如精氨酸、甘油、PEG等小分子物質幫助蛋白質正確折疊。避免多聚體的形成入氧化還原劑(DTT、szlig;-ME、還原型谷胱甘肽、氧化型谷胱甘肽、Cu2+等),幫助蛋白質復性中二硫鍵的正確配對,減少錯配率。復性緩沖液的pH要遠離等電點,離子強度不易過高,10-50mmol/L,離子強度太高蛋白質易發生沉澱,也不利於離子交換層析的分離;復性液溫度不易過高在4℃-10℃較合適對於耐熱蛋白也可以室溫復性。復性時間,以天然表達的重組蛋白復性應在6hr以上,需要進行酶切的融和表達重組蛋白,至少要復性1hr以上,方可進行進一步的酶切。 復性方式:常用的有透析復性和稀釋復性。透析復性適用於小樣品制備;對於大樣品制備,採用稀釋復性法簡便、實用。一般包含體蛋白的復性濃度不易過大,不同的蛋白質有所區別,一般掌握在100-200ug/ml較合適,蛋白濃度太稀使純化流程過長,蛋白濃度太濃,蛋白質復性不完全,會直接影響蛋白的回收率。直接稀釋有困難的,也可以試用分段稀釋法。蛋白質的復性是重組蛋白純化中最關鍵和最復雜的問題。蛋白質的性質不同,所處的環境不同,使其復性條件大不相同。任何一個蛋白質都有一個最佳的復性條件,這個最佳條件的選擇是靠大量的實驗來完成的。只有選擇到了合適的復性緩沖液,使蛋白得以正確折疊,才能使進一步的層析分離得以順利完成。
⑽ 包涵體染色的方法有哪些原理是什麼
包涵體染色的方法有哪些?原理是什麼
包涵體染色的方法有哪些?原理是什麼
包涵體染色的方法有哪些?原理是什麼
蛋白包涵體-溶解原理及方法2009年03月15日;維持包涵體內蛋白質結構的作用力是分子內的作用力,;1.遵循標准;包涵體蛋白質的溶解同樣是一個工藝的關鍵的步驟;(1)快速溶解的動力學;;(2)與蛋白質的結合是可逆的;;(3)對細胞碎片的分離方法沒有干擾作用;;(4)對溫度沒有依賴作用;;(5)抑制蛋白質酶的降解作用;;(6)與蛋白質的氨基沒有化學修飾作用;;
維持包涵體內蛋白質結構的作用力是分子內的作用力,這種作用力也維持天然蛋白質的穩定性的結構。先前有報道這種作用力是共價鍵結合的,但是,現在趨向於一致,就是維持包涵體內部的蛋白質的緊密的結構的是非共價鍵的作用力。二硫鍵,無論是正確的還是錯誤的二硫鍵,在維持內部蛋白質的緊密的結構中都沒有發揮直接的作用。最經常的獲得活性蛋白質的第一步是溶解這些包涵體蛋白質,溶解液是使這些包涵體蛋白質完全變性的成分,當蛋白質被溶解以後,則進入到蛋白質的體外折疊的過程。
1. 遵循標准
包涵體蛋白質的溶解同樣是一個工藝的關鍵的步驟。溶劑的選擇會影響後續的操作、最終的各種蛋白質的收率以及最終的成本,必須遵循以下的標准:
(1) 快速溶解的動力學;
(2) 與蛋白質的結合是可逆的;
(3) 對細胞碎片的分離方法沒有干擾作用;
(4) 對溫度沒有依賴作用;
(5) 抑制蛋白質酶的降解作用;
(6) 與蛋白質的氨基沒有化學修飾作用;
(7) 在可能的情況下,選擇最低的溶解濃度和廉價的溶劑,並適於以後的復性方法。
2. 溶解包涵體的試劑
最經常使用溶解包涵體的試劑包括離液劑或者去垢劑。
最經常使用的溶解和制備蛋白質的離子型的離液劑最早於1969年Hatefi等人發展的離子型的去垢劑如SDS是另外一種溶解包涵體蛋白質和膜蛋白質的試劑,但是一般不用來大規模的生產,而是用來定性。除了強酸、強鹼和利用有機溶劑來提取疏水性很強的蛋白質以外,其他的變性方法如非可逆的共價修飾在工業的大規模生產中很少用到。一旦蛋白質被溶解,蛋白質中的巰基很容易快速地氧化並形成共價的聚集體或者分子內錯配的二硫鍵,然後這些蛋白質就不能再進行折疊。為了防止氧化,可以使這些基團或者利用緩沖液中含有低分子量的疏基試劑保持在還原的狀態或形成磺酸鹽或者形成混合的二硫鍵。
(1)去垢劑
去垢劑是一種最經濟的溶解包涵體蛋白質的方法,一個最大的優點是溶解的蛋白質有可能保持全部的生物活性,說明在此條件下保持了蛋白質的四級結構。最重要的是稀釋以後蛋白質的聚集比其它溶劑生成的很
少。陽離子型、陰離子型的和非離子型的去垢劑都可以使用,使用時的濃度一般高於去垢劑的臨界膠束濃度(CMC ),通常是0.5-5%。
SDS僅僅在大量生產牛生長激素、干擾素和白介素-2中用到。SDS由於具有較低的臨界膠束濃度(CMC)而使得結合到蛋白質分子上的SDS比較難於除去。由於N-十二烷肌氨酸它的CMC比SDS高0.4%,也被用來溶解包涵體蛋白質並可用稀釋的方法使蛋白質復性,殘余的去垢劑可以使用陰離子交換色譜或者超濾的方法除去。這種去垢劑是一種比較溫和的去垢劑,可以選擇性地溶解一些包涵體,但是不能溶解完全的變性的蛋白質的聚集體和大腸桿菌的內膜的蛋白質分子。使用去垢劑一個主要的缺點是對以後的純化和復性的步驟的干擾,去垢劑結合到蛋白質上的強度大離子交換色譜復性蛋白質小不同,比較難於除去,並干擾離子交換和疏水相互作用色譜的過程,在變性的濃度時超濾膜會吸附這些變性劑。所以復性後需要盡量洗滌這些去垢劑,也可以使用環狀糊精鏈狀糊精或者環狀澱粉從復性緩沖液中提取去垢劑。
一個不容忽視的問題是去垢劑可以溶解全部的膜蛋白質中的蛋白質酶,這些蛋白質酶的活性在去垢劑的存在的情況下被活化,可能造成溶解和復性過程的收率的降低。蛋白質復性的收率可以通過以下的方法來提高: a) 先期使用可以溶解膜蛋白質但是不溶解包涵體蛋白質的溶劑盡量洗滌包涵體蛋白質;
b) 包涵體的含有的菌體碎片被完全除去;
c) 溶解包涵體的液體中含有蛋白質酶的抑制劑,如EDTA,苯甲基磺醯氟(PMSF )等 。
(2)離液劑
其它的離液劑也被用來溶解包涵體蛋白質,最主要的溶解包涵體蛋白質的離液劑是鹽酸胍和尿素,這是最經常使用的溶解試劑,一般情況下選擇6-8mo1/L的濃度,蛋白質濃度在1-10mg/mL。
在溶解色氨酸合成酶A的過程,發現陽離子的溶解能力順序是Gdm+ > Li+ > K+ > Na+,陰離子的順序是SCN- > I- > Br- >Cr-。一些離液劑由於它們的溶液比鹽酸胍和尿素有更高的密度和黏度而不適合用於溶解包涵體,因為利用離心和色譜分離起來比較困難。
為了溶解包涵體蛋白質需要的尿素或者鹽酸胍的濃度根據蛋白質的不同而不同。如果蛋白質天然形態需要溶解的變性劑的濃度不能獲得,則在溶解包涵體時需要首先確定離液劑的濃度。
鹽酸胍由於比較貴,所以一般用來溶解一些附加值比較高的葯物蛋白質分子,選擇鹽酸胍作為溶解試劑,是因為鹽酸胍是一種比脲更為強烈的變性劑,甚至可以溶解脲所不能溶解的包涵體;尿素,由於可能被自發的形成的氰酸鹽或者已有的氰酸鹽的污染,特別是在鹼性環境中,從而造成蛋白質的自由的氨基被不可逆的修飾。消除此種影響的方法是用陰離子的緩沖系統如Tris-HCl溶解脲或者脲在使用之前利用陰離子交換色譜純化,並且配製的溶解和復性的緩沖液在當天使用。脲溶液中影響蛋白質變性的因素與鹽酸胍的不同。溶在脲中的蛋白質受到pH和離子強度的影響,從而影響電荷的蛋白質殘基之間的電荷作用,但是由於鹽酸胍含有高濃度的離子強度,所以這兩個因素的影響很少。
(3)混合溶劑
一般情況下去垢劑並不聯合使用,Lilly等人發現去垢劑和尿素的混合液有效的摩爾濃度較低。尿素和去垢
劑型的鹽混合可以使蛋白質變性,但是尿素和非去垢劑的鹽如氯化鈉反而降低包涵體蛋白質的溶解性,所以要避免使用。
去垢劑結合其他的試劑或者溶解增強劑也被使用,發現尿素和乙酸,尿素和二甲亞楓,尿素和高pH等是比較有效的溶解包涵體蛋白質的方法。
高壓(1-2kbar)、超聲也可以溶解包涵體蛋白質,此時使用的溶解試劑濃度可以比較低,便於後續的復性步驟。
3. 極端pH
酸鹼度也是比較廉價的有效的溶解包涵體的方法。最經常使用酸的是有機酸,濃度在5-80%之間。Gavif和Better使用低的(pH≤2.6)和高溫(85℃ )溶解抗真菌的重組蛋白質的膚段,低溫和高PH需要溶解時間要長。Reddy和合作者也使用20%乙酸溶解一種麥芽糖結合的蛋白質。但是,同樣的一些不可逆的修飾作用或者酸降解會在極端pH下發生,所以此種方法並不是經常使用的溶解包涵體的方法。
高pH(≥12)也被用來溶解生長激素和原胰島素。在高pH下一些蛋白質同樣可能發生非可逆的變性,原因在於半胱氨酸在鹼性條件下的脫硫過程。所以這種方法盡管比較簡單、廉價,同樣僅僅用於一些特定的蛋白質,特別對於葯用蛋白質一般不採用這種方法。
再登陸http://www.biox.cn/content/20050415/10541.htm
摘要 基因重組蛋白在大腸桿菌中表達時,由於表達量高,往往形成無生物活性的包涵體。包涵體必須經過變性和復性的過程才能獲得有活性的重組蛋白。如何提高基因重組蛋白質的復性率,是生物工程技術的一個研究熱點。對近年來的重組蛋白質的復性方法做一評述,為研究蛋白質折疊以及復性技術的進一步應用提供依據。
關鍵詞 重組蛋白 包涵體 復性 二硫鍵
到目前為止,人們表達的重組蛋白質已有4000多種,其中用E.coli表達的蛋白質要佔90%以上,盡管基因重組技術為大規模生產目標蛋白質提供了嶄新的途徑,然而人們在分離純化時卻遇到了意想不到的困難,即這些蛋白質在E.coli中絕大多數是以包涵體形式存在,重組蛋白不僅不能分泌到細胞外,反而在細胞內聚集成沒有生物活性的直徑約0.1~3.0μm的固體顆粒[1]。自從應用大腸桿菌體系表達基因工程產品以來,人們就一直期望得到高活性、高產量的重組蛋白。不可溶、無生物活性的包涵體必須經過變性、復性才能獲得天然結構以及生物活性,因此應該選擇一個合適的復性過程來實現蛋白質的正確折疊,獲得生物活性,近年來的研究可以使復雜的疏水蛋白、多結構域蛋白、寡聚蛋白、含二硫鍵蛋白在體外成功復性。
包涵體形成的原因
重組蛋白在宿主系統中高水平表達時,無論是原核表達體系或真核表達體系甚至高等真核表達體系,都會形成包涵體[2]。主要因為在重組蛋白的表達過程中,缺乏某些蛋白質折疊過程中需要的酶和輔助因子,或環境不適,無法形成正確的次級鍵等原因形成的[3]。
1、 表達量過高,研究發現在低表達時很少形成包涵體,表達量越高越容易形成包涵體。原因可能是合成速度太快,以至於沒有足夠的時間進行折疊,二硫鍵不能正確配對,過多的蛋白間的非特異性結合,蛋白質無法達到足夠的溶解度等。
2、 重組蛋白的氨基酸組成,一般說來含硫氨基酸越多越容易形成包涵體。
3、 重組蛋白所處的環境:發酵溫度高或胞內pH接近蛋白的等電點時容易形成包涵體。
4、 重組蛋白是大腸桿菌的異源蛋白,由於缺少真核生物中翻譯後修飾所需酶類,致使中間體大量積累,容易形成包涵體沉澱。
5、 有報道認為,豐富的培養基有利於活性蛋白質的表達,當培養條件不佳時,容易形成包涵體。
減少包涵體形成的策略
1、 降低重組菌的生長溫度,降低培養溫度是減少包涵體形成的最常用的方法,較低的生長溫度降低了無活性聚集體形成的速率和疏水相互作用,從而可減少包涵體的形成[4]。
2、 添加可促進重組蛋白質可溶性表達的生長添加劑,培養E.coli時添加高濃度的多醇類、蔗糖或非代謝糖可以阻止分泌到周質的蛋白質聚集反應,在最適濃度范圍內添加這些添加劑不會影響細胞的生長、蛋白質的合成或運輸,其它促重組蛋白質可溶性表達的生長添加劑還有乙醇(誘導熱休克蛋白的表達)、低分子量的巰基或二硫化合物(影響細胞周質的還原態,從而影響二硫鍵的形成)和NaCl[5]。
3、 供給豐富的培養基,創造最佳培養條件,如供氧、pH等。
包涵體的分離及溶解
對於生物制葯工業來說,包涵體的形成也是有利的,不僅可獲得高表達、高純度的重組蛋白質,還可避免細胞水解酶對重組蛋白質的破壞。由於包涵體是蛋白質聚集而成的緻密顆粒,分離的第一步是對培養收集的細胞進行破碎,比較有效的方法是高壓勻漿結合溶菌酶處理,然後5000~20000g離心,可使大部分包涵體沉澱,與可溶性蛋白分離,接著,包涵體沉澱需用去污劑(Triton X-100或脫氧膽酸鈉)和低濃度變性劑(2mol/L尿素或鹽酸胍等)洗滌除去脂類和膜蛋白,這一步很重要,否則會導致包涵體溶解和復性的過程中重組蛋白質的降解[6、7、8]。
包涵體的溶解必須用很強的變性劑,如8mol/L尿素、6~8mol/L鹽酸胍,通過離子間的相互作用破壞包涵體蛋白間的氫鍵而增溶蛋白。其中尿素的增溶效果稍差,異氰鹽酸胍最強;去污劑,如SDS[7],可以破壞蛋白內的疏水鍵,可以增溶幾乎所有的蛋白,但由於無法徹底去除而不允許用在制葯行業中;酸,如70%甲酸[9],可以破壞蛋白的次級鍵從而增溶蛋白,這種方法只適合少數蛋白質。對於含有半胱氨酸的蛋白,在增溶時應加入還原劑(如DTT、GSH、β-ME)打開蛋白質中所有二硫鍵,對於目標蛋白沒有二硫鍵的有時也應使用還原劑,為含二硫鍵的雜蛋白會影響包涵體的溶解,同時還應加入金屬螯合劑,如EDTA或EGTA,用來螯合Cu2+、Fe3+等金屬離子與還原狀態的巰基發生氧化反應[10]。
蛋白質的折疊機理
包涵體蛋白在變性劑作用下,為可溶性伸展態,在變性劑去除或濃度降低時,就會自發的從變性的熱不穩
狀態向熱力學穩定狀態轉變,形成具有生物活性的天然結構[11]。然而在去除變性劑的同時,重組蛋白質在體外折疊,分子間存在大量錯誤折疊和聚合,復性效率往往很低,包涵體蛋白折疊復性的效率實際上取決於正確折疊過程與聚集過程之間的競爭[1]。對於蛋白質的折疊機制,目前有多種不同的假設,但很多學者認為有一個「熔球態」的中間狀態,在「熔球態」中,蛋白質的二級結構已經基本形成,其空間結構也初具規模,再做一些局部調整就可形成正確的立體結構,總之,蛋白質的具體步驟可用下式描述[12、13、14]:
伸展態→中間體→後期中間體→天然態體→聚集體
在折疊反應中,從伸展態到中間體的速度是非常快的,只需要幾毫秒,但從中間體轉變為天然態的過程比較緩慢,是一個限速過程。聚集過程與復性過程相互競爭,故而應盡量避免聚集體的產生。一般認為,蛋白質在復性過程中涉及兩種疏水作用,一是分子內的疏水相互作用,可促進蛋白質正確折疊;一是部分折疊的肽鏈分子間的疏水相互作用,在復性過程中,部分折疊的中間體的疏水簇外露,分子間的疏水相互作用會導致蛋白質聚集。蛋白質的立體結構雖然由其氨基酸的順序決定,然而伸展肽鏈折疊為天然活性結構的過程還受到周圍環境的影響,如溫度、pH值、離子強度、復性時間等因素的影響。
提高重組蛋白質折疊復性的方法
一個有效的、理想的折疊復性方法應具備以下幾個特點:活性蛋白質的回收率高;正確復性的產物易於與錯誤折疊蛋白質分離;折疊復性後應得到濃度較高的蛋白質產品;折疊復性方法易於放大;復性過程耗時較少[15]。
1、 透析、稀釋和超濾復性法:這三種方法是最傳統也是應用最普遍的蛋白質折疊復性方法,復性活性回收率低,而且難於與雜蛋白分離。透析法耗時長,易形成無活性蛋白質聚集體;超濾法在膜上聚集變性,易造成膜污染;稀釋法處理量太大,不利於工業放大[16]。
2、 高蛋白濃度下的復性方法:一個成功的復性過程在於能夠在高蛋白濃度下仍能得到較高的復性率。一個方法是把變性蛋白緩慢連續或不連續地加入到復性液中[17]。在兩次蛋白加入之間,應有足夠的時間間隔使蛋白質折疊通過了易聚集的中間體階段。這是由於完全折疊的蛋白通常不會與正在折疊的蛋白一起聚集。第二種方法是用溫度跳躍策略[4]。變性蛋白在低溫下復性折疊以減少聚集,直到易聚集的中間體大都轉化為不易聚集的後期中間體後,溫度快速升高來促進後期中間體快速折疊為蛋白的天然構象。第三種方法是復性在中等的變性劑濃度下進行[18],變性劑濃度應高到足以有效防止聚集,同時又必須低到能夠引發正確復性。
3、 添加促進劑的復性方法:包涵體蛋白質折疊復性促進劑的促進作用可以分為:穩定正確折疊蛋白質的天然結構、改變錯誤折疊蛋白質的穩定性、增加折疊復性中間體的溶解性、增加非折疊蛋白質的溶解性。通常使用的添加劑有:a、共溶劑:如PEG6000~20000,通過與中間體特異的形成非聚集的復合物,可以阻止蛋白質分子間的相互碰撞機會,減少蛋白質的聚集;b、去污劑及表面活性劑:如Trition X-100、CHAPs、磷脂、磺基甜菜鹼等對蛋白質復性有促進作用,但它們能與蛋白質結合,很難去除;c、氧化-還原劑:對於含有二硫鍵的蛋白,復性過程中應加入氧化還原體系,如GSH/GSSG、DTT/GSSG、DTE/GSSG等,氧化還原系統通過促進不正確形成的二硫鍵快速交換反應,提高了正確配對的二硫鍵的產率[19];d、小分子的添加劑:如鹽酸胍或尿素、烷基脲、碳酸醯胺類等,都可阻止蛋白聚集,它們的作用可能為:穩定蛋白的活性狀態、降低非正確折疊的穩定性、增加折疊中間體的穩定性、增加解折疊狀態的穩定性。e、0.4~0.6M L-Arg:L-Arg能使得不正確折疊的蛋白質結構以及不正確連接的二硫鍵變得不穩定,使折疊向正確方向進行,可大幅度地提高包涵體蛋白質的折疊效率。f、添加分子伴侶和折疊酶:分子伴侶是指能夠結合和穩定