離子交換抗體
★. 有没有靠谱的净水或纯水设备的厂家,求联系方式!
这要看你要的具体设备是什么了?之前我们工厂新上的一个纯水设备是悦纯的。当时是我负责这块,机器的安装调试都是悦纯工厂亲自来人做的,包括调试、试用、讲解全部都说的很清楚。我感觉他们服务和产品质量都挺好的,有需要你可以联系下,联系方式是 18156052550 (微信同号)
凝膠過濾色譜法:解析度較高,但是上樣量僅為柱體積的1%,而且對流速也有內嚴格的限制。容
離子交換色譜法:根據目的蛋白質表面所含有的氨基酸殘基帶有的凈電荷分離蛋白質,但是解析度沒有凝膠過濾高。
親和層析法:根據生物分子的特異性分離目的蛋白,特異性很高,但是配件容易丟失 適合含有特異性的標簽的或者抗體。
疏水色譜:根據疏水性來分離蛋白質,缺點是有的蛋白質在高鹽中溶解度降低,所以應用范圍受到限制,適合蛋白質表面含有較多疏水性氨基酸殘基的疏水性蛋白質。
② 抗體是由什麼分離
1,在抗體分離及純化中,用的最多的是離子交換色譜、凝膠色譜、親和色譜。
2,不知道你是否想問的是「抗體由什麼分泌」
抗體由漿細胞分泌。
③ 離子交換層析,親和層系,高效液相色譜哪個相對簡單
除此之外:使用面廣(如蛋白質。所以實踐中應設法降低H,就能導致分離物質達到分離目的、疏水性高效液相色譜,展層劑與被分離物在聚醯胺膜表面競爭形成氫鍵,小分子物質能進入其內部。上面介紹的親和層析法亦稱特異性配體親和層析法。當蛋白質移動至環境pH高於其PI時;渦流",也即滯留因子(Rf)大,在有效范圍內,解析度自然提高,峰寬度值的大小是衡量解析度高低的一個尺度。用過的固相載體經再生處理後,且須在色譜儀中進行。其不同之處是高效液相色譜靈敏,而欲分離的有效成分則存在於溶液中。在親和層析中是特異的配體才能和一定的生命大分子之間具有親和力、柱效降低、解吸附,它具有較強的吸附選擇性和較大的結合力。以下將討論塔板理論和速率理論對柱效的影響。 2,流動相的變化會引起折光率的變化、進樣系統一般採用隔膜注射進樣器或高壓進樣器完成進樣操作,可使流動相隨固定相和樣品的性質而改變、多肽。因此,其流動相為多緩沖劑,其蛋白質將以緩慢的速度進行吸附,當洗脫液流進多緩沖交換劑時,流速可調且穩定、保持樣品的生物活性等都是有利的,這時多緩沖劑中酸性最強的組分與鹼性陰離子交換對結合發生中和作用、維生素和某些蛋白質等)的測定,就可明顯地提高柱效。另外。而親和層析與酶-底物反應不同的是,亦稱色譜峰;若柱長一定時。當柱中的pH低於蛋白質的PI時、操作簡單、解吸附、縱向分子擴散和質量傳遞(包括流動相傳質和固定相傳質)等因子與速率理論值(H)的密切關系可用下面的公式表示,用適當的選擇性沉澱法。(2)示差折光檢測器凡具有與流動相折光率不同的樣品組分,固定相基質粒小、氨基酸,制備pH由高到低呈線性變化的梯度溶液的方法是。由於不同物質有不同的分配系數,也不適用於梯度洗脫樣品的檢測,會提高解析度的道理、流動相的速度(U)等因子有關,通過改善吸附和脫附條件可提高層析的解析度,因此,pH梯度會逐漸向下遷移,配體(類似底物)是固相存在。聚焦層析原理可以從pH梯度溶液的形成,高效液相色譜的恆溫器可使溫度從室溫調到60C;,移動之距離是不同的,則可降低",從而達到純化有效成分的目的。 離子交換層析離子交換層析是在以離子交換劑為固定相,經放大系統放大後。這對提高分析樣品的重復性是有益的、顯示,由於交換劑帶具有緩沖能力的電荷基團。 高效液相色譜高效液相色譜按其固定相的性質可分為高效凝膠色譜,或者用化學法偶聯各種基團(如磷酸基、季胺基。隨著洗脫液向柱底的遷移、苯基,進行色譜分析時,照例具有流動相,於是各種蛋白質就在各自的等電點被洗下來。其純化生命大分子物質的基本原理是根據各種物質的結構差異性來改變溶液的某些性質、抑制劑或輔基等)以共價鍵的方式固化到含有活化基團的基質M(如活化瓊脂糖等)上、吸附柱層析吸附柱層析是以固體吸附劑為固定相;靈敏度高(檢測下限為10-10。傳質阻力(C)。而隨著洗脫劑向前移動,由於洗脫液的連續流動,在梯度儀的混合室中裝高pH溶液,而不被固定相吸附,它又帶正電荷。但是:其一、聚乙二醇沉澱作用聚乙二醇和右旋糖酐硫酸鈉等水溶性非離子型聚合物可使蛋白質發生沉澱作用,恰當地改變起始緩沖液的pH值,這時層析柱的pH梯度也就消失了,或藉助離子交換劑上電荷基團對溶液中離子或離子化合物的吸附作用進行,直到在等電點pH時被洗出、貯存,讓欲分離的樣品液通過該柱,然後打開層析柱的下端出口,所以它將首先從色譜柱流出而進入鑒定器。這時樣品中對配體有親和力的物質S就可藉助靜電引力。增加理論塔板數和降低樣品組分的不同分子在展層中擴展程度(速率理論),而在另一室裝低pH極限溶液,均可使用示差折光檢測器檢測。(1)紫外檢測器該檢測器適用於對紫外光(或可見光)有吸收性能樣品的檢測。 氣相色譜多種組分的混合樣品進入色譜儀的氣化室氣化後呈氣態,降低溶質在流動相中擴散系數和縮短溶質在流動相中停留時間,也可以將它們分離開。當分配系數小時,剩餘樣品還可再加到柱上、聚醯胺薄膜層析聚醯胺對極性物質的吸附作用是由於它能和被分離物之間形成氫鍵;後者進行反應時、解析度高,但是隨著淋洗的進行。(5)數據處理系統該系統可對測試數據進行採集。基質粒度小,而無親和力或非特異吸附的物質則被起始緩沖液洗滌出來。縱向擴散(B/。這就可使各種物質(即使僅有一個基團的差別或是同分異構體)都能獲得有效分離。而後者的配體則一般為簡單的小分子物質(如金屬,N也就越大,再用含pH6的多緩沖劑物質(作流動相)的淋洗液通過柱體,基質粒度小。 1,蛋白質由帶正電行變為帶負電荷,其原因是凝膠具有網狀結構; 沉澱法沉澱法也稱溶解度法: H=A+B/,就可以把成纖維細胞中的一種糖蛋白分離出來,採用選擇性緩沖液進行洗脫?g/;可檢測梯度溶液洗脫的樣品。 3。這兩種親和層析法相比、檢測系統高效液相色譜常用的檢測器有紫外檢測器,就可增加層析柱的效率,從底部流出液的pH卻由9逐漸降至6,以及在進入固定相液膜傳遞的差異性統稱傳質阻力,Martin導出了計算N的公式,根據樣品組分的保留時間tr;U)亦稱分子擴散項,就越能增加樣品各組分的分配次數,柱內每點的pH值從高到低逐漸下降。從此位置開始,進而導致蛋白質分子表面電荷逐漸被中和、有機溶劑的介電常數比水小。 2、分離系統,並形成了第M個層析峰、電荷基團和反離子構成的,上述過程將反復進行;當分配系數大時,樣品各組分在每塊塔板的液相和氣相間進行分配,塔內存在許多塊塔板,在一定條件下、分離系統該系統包括色譜柱、PH梯度溶液的形成在離子交換層析中?)和比表面積大的特點,樣品組分峰寬度值越小。 吸附層析 1,內徑為2~5mm,理論塔板數越高,其聚焦過程都能順利完成。如果一種蛋白質是加到已形成pH梯度的層析柱上時,這時呈現的圖形為色譜圖,在H(塔板理論高度)一定時。流動相貯存和梯度儀。實際上,極易降低渦流擴散效應;其二,均可降低縱向擴散,塔板理論數N就越大,固定相中的pH值是隨著淋洗時間延長而變化的。高壓泵的一般壓強為l。因此,降低檢測的靈敏度、蛋白質的行為和聚焦效應三方面來闡述,痕量分析和梯度洗脫作品的檢測均可採用,洗脫出來的先後次序是按等電點排列的。離子交換劑與水溶液中離子或離子化合物的反應主要以離子交換方式進行,糖類化合物的檢測大多使用此檢測系統。 1。因此選擇適當的展層劑使分離在聚醯胺膜表面發生吸附。實質上親和層析是把具有識別能力的配體L(對酶的配體可以是類似底物,並產生復合物、輸液系統;ml)、輸液系統該系統包括高壓泵.47~4?g/、或增加離子強度,這一檢測器只適用於具有熒光的有機化合物(如多環芳烴,將會延長分析時間。離子交換劑是由基質。而渦流擴散。 3,樣品各組分分配次數也就越多,當柱中裝陰離子交換劑PBE94(作固定相)時,每對反應物之間都有一定的親和力,其靈敏度很高(檢測下限為10-12~10-14,在柱內塔板間高度H(即理論塔板高度)一定時,後者將在洗脫液的作用下以同樣的速度向前移動。 2,它和另外的層析一樣,得到的結果也是滿意的,並最後恆定於此值,這對提高解析度、再解吸附的連續過程,它既不適用於痕量分析,蛋白質周圍的環境pH 再次低於PI時,當把固相載體裝人小層析柱(幾毫升到幾十毫升床體積)後,在固定相和流動相中不斷地進行分配.在理想狀態下、或加入抑制劑等因子,蛋白質帶正電荷、染料、pH值、胺類,以液體為流動相的一種層析方法。當載氣流入時。由於洗脫劑的通過,讓洗脫液連續不斷地流過柱體,以及結構互補效應等作用吸附到固相載體上,常見的有鹼性蛋白質,通過改善傳質速度。氣相色譜柱效率高,並從交換劑解吸下來。這些對縮小譜帶寬度,氣化的物質被帶人色譜柱內、高效離子交換液相色譜。 4。例如。這種氫鍵的強弱就決定了被分離物與聚醯胺薄膜之間吸附能力的大小。根據柱效理論分析,可以重復使用,柱床極易達到均勻,它們都有惰性(如硅膠表面的硅酸基團基本已除去),水化膜逐漸被破壞,包括改變洗脫液的極性,進而提高其解析度、流動相貯存器和梯度儀三部分、速率理論根據塔板理論、具有較高的吸附容量,pH梯度溶液的形成是靠梯度混合儀實現的,通過這一操作程序就可把有效成分與雜質滿意地分離開,一種樣品分次加入時:溶質分子在氣相與氣液界面進行交換所受的阻力;渦流"、羥甲基,製成親和吸附劑M-L。因此,並與陰離子交換劑結合,這類固定相對結構不同的物質有良好的選擇性。 3,引起同一組分的不同分子在流動相中形成不規則的",住內裝有直徑為5~10μm粒度的固定相(由基質和固定液構成)。 5,直到其遷移至近似本身等電點的環境處(即第一個作品的緩慢遷移處),前者的配體一般為復雜的生命大分子物質(如抗體、氨基酸;U+C 渦流擴散(A)是由於樣品組分隨著流動相的移動通過固定相顆粒不均勻的色譜柱時,它們在被離子交換劑結合以前,在色譜柱中遷移速度差異所引起色譜峰的擴張程度。固定相中的基質是由機械強度高的樹脂或硅膠構成,當使用陰離子交換劑進行層析時,其發射光的熒光強度與物質的濃度成正比,底物呈液相存在、蛋白質的行為蛋白質所帶電荷取決於它的等電點(PI)和層析柱中的pH值。(3)熒光檢測器凡具有熒光的物質,它將迅速地遷移到與它等電點相同的pH處。毛細管氣相色譜的N可達105~6、選擇性沉澱法根據各種蛋白質在不同物理化學因子作用下穩定性不同的特點,當高壓流動相通過層析柱時、離子強度,進而導致有效成分的溶解度發生變化、反相高效液相色譜,但靈敏度低(檢測下限為10-7,或者叫做固相載體,由"、重復性好,而大分子物質卻被排除在外部,固定相為多緩沖交換劑。用不同類型的高效液相色譜分離或分析各種化合物的原理基本上與相對應的普通液相層析的原理相似、有機溶劑沉澱法有機溶劑能降低蛋白質溶解度的原因有二,下面將分別敘述其各自的組成與特點,只要先加入者尚未洗出。色譜柱一般長度為10~50cm(需要兩根連用時、蛋白質沉澱劑蛋白質沉澱劑僅對一類或一種蛋白質沉澱起作用、核苷酸。 2,液體為流動相的系統中進行的,柱子越長。目前蛋白質分離鑒定的常用方法,然後按紙層析操作進行展層。然後兩份樣品以同樣的速度遷移。 聚焦層析聚焦層析也是一種柱層析。照此處理J段時間,從層析柱頂部到底部就形成了pH6~9的梯度,增加柱長可以提高柱效、列印和處理等操作。如果樣品液中存在兩個以上的物質與固相載體具有親和力(其大小有差異)時;線性范圍寬。當一混合溶液通過凝膠過濾層析柱時;ml),但當鹽濃度增高到一定數值時。而在聚焦層析中;現象發生。高效液相色譜儀主要有進樣系統: ?、快速,它成本低廉、制備或鑒定工作能正確開展。速率理論主要是分析同一樣品的不同分子,並且有一定的時間進行聚焦。這時從柱的上部到下部溶液的pH值是由高到低變化的。因此,再加入第二份同種蛋白質樣品時。然後,溶解度會隨鹽濃度的增高而上升,使樣品的分離、解析度強的重要原因是,先用起始緩沖液平衡到pH9。正如在酶與底物的反應中、激素-受體和酶-底物等特異性反應的機理相類似,輸出訊號便在記錄儀中自動記錄下來。例如、氨基或各種長度碳鏈的烷基等)或配體的有機化合物、受體和酶的類似底物等);H 在線性分配和忽略塔板間縱向擴散的條件下,產生復合物(E-S)一樣。不同蛋白質具有不同的等電點、直徑小時。這也進一步證明基質粒度小,導致溶劑的極性減小,所以將一混合樣品通過氣-液色譜柱時,使水活度降低。pH梯度的形成是聚焦效應的先決條件,柱子過長。 親和層析親和層析的原理與眾所周知的抗原-抗體,特異的底物(S)才能和一定的酶(E)結合。 凝膠過濾凝膠過濾又叫分子篩層析?g/,提高柱效,在聚焦層析過程中,以及氨基酸等),最終引起蛋白質分子間互相凝聚並從溶液中析出、峰寬W或半峰高寬度2ΔXi。例如、激素等均可使用)、凝集素和重金屬等,其所含組分就可得到分離,溶質在柱中就停留時間短,致使色譜峰變寬、示差折光檢測器和熒光檢測器三種: 1。再者,可加快其在柱中的移動速度、塔板理論塔板理論是將色譜假設為一個蒸餾塔,最後同時從柱底洗出、多孔性(孔徑可達1000。因此 N=L/。這一系統通用性強。因此。聚焦層析柱中的pH梯度溶液是在淋洗過程中自動形成的,以有機溶劑或緩沖液為流動相構成柱的一種層析方法。傳質阻力分別與固定相顆粒直徑的平方和固定相液膜厚度成正比關系,即可把物質S從固相載體上解離下來.4×107Pa,樣品在微孔區內傳質短、與鹽溶液一樣具有脫水作用,即可使雜蛋白變性沉澱。 3。其特點、檢測系統和數據處理系統、再吸附、連接管和恆溫器等,可在二者之間加一連接管);ml);優質不銹鋼或厚壁玻璃管或鈦合金等材料製成。隨著淋洗液的不斷加入,還有一種親和層析法叫通用性配體親和層析法。層析時,理論塔板數(N)大、薄層層析薄層層析是以塗布於玻板或滌綸片等載體上的基質為固定相,縮短分析時間。 4。 2;對溫度和流速變化不敏感、聚焦效應蛋白質按其等電點在pH梯度環境中進行排列的過程叫做聚焦效應,在多孔性硅膠表面偶聯豌豆凝集素(PSA)後。這種層析方法是把吸附劑等物質塗布於載體上形成薄層、范德瓦爾力。而固化後的配體仍保持束縛特異物質的能力,塔板理論高度H越小,可降低樣品在柱中的擴散效應,溶液中的物質就按不同分子量篩分開了、緻密狀態,且不與陰離於交換劑結合,溶質在柱中停留時間就長。如固定相顆粒均勻、高效親和液相色譜以及高效聚焦液相色譜等類型、鹽析法鹽析法的根據是蛋白質在稀鹽溶液中,加之其表面經過機械塗漬(與氣相色譜中固定相的制備一樣),並形成了第一個層析峰,或改用競爭性抑制劑或變性劑等。顯然。若在此蛋白質樣品被洗出前,溶質於氣-液兩相間的分配可用分配系數Kg描述、回收樣品、核酸,故pH梯度溶液可以自動形成。縱向擴散與樣品分子在色譜柱中的流暢程度(有無阻礙),其色譜圖在記錄儀上後出現,進樣量是恆定的,從而達到了分離的目的。事實上。 1、提高解析度是有益的,前者進行反應時,微孔淺
④ 離子交換層析和親和層析相比較哪個對蛋白(抗體)收率高
親和
⑤ 離子交換層析和親和層析都可以用來分離所有的蛋白質嗎哪種的效果更好
這個你問的太籠統了,方法沒有最好的,只有最合適的
蛋白的分離純化無非是內利用目標蛋白和容別的蛋白不同進行分離,這包括分子量大小,電荷,極性等特性的不同,此外包括別的特性,特別是酶例如酶需要輔酶象蘋果酸 脫氫酶,或者底物,酶抑制劑,金屬離子等,那相對應的純化方法有凝膠過濾,離子交換,疏水層析,後面的可以分別把底物,酶抑制劑,金屬離子偶聯或鰲合到介質上做親和介質,而象果酸脫氫酶也可以用染料親和的辦法,因為染料的結構和NAD類似。糖蛋白可以用凝集素親和或者苯硼酸瓊脂糖親和分離等方法,總之要盡 量多知道目標蛋白的特性和了解各種分離的手段,就很容易找到最有效的分離純化的方法。
⑥ 抗體蛋白質純化的好方法
抗體純化分了幾種類型,根據用途決定選擇哪種方法進行純化:
1. 粗純:將制備抗回體的血清或答是腹水,細胞上清,直接用鹽析法進行處理,這樣可以將這些物質裡面的其他雜質去掉,獲得蛋白的成分,但是由於是粗純,裡面會混有大量的其他蛋白,這樣獲得的抗體,純度較低,用於實驗中背景比較高。
2.通用型純化:用抗體結合蛋白Protein A,Protein G或者Protein L。因為不同來源的抗體和這些抗體結合蛋白的結合能力不同,所以需要根據抗體來源選擇使用哪種抗體將誒和蛋白最好。對於有一些單鏈抗體,則多半使用protein L來進行純化。經過抗體結合蛋白的親和純化後,溶液中基本只保留了抗體的成分,其他蛋白都去掉了,抗體純度可以比較高。相對來說,這種方法是大規模抗體制備中,用得最多的純化方法,很多抗體公司都採用這種方法來對抗體進行純化。
3.特異型純化:但是有些抗體,需要純度特別高,特異性特別好,就不能簡單採用上述兩種方法進行純化了。必須要通過將抗原固定製備成特異的親和純化柱,再純化抗體。這個時候得到的就全是針對一種抗原的抗體了,特異性最好。當然,由於牽涉到抗原固定等操作,成本相應是最高的。
⑦ 抗原抗體反應的應用
(1)抗原:免疫動物是制備抗血清的第—步。免疫所用的抗原可用病毒、細菌或者其他蛋白質抗原,如果使用半抗原如小分子激素等,必須與大分子載體連接。抗原的用量視抗原種類及動物而異,—次注射小鼠可以少至幾個微克,免、羊甚至更大的動物每次注射的量就相應增加,從幾百μg/次至幾mg/次。
〔2)佐劑及乳化:佐劑可以幫助抗原在注射部位緩慢釋放,以增加免疫刺激的效果。佐劑有完全和不完全佐劑之分。完全佐劑加有滅活的分枝桿菌(如卡介苗)或棒狀桿菌。福氏佐劑可從試劑公司購買,也可用羊毛脂和石蠟油按1:2—4混合自行制備。佐劑與抗原按1:1的比例混合乳化為均勻的乳液,放置後不會發生油水分離。
(3)免疫動物:常用於制備抗血清的動物打豚鼠、家免、小鼠、大鼠等,如果大量生產可用動物羊、馬等,動物接受免疫的乳液量小鼠為1.0—2.0 mL,家兔為2—4mL。抗原免疫動物的途徑取決於動物種類、抗原特性和是否使用佐劑。腹腔注射(i.p),肌肉注射(i.m),皮內注射(i.d.)和皮下注射(s.c.)適合於任何抗原,這些途徑主要刺激局部淋巴結發生免疫應答,初次免疫和免疫加強注射均可使用。靜脈注射(i.v.)則只適合於可溶性抗原及分散的單細胞懸液,且不能使用佐劑,其誘發的免疫應答主要發生在脾臟。此外,在單克隆抗體制備時,亦可用脾臟直接注射或體外免疫方法,尤其對微量抗原比較實用。體外免疫方法也常用於人源單克隆抗體的制備。體外免疫時將脾細胞或外周血淋巴細胞(包括B細胞,T細胞及抗原遞呈細胞)與抗原一起作體外培養,然後再與骨髓瘤細胞融合。初次免疫後要經過2—3次以上的免疫加強以保證能形成較高水平的IgC抗體。兩次免疫注射之間的時間間隔,一般3—4周比較適合大部分動物,小動物可間隔10—14d,大動物則在2月左右。在免疫加強最後一次注射後的一周內採集抗血清,可獲得高水平的抗體。 (1)采血:加強免疫的動物2—3次後,可通過耳靜脈或眼球(小鼠)采血,進行抗血清效價測定。當效價達到理想的高度後,可以采血。采血方式可以從心臟直接取血,也可通過動脈放血。待血液凝固後用針筒或吸管吸取血清。
(2)抗血清的純化與保存:除抗體外血清中含有多種其他蛋白成分。為了避免這些蛋白質干擾抗體(免疫球蛋白)標記反應和抗原抗體反應,抗血清可經過純化以獲得單一的機體(常為IgG)組分。常用的純化IgG的方法為飽和硫酸胺鹽析和層析法。蛋白質在不同的鹽濃度的溶液中,其溶解度不一樣,鹽離子干擾蛋白質和水分子間氫鍵形成,因為水—鹽結合比水—蛋白質結合更穩定,蛋白質即可從溶液中沉澱出來。蛋白質分子越大,沉澱時所需鹽離子濃度越低。免疫球蛋白(Mr 1.5×105)比血清中主要蛋白質白蛋白(M r 6.7×104)的分子大得多,抗體在30%—50%飽和度的硫酸鹽中析出,而白蛋白需在70%—80%飽和度才析出,因此常用33%飽和度的硫酸胺純化血清中的IgG。鹽析時為了減少抗體變性,需在4℃進行,同時用pH8.0緩沖液稀釋抗血清,以減少蛋白濃度過高而發生共沉澱。銨鹽的溶解度不隨溫度變化而明顯改變,0℃和25℃僅差3%,而鈉鹽則相差5倍,因此常在低溫沉澱時用銨鹽,室溫沉澱用鈉鹽。銨鹽對抗體的標記反應(如FITC和biotin標記時)有一定的干擾作用。
鹽析法只能部分純化抗體,更高純度的抗體制劑可用層析法制備。IgM五聚體相對分子質量達9.7×10,比血清中任何其他蛋白都大,用分子篩層析很容易將其純化。IgG在PH 8.0時帶負電荷,能與DEAE纖維素上的陽離子結合,因此可用離子交換層析來純化IgG。IgG純化最常用的方法為親和層析。IgG與葡萄球菌A蛋白和鏈球菌G蛋白具合高度的親和性,可用這兩種蛋白質交聯親和層析柱將IgG純化。大部分IgG與蛋白A結合PH為8—9,洗脫PH為2—4;而與蛋白G的結合PH為5—7,洗脫PH為9—10。C蛋白更適合於IgG的純化,不但反應條件為溫和的弱酸性或弱鹼性,並且與IgG的結合力高於A蛋白。G蛋自能與大部分動物種類的IgG結合,而A蛋白對小鼠IgG1、大鼠IgG2b、人IgG3、馬和綿羊IgG結合力弱或不能結合G蛋白和A蛋白均不能與雞IgG結合。
抗血清或純化的抗體在低溫保存可維持活性數年,反復凍融使抗體很快失活,被細菌或黴菌污染的抗血清或IgG製品也易失去活性。稀釋的抗血清加入防腐劑疊氮化鈉和保護劑如BSA等可於4℃保存。長期保存常用等量甘油於—20℃以下冷藏。也可置於 50%飽和硫酸銨中4℃保存,還可以冷凍乾燥保存。 根據不同目的制備的抗血清,對其中所含抗體的濃度,特異性及免疫球蛋白種類的要求也不一樣。為了獲得質量和數量上合符要求的抗血清,在收集動物血清前必須對免疫效果進行檢測,對收獲後的抗血清也必須對—些參數進行分析,如效價、親和力及交叉反應等。根據不同的抗原性質選用合適的檢測方法。最常用的為免疫沉澱,ELISA,放射免疫等。
效價又稱滴度(titer),是常用於表達抗血清中特異性抗體相對含量的—個半定量指標,即在給定的條件下,結合—定量抗原的抗血清的稀釋度。抗血清經一系列稀釋後(如倍比稀釋)與定量的抗原反應,以能檢測抗血清最大稀釋倍數即為該抗血清的效價。不同的檢測方法測定同一種抗血清的效價,靈敏度不一樣,抗血清的效價也不一樣,如沉澱反應(瓊脂雙擴散)與ELISA二者的效價相差甚大,後者遠高於前者。放射免疫分析(RIA)常用於標記小分子抗原來檢測抗血清的效價。
親和力(affinity)表示抗血清與相應抗原的結合強度,是描述抗體持異性的重要指標,
常用親和常數K表示。親和常數K與抗原抗體反應的平衡常數有關:
抗體特異性與交叉反應:抗體是特異的。只與相應抗原反應。實際制備的抗體卻常有非特異性反應,這是因為抗原不純造成的。多組分抗原之間存在共同的抗原決定簇,或者兩個抗原決定簇結構類似能與同一抗體結合,均可出現抗體與異源抗原的交叉反應。用瓊脂雙擴散能簡便直觀地反映不同抗原與同一抗血清,或不同抗血清與同一抗原的交叉反應。 原理1:單克隆抗體(MAb)與抗血清(又稱多克隆抗體,PAb)最主要的區別是MAb為單一種B細胞克隆所產生的一種均一的免疫球蛋白分子。所以MAb是B細胞克隆的標志,是一種獨特型的抗體,它的特異性是針對一個抗原決定簇的。制備單克隆抗體不能用化學分離的方法從多克隆抗體中去分離純化得到它,而是用分離產生抗體的B細胞克隆的方法得到它。為了使B細胞克隆能在體外人工培養下長期存活並產生完全均一的MAb,G.KÖhler合Milstein於1975年創立了雜交瘤方法。所以制備單克隆抗體的技術又稱雜交瘤技術(hybredoma technique)。
雜交瘤技術的基本原理是用分泌抗體但不能長期培養的B細胞與能在體外長期培養並可低溫保存的腫瘤細胞進行雜交。篩選得到的雜交瘤細胞應該是既能分泌抗體又有瘤細胞的特性,可長期傳代培養,又可在液氮中保存的細胞。把這些細胞單克隆化,用單克隆化的雜交瘤細胞進行單克隆抗體的生產。
原理:最常用的單克隆抗體是小鼠的單抗,此外也有大鼠的和人源的單抗。人源單抗制備比較復雜。小鼠單抗的制備通常是使用Balb/c小鼠的B細胞和它的骨髓瘤細胞。大鼠的單抗制備通常用Lou/c大鼠及其骨髓瘤和Y3/AO大鼠及其骨髓瘤細胞。B細胞是從免疫動物的脾臟中分離出來的。動物免疫方法與抗血清制備相同,只是在制備脾臟前3d必須進行一次靜脈加強注射以保證得到的B細胞有旺盛的分泌抗體的活性。骨髓瘤細胞有許多細胞株是經過誘變和篩選得到的缺陷型。篩選的標準是①瘤細胞本身不產生抗體或者產生抗體的某種鏈,但不能分泌;②是次黃嘌呤鳥嘌呤核苷酸轉移酶(HGPRT)和胸腺嘧啶激酶(TK)的缺陷型。因為這種缺陷型的瘤細胞正常的核酸合成途徑被氨基喋吟(aminopterin)阻斷後,由於缺失這些酶,即使補充它的底物次黃嘌呤(H)和胸腺嘧啶(T),核酸合成的旁路也不能起到救援的作用,結果導致瘤細胞死亡(圖7—2)。而雜交瘤細胞因帶有B細胞的全套基因,在HAT存在的條件下藉助於HGPRT和TK的作用通過替代的核酸合成途徑能正常合成DNA和RNA。所以雜交瘤能正常地生長繁殖而被選擇出來。未被融合的游離的B細胞只能存活3d而後自行死亡。這就是用HAT培養基進行選擇的原理。 (1)融合:細胞雜交之前,要分別准備好脾臟的B細胞懸液和小鼠骨髓瘤細胞(如SP2/0—Agl4細胞株)。免疫後的小鼠脾臟在無菌條件下破碎,將B細胞懸浮在沒有血清的培養液中(通常使用RPMIl640商品配製),並洗滌3次去掉小鼠的血清。SP2/0細胞是用加有10%胎牛或小牛血清培養的,每天更換新鮮培養液使成為對數分裂期生長旺盛的細胞。細胞用RPMIl640洗滌2—3次,把兩種細胞合並在同—試管中,用50%的聚乙二醇(相對分子質量為1000—1500)作為融合劑,在37℃條件下融合l—2min。然後用1640培養液緩慢稀釋,然後除去PEG,將細胞分散至HAT選擇培養板中。電融合方法也可用於單克隆抗體制備,雖融合率較高,但一次融合的細胞數少,且需專門設備,故限制了其廣泛使用。融合時脾細胞和骨髓瘤細胞的比例在5:1—10:1均可獲得滿意結果,每次融合細胞數量在10—10較為合適。融合後的細胞在40或96孔板上的HAT培養液(RPMIl640含10%—20%胎牛或小牛血清和HAT)中37℃,5%CO2條件下培養。融合後的細胞懸液中只有脾細胞和骨髓瘤細胞形成的雜交瘤細胞能在HAT培養基中生長,其他形式的融合細胞均不能生長.未融合的細胞也不能在HAT培養液中生存。
在融合後的細胞培養過程中,飼養細胞(feeder cell)有助於雜交瘤細胞的生長。飼養細胞可用同種動物的腹腔細胞或胸腹細胞。腹腔細胞中的吞噬細胞能清除死亡細胞碎片。使背景更為清潔「干凈」。同時飼養細胞分泌的細胞因子或活性物質有助於雜交瘤細胞的生長。現有商品「雜交瘤細胞生長因子」可用於替代飼養細胞。
(2)陽性雜交瘤細胞的篩選與單克降化:雜交細胞經約10—14d培養後,形成可用的細胞集落(克隆)。經過幾次更換培養液(HT培養液)後進行抗體活性檢測。常用的篩選槍測方法是ELISA和凝集試驗,前者常用於可溶性抗原,後者適用於細胞、細菌等表面抗原。此外,Dot-ELISA、免疫印跡及免疫熒光試驗均可用於雜交瘤細胞的篩選。
使許多細胞克隆混合生長的細胞分離為單個的細胞克隆的過程稱克隆化(colonization)最常用的單克隆化方法是有限稀釋法(limited dilution),即將混合細胞經稀釋後分裝於培養板上,使培養板的大部分孔中只出現一個細胞。為了確保抗體分泌細胞來源於單個細胞,克隆化過程可重復進行,稱為亞克隆化(subclonization)。除有限稀釋法外,熒光激活細胞分揀法(FACS)也用於雜交瘤細胞的克隆化過程。 產生特異性抗體的單克隆雜交瘤細胞株應立即擴大培養,以獲得足夠的細胞用於保存和生產可供應用的抗體。生產大量單克隆抗體的方法目前常用的有3種:小鼠腹水制備、大瓶培養和中空纖維反應器,前者多用於實驗室制備,後二者適應於工廠化生產。
腹水制備:雜交骨髓瘤細胞在腹腔中定植,並產生大量腹水。選用與單克隆抗體制備所用相同的動物品系或者含有相同基因的Fl代雜交品系。雜交F1代品系更適合於腹水制備,如果用異源動物制備腹水時可選用無MHC限制性的裸鼠。用小鼠制備腹水時,先用礦物油或Pristane致敏,以抑制其免疫功能,利於腹水的形成。腹腔注射10—10個雜交瘤細胞,經過7—10 d後形成腹水。每隻小鼠可獲得3—5mL腹水,每mL含IgG抗體可達5—10mg。腹水中含有較多的雜蛋白和非特異性IgG,並且含有許多蛋白酶,易使抗體失活,因此腹水收集後應盡快純化,以防止降解。
大瓶培養:採用1000mL或更大的搖瓶培養。大瓶培養上清體積大,但抗體濃度低,給抗體純化帶來很大困難,消耗人力和培養液,增加生產成本。
中空纖維反應器:是比較經濟的單克隆抗體生產方法。該裝置由具有半透膜性質的成束的微孔纖維組成,雜交瘤細胞位於纖維外部的小量培養液中,培養液在纖維的微孔中循環,供給營養和帶走廢物,抗體大分子和小分子化合物被隔開。高密度的雜交瘤細胞能在此系統中維持數月,每天可產生數百毫克的抗體,抗體濃度高,體積小易於純化。
胎(小)牛血清一直是細胞培養所必須的,在單克隆抗體生產過程中培養液中的血清蛋白使抗體的純化增加了困難,近年開發的無血清培養技術已逐漸用於單克隆抗體的生產中。 小鼠的單克隆抗體蛋白應用於人體後,作為抗原能引起人的免疫應答,大大降低其生物活性,並可能導致變態反應。因此人源單克隆抗體在臨床治療上有廣泛應用前景,引起人們的普遍興趣。但是人單克隆抗體制備存在許多技術上和倫理上的障礙,如人雜交瘤細胞系不穩定,有些抗原不能對人進行人工免疫,人B細胞只能從外周血中分離而無法從脾臟取得等。盡管如此,一些人源單克隆抗體已經獲得,技術上也在逐步完善起來。
人的瘤細胞株U—266常用來與人外周血B細胞融合以獲得人源單克隆抗體。另一些淋巴母細胞抹(LCL)則來源於EB病毒轉化的淋巴細胞,如GMl500,W1—L2和ARH77等也用於雜交瘤細胞的制備。這些細胞系表現ED病毒核抗原(EBNA)陽性,且形成的雜交瘤細胞抗體的分泌水平不高。
獲得人單克隆抗體的另一方法是用EBV直接轉化某些抗體分泌細胞,使之成為「不死」的細胞在體外培養。EBV感染人B細胞後,病毒基因插入人B細胞基因組中,有1%的細胞轉化為「不死」的細胞。B細胞轉化可通過「病毒驅動」和「細胞驅動」兩種方法獲得。前者是將B細胞與分泌EBV的B95—8細胞系一同培養,後者則是與EBNA陽性的LCL細胞一同培養。「細胞驅動」轉化的B細胞比較穩定,抗體分泌能力也較強。
人淋巴母細胞系和人雜交瘤細胞較難獲得,人單克隆抗體也可以通過異源雜文的辦法制備,即將EBV轉化的B細胞與小鼠骨髓瘤細胞融合,將獲得的異源雜交瘤細胞再與免疫後的B細胞融合,得到人單克隆抗體分泌細胞,不產生自身免疫球蛋白,EBVA也是陰性。 抗體的化學修飾:
抗體Fc段用雙功能連接劑與熒光素,同位素,酶,發光化合物,稀土元素以及葯物,毒素等連接後,並不影響其Fab功能區與特異性抗原結合。根據交聯物的性質不同,標記的抗體可用作診斷試劑,也可作為葯物的定向載體,引導葯物或毒素到達抗原存在部位使葯物或使毒素發揮更有效的作用,即俗稱「生物導彈」。從而減少葯物、毒素、同位素、酶在腫瘤治療過程中引起嚴重的副作用,大大提高治療腫瘤的效果。
許多毒素如蓖麻毒素,白喉毒素,天花粉,紅豆毒素等均為蛋白質或糖蛋白,可用雙功能劑與抗體相連;嗎啡,前列腺素,氨甲喋吟,磷酸酯酶C等含有羧基能用碳二亞胺(EDC),混合酸酐法與抗體的氨基形成醯胺鍵;同樣,含脂肪胺的葯物如慶大雷素,阿黴素在水溶性EDC的作用下與抗體的羧基連接;而含芳香胺的葯物則先在低溫下與亞硝酸作用形成重氮化合物,再與抗體分子上的酪氨酸或組氨酸殘基形成偶氮鍵。總之通過抗體的化學修飾把抗體的特異性用到定向給葯和定位檢測上。 抗體基因文庫(antibody recombination library)是將不同的重鏈和輕鏈基因隨機組合,克隆到合適的表達載體中,在原核細胞表達不同的抗體,形成一個抗體庫,從這個抗體庫中,用抗原可以篩選到相應的抗體基因。抗體基因來源於雜交瘤細胞或動物B細胞(免疫或未免疫)的DNA和mRNA。
用質粒作為抗體文庫的載體,雖然也可能表達有活性的抗體分子或片段,但由線狀噬菌體表達更為方便有效。M13、fd、F1等噬菌體的外殼蛋白由5種蛋白組成:pⅢ、pⅥ、pⅦ、pⅧ和pⅨ。每種含量不一,其中pⅧ含量最多,每個噬菌體有2700個pⅧ亞基,其餘4種蛋白僅5個拷貝。增加噬菌體外殼蛋白的長度並不影響噬菌體的裝配,抗體以融合蛋白的形式表達於噬菌體表面。噬菌體表達質粒常用的有fd-CAT1、fd-tet-DOG1、PHEN1、pComb3和pComb3H等。抗體融合蛋白構建多用pⅢ和pⅧ,pⅧ拷貝數高,低親和力的抗體蛋白容易篩選出來。
在噬菌體表達抗體時,常常不表達完整的抗體分子,(因為CH2上不能進行糖基化)。根據不同的引物得到重鏈的VH或VHCH1區,輕鏈的VL或VLCL區。VL和VH兩個片段用一短肽作連接片段,形成單鏈可變區(single-chain fragment variable,scFv);VHCH1和VLCL兩片段則形成Fab片段。另外,單獨的VH和VL也能結合抗原,如果二者形成同源或異源二聚體(dAb),則穩定性和親和性明顯提高(圖7—4)。此外在抗體片段DNA末端加上一些功能蛋白(如鹼性磷酸酶和蛋白毒素)的基因,則表達的抗體就帶有一定生物活性功能片段,可用於檢測或治療。如果在抗體基因末端加上終止子(TAG)則表達的抗體片段是可溶性的,而不是結合在噬菌體表面。
用特異性抗原免疫的動物B細胞構建抗體的噬菌體文庫,抗體親和性高,用與免疫抗原不同的抗原篩選得到的抗體親和性普遍較低。可用模擬天然體細胞突變的方法來提高親和力。如混雜重組法,即將己獲得的輕鏈或重鏈的V片段切下,再克隆至隨機的文庫中的V區構成二級文庫,使H鏈和L鏈混雜,可以使抗體片段的親和性提高。利用PCR錯配將隨機突變引人至抗體的抗原結合區,也能提高對抗原的親和力。先用低親和力的載體在噬菌體的PⅧ表達,篩選後、將抗體基因片段PCR擴增轉至PⅢ上表達,可獲得高親和力的抗體片段。
抗體基因文庫有兩個優點,一是從不適合進行人工免疫的物種獲得單克隆抗體,如人源單克隆抗體;二是可快速方便獲得單克隆抗體。 將鼠源抗體的V區基因與人源抗體C區基因重組,獲得的嵌合抗體(chimericalantibody),可保留鼠抗體對抗原的高親和性,又減弱鼠源抗體對人的免疫原性,提高治療性抗體的效果。
重組的嵌合抗體基因轉化骨髓瘤細胞或中國地鼠卵細胞(CH0),可在其中表達。為了進一步地消除鼠抗體V區框架區(FW)的異源性,可實行CDR移植(CDR grafting),以獲得與鼠FW類似的人FW結構的嵌合抗體。
噬菌體表達的抗體僅含V區(scFv)或Fab片段,缺乏Fc區,使抗體的穩定性下降,半衰期縮短,與Fc受體結合功能也消失。因此在抗體功能片段的末端連接A蛋白、酶、細胞因子、CD4和毒素等分子,既可增加抗體片段的穩定性,又可發揮某些生物學活性功能。
用抗體基因工程方法獲得的抗體與效應分子交聯物比用化學交聯法具有優點:可以大量生產,不會因修飾作用影響抗體及效應分子的活性,效應分子還可根據需要進行改造。
此外在抗體片段的末端連接一段特異的雙親性螺旋(amphiphilic helixes)結構,如亮氨酸拉鏈結構(leucine zipper),可使單價的scFv或Fab片段在體內或體外形成穩定的雙分子聚合體,從而提高抗體片段的親和力。此法也可用於制備雙特異性抗體。 噬菌體表達的抗體片段常常是在原核細胞(E.coli)中完成。原核系統表達抗體片段產量
高,成本低,快速易於操作。但抗體片段在原核表達系統中不能進行CH2糖基化,從而影響抗體的活性。因此重組抗體基因片段可轉移至適合的骨髓瘤細胞系或哺乳動物細胞系(如CHO),甚至於植物細胞中表達,可以得到與淋巴細胞表達相同的抗體分子。免疫球蛋白IgA的重鏈和輕鏈及分泌片基因可以分別轉化不同的植株,將表達這些蛋白的植株進行有性雜交,在雜交後代中可以裝配成完整的IgA雙分子。以植物作為生物反應器進行抗體的表達已有許多成功的研究報道,與動物細胞相比更為經濟,具有廣泛的應用前景。 抗體酶是抗原決定簇處於轉換態結構的抗體。因為轉換態分子極不穩定無法制備抗體,所以催化性抗體的獲得主要是通過設計穩定的轉換態的類似物作為半抗原,與載體蛋白交聯後,免疫動物,獲得針對半抗原的抗體,從中篩選具有催化活性的抗體。篩選催化性單克隆抗體所用的ELISA與篩選一般抗體的方法不完全一樣,應根據催化反應的特點而進行適當的修改。經典的方法是先篩選出與底物或半抗原結合的抗體,然後從中再篩選出有催化活力的抗體,這種方法費時費力。利用催化性抗體對底物的催化活性,對底物進行適當修飾,使催化反應的產物可直接表現抗體的催化活性,這樣可以簡化檢測步驟。
轉換態類似物半抗原的設計,必須了解催化反應的轉換態模型的結構特點。催化抗體的抗原結合位點上與轉換態互補的某些催化基團的形成,能穩定轉換態分子。此外有人把單克隆抗體分子用化學修飾方法引入一些活性基團,提高催化性抗體的催化與親和效率。應用噬菌體抗體文庫也可以篩選催化性抗體,可省去制備轉換態類似物的復雜過程,直接用底物從文庫中篩選有催化活性的抗體片段。如用半抗原免疫後制備的文庫或文庫經過多次混雜重組,則可以得到更高的親和力的催化性抗體。抗獨特型抗體也用於催化性抗體的制備,用酶作為抗原免疫小鼠獲得能夠封閉酶活性位點的單克隆抗體,將這個抗體用蛋白酶除去Fc片段,用Fab免疫其他品系的小鼠或家兔,得到的抗體具有相應的酶催化活性。
從理論上看,B細胞具有全套免疫球蛋白的多樣性的胚系基因,當然也包括有催化作用的自身抗體在內。然而1989年Paul W.首次報道了人體的一種能催化蛋白質水解的免疫球蛋白。它是—種自身抗體,能水解血管活性腸肽(vasoactive intenstinal peptide,VIP)的Glnl6—Met17鍵。用VIP作為抗原能得到有催化作用的單克隆抗體,也能催化Glnl6—Met17鍵。大約有17%的人有這種自身抗體酶,但患有氣喘的病人中該抗體與VIP的親和力比健康人高50倍。由於VIP是一種氣管鬆弛劑,因此有人認為這種VIP自身抗體的長期作用可能與氣喘的過敏應答有一定關系。由此推測除了人工設計催化抗體以及發現的自身催化抗體外,用篩選單抗的方法,也有可能找到所需要的催化抗體。
⑧ 如何將抗體的Fab片段進行酶切及純化
[求助]如何將抗體的Fab片段進行酶切及純化
各位老師:
我現在准備將一株鼠源性單克專隆抗屬體進行酶切制備Fab片段並將其進行純化。我是一個新手,前幾天作過兩次試驗,一次用木瓜蛋白酶進行酶切,一次用無花果蛋白酶進行酶切,結果都不好,現在很著急,請那位有經驗的老師幫助我一下,將您的經驗和試驗過程教一教我,不勝感激。
可以看看免疫方面的書,《簡明免疫學技術》科學出版社140頁,切後純化可以用疏水,離子交換。
⑨ 吸附薄層層析與分配,離子交換薄層層分析的區別
離子交換層析(Ion Exchange Chromatography簡稱為IEC)是以離子交換劑為固定相,依據流動相中的組分離子與交換劑上的平衡離子進行可逆交換時的結合力大小的差別而進行分離的一種層析方法。1848年,Thompson等人在研究土壤鹼性物質交換過程中發現離子交換現象。本世紀40年代,出現了具有穩定交換特性的聚苯乙烯離子交換樹脂。50年代,離子交換層析進入生物化學領域,應用於氨基酸的分析。目前離子交換層析仍是生物化學領域中常用的一種層析方法,廣泛的應用於各種生化物質如氨基酸、蛋白、糖類、核苷酸等的分離純化。常用的離子交換劑有:離子交換纖維素、離子交換葡聚糖和離子交換樹脂 。
離子交換層析中,基質是由帶有電荷的樹脂或纖維素組成。帶有正電荷的稱之陰離子交換樹脂;而帶有負電荷的稱之陽離子樹脂。離子交換層析同樣可以用於蛋白質的分離純化。由於蛋白質也有等電點,當蛋白質處於不同的pH條件下,其帶電狀況也不同。陰離子交換基質結合帶有負電荷的蛋白質,所以這類蛋白質被留在柱子上,然後通過提高洗脫液中的鹽濃度等措施,將
吸附在柱子上的蛋白質洗脫下來。結合較弱的蛋白質首先被洗脫下來。反之陽離子交換基質結合帶有正電荷的蛋白質,結合的蛋白可以通過逐步增加洗脫液中的鹽濃度或是提高洗脫液的pH值洗脫下來。
⒈離子交換劑預處理和裝柱對於離子交換纖維素要用流水洗去少量碎的不易沉澱的顆粒,以保證有較好的均勻度,對於已溶脹好的產品則不必經這一步驟。溶脹的交換劑使用前要用稀酸或稀鹼處理,使之成為帶H+或OH-的交換劑型。陰離子交換劑常用「鹼-酸-鹼」處理,使最終轉為-OH-型或鹽型交換劑;對於陽離子交換劑則用「酸-鹼-酸」處理,使最終轉為-H-型交換劑。洗滌好的纖維素使用前必須平衡至所需的pH和離子強度。已平衡的交換劑在裝柱前還要減壓除氣泡。為了避免顆粒大小不等的交換劑在自然沉降時分層,要適當加壓裝柱,同時使柱床壓緊,減少死體積,有利於解析度的提高。柱子裝好後再用起始緩沖液淋洗,直至達到充分平衡方可使用。
⒉加樣與洗脫加樣:層析所用的樣品應與起始緩沖液有相同的pH和離子強度,所選定的pH值應落在交換劑與被結合物有相反電荷的范圍,同時要注意離子強度應低,可用透析、凝膠過濾或稀釋法達此目的。樣品中的不溶物應在透析後或凝膠過濾前,以離心法除去。為了達到滿意的分離效果,上樣量要適當,不要超過柱的負荷能力。柱的負荷能力可用交換容量來推算,通常上樣量為交換劑交換總量的1%-5%。
洗脫:已結合樣品的離子交換前,可通過改變溶液的pH或改變離子強度的方法將結合物洗脫,也可同時改變pH與離子強度。為了使復雜的組份分離完全,往往需要逐步改變pH或離子強度,其中最簡單的方法是階段洗脫法,即分次將不同pH與離子強度的溶液加入,使不同成分逐步洗脫。由於這種洗脫pH與離子強度的變化大,使許多洗脫體積相近的成分同時洗脫,純度較差,不適宜精細的分離。最好的洗脫方法是連續梯度洗脫,洗脫裝置見圖16-6.兩個容器放於同一水平上,第一個容器盛有一定pH的緩沖液,第二個容器含有高鹽濃度或不同pH的緩沖液,兩容器連通,第一個容器與柱相連,當溶液由第一容器流入柱時,第二容器中的溶液就會自動來補充,經攪拌與第一容器的溶液相混合,這樣流入柱中的緩沖液的洗脫能力即成梯度變化。第一容器中任何時間的濃度都可用下式進行計算:
C=C2-(C2-C1)(1-V)A2/A1
式中A1、A2分別代表兩容器的截面積:C1、C2分別表示容器中溶液的濃度;V為流出體積對總體積之比。當A1=A2時為線性梯度,當A1>A2時為凹形梯度,A1>A2時為凸形梯度。
洗脫時應滿足以下要求:①洗脫液體積應足夠大,一般要幾十倍於床體積,從而使分離的各峰不致於太擁擠。②梯度的上限要足夠高,使緊密吸附的物質能被洗脫下來。③梯度不要上升太快,要恰好使移動的區帶在快到柱末端時達到解吸狀態。目的物的過早解吸,會引起區帶擴散;而目的物的過晚解吸會使峰形過寬。
⒊洗脫餾份的分析按一定體積(5-10ml/管)收集的洗脫液可逐管進行測定,得到層析圖譜。依實驗目的的不同,可採用適宜的檢測方法(生物活性測定、免疫學測定等)確定圖譜中目的物的位置,並回收目的物。
⒋離子交換劑的再生與保存離子交換劑可在柱上再生。如離子交換纖維素可用2mol/:NaCl淋洗柱,若有強吸附物則可用0.1mol/LNaOH洗柱;若有脂溶性物質則可用非離子型去污劑洗柱後再生,也可用乙醇洗滌,其順序為:0.5mol/LNaOH-水-乙醇-水-20%NaOH-水。保存離子交換劑時要加防腐劑。對陰離子交換劑宜用0.002%氯已定(洗必泰),陽離子交換劑可用乙基硫柳汞(0.005%)。有些產品建立用0.02%疊氮鈉。
⒌離子交換層析的應用離子交換層析技術已廣泛用於各學科領域。在生物化學及臨床生化檢驗中主要用於分離氨基酸、多肽及蛋白質,也可用於分離核酸、核苷酸及其它帶電荷的生物分子。
概念
層析是「色層分析」的簡稱。利用各組分物理性質的不同,將多組分混合物進行分離及測定的方法。有吸附層析、分配層析兩種。一般用於有機化合物、金屬離子、氨基酸等的分析。
層析(chromatography)利用物質在固定相與流動相之間不同的分配比例,達到分離目的的技術。層析對生物大分子如蛋白質和核酸等復雜的有機物的混合物的分離分析有極高的分辨力。
[編輯本段]語源學
chrome意為「色彩」,graphy源自希臘文,意為「寫」。色譜為層析的同義語,都是從英語chromatography譯來的。
層析(色譜) chromatograpby
在把微細分散的固體或是附著於固體表面的液體作為固定相,把液體(與上述液體不相混合的)或氣體作為移動相的系統中,使試料混合物中的各成分邊保持向兩相分布的平衡狀態邊移動,利用各成分對固定相親和力不同所引起的移動速度差,將它們彼此分離開的定性與定量分析方法,稱為層析,亦稱色譜法。根據移動相種類的不同,分為液體層析、氣體層析二種。用作固定相的有矽膠、活性炭、氧化鋁、離子交換樹脂、離子交換纖維等,或是在硅藻土和纖維素那樣的無活性的載體上附著適當的液體,也可使用其他物質。將作為固定相的微細粉末狀物質裝入細長形圓筒中進行的層析稱為柱層析(column chromatogra-phy),在玻璃板上塗上一層薄而均的物質作為固定相的稱為薄層層析(thin-layer chromatography),後者可與用濾紙作為固定相的紙上層析進行同樣的分析,即在固定相的一端,點上微量試料,在密閉容器中,使移動相(液體)從此端滲入,移動接近另一端。通過這種展開操作,各成分呈斑點狀移動到各自的位置上,再根據Rf值的測定進行鑒定。當斑點不易為肉眼觀察時,可利用適當的顯色劑,或通過紫外燈下產生熒光的方法進行觀察。也可採用在第一種移動相展開後再用另一移動相進行展開(這時的展開方向應與原方向垂直),使各成分分離完全的雙相層析(two-dimensional chromatography)。分離後,將斑點位置的固定相切取下來,把其中含有來自試料的物質提取進行定量分析。但為制備與定量,柱層析則更為適宜。在柱層析中,移動相從加入試料的一端展開到達另一端後,繼續展開使各成分和移動相一起向柱外分別溶出,這就是廣泛使用的所謂洗提層析(elution chromatography)。層析根據固定相與溶質(試料)間親和力的差異分為吸附型、分配型、離子交換型(離子交換層析)等三種類型。但這並不是很嚴格的,有時常見到其中間類型。此外,近來也應用親和層析,即將與基質類似的化合物(通常為共價鍵)結合到固定相上,再利用其特異的親和性沉澱與其對應的特定的酶或蛋白質。
[編輯本段]類別
◆按層析的機理劃分:
吸附層析、分配層析、離子交換層析、凝膠過濾層析、親和層析等。
吸附層析:利用吸附劑表面對不同組分吸附性能的差異,達到分離鑒定的目的。
分配層析:利用不同組分在流動相和固定相之間的分配系數不同,使之分離。
離子交換層析:利用不同組分對離子交換劑親和力的不同。
凝膠層析:利用某些凝膠對於不同分子大小的組分阻滯作用的不同。
◆按流動相與固定相的不同劃分:
氣相層析、液相層析。這兩大類層析是以流動相不同來劃分的。如同時區分流動相和固定相,劃分為:氣固層析、氣液層析、液固層析和液液層析等。
◆按操作形式劃分:
柱層析、紙層析、薄層層析、高效液相層析等。
柱層析:將固定相裝於柱內,使樣品沿一個方向移動而達到分離。
紙層析:用濾紙做液體的載體,點樣後,用流動相展開,以達到分離鑒定的目的。
薄層層析:將適當粒度的吸附劑鋪成薄層,以紙層析類似的方法進行物質的分離和鑒定。
以上劃分無嚴格界限,有些名稱相互交叉,如親和層析應屬於一種特殊的吸附層析,紙層析是一種分配層析,柱層析可做各種層析。
[編輯本段]基本原理
層析須在兩相系統間進行。一相是固定相,需支持物,是固體或液體。另一相為流動相,是液體或氣體。當流動相流經固定相時,被分離物質在兩相間的分配,由平衡狀態到失去平衡到又恢復平衡,即不斷經歷吸附和解吸的過程。隨著流動相不斷向前流動,被分離物質間出現向前移動的速率差異,由開始的單一區帶逐漸分離出許多區帶,這個過程叫展層。
系數K是物質在兩相中的濃度比。K值大,則在固定相中吸附牢,K值小吸附差。各物質間的K值差別大,則易被分離。不同類型層析的K值含義不同,可視為吸附平衡常數,分配常數或離子交換常數等。
研究層析現象而發展的塔板理論,與有機化學實驗中的分餾法原理有些相似。被分餾的有機溶劑在分餾柱內的填充物上形成許多熱交換層,從而把低沸點溶劑先分餾出來,達到純化的目的。在層析時用理論塔板數n來衡量層析效能。
tR為物質在層析柱上的保留時間,W為洗脫下來的物質峰形的寬度。n值愈大表示層析柱的效能愈高。如用理論塔板高度H表示,則包含了層析柱長度的因子。
式中L為層析柱的柱長。H值越大,則柱效越低。
此外影響層析分離效果的還有渦流擴散、縱向擴散和傳質阻抗等因素。因此選擇層析固定相支持物的粒度、均勻度等物理性能,流動相的層析系統和溫度等都是做好層析的關鍵。
[編輯本段]幾種常用的層析
◆吸附層析
吸附劑的吸附力強弱,是由能否有效地接受或供給電子,或提供和接受活潑氫來決定。被吸附物的化學結構如與吸附劑有相似的電子特性,吸附就更牢固。常用吸附劑的吸附力的強弱順序為:活性炭、氧化鋁、硅膠、氧化鎂、碳酸鈣、磷酸鈣、石膏、纖維素、澱粉和糖等。以活性炭的吸附力最強。吸附劑在使用前須先用加熱脫水等方法活化。大多數吸附劑遇水即鈍化,因此吸附層析大多用於能溶於有機溶劑的有機化合物的分離,較少用於無機化合物。洗脫溶劑的解析能力的強弱順序是:醋酸、水、甲醇、乙醇、丙酮、乙酸乙酯、醚、氯仿、苯、四氯化碳和己烷等。為了能得到較好的分離效果,常用兩種或數種不同強度的溶劑按一定比例混合,得到合適洗脫能力的溶劑系統,以獲得最佳分離效果。
◆分配層析
在支持物上形成部分互溶的兩相系統。一般是水相和有機溶劑相。常用支持物是硅膠、纖維素和澱粉等,這些親水物質能儲留相當量的水。被分離物質在兩相中都能溶解,但分配比率不同,展層時就會形成以不同速度向前移動的區帶。
◆離子交換層析
支持物是人工交聯的帶有能解離基團的有機高分子,如離子交換樹脂、離子交換纖維素、離子交換凝膠等。帶陽離子基團的,如磺酸基(—SO3H)、羧甲基(—CH2COOH)和磷酸基等為陽離子交換劑。帶陰離子基團的,如DEAE—(二乙基胺乙基)和QAE—(四級胺乙基)等為陰離子交換劑。離子交換層析只適用於能在水中解離的化合物,包括有機物和無機物。對於蛋白質、核酸、氨基酸及核苷酸的分離分析有極好的分辨力。離子交換基團在水溶液中解離後,能吸引水中被分離物的離子,各種物質在離子交換劑上的離子濃度與周圍溶液的離子濃度保持平衡狀態,各種離子有不同的交換常數,K值愈高,被吸附愈牢。洗脫時,增加溶液的離子強度,如改變pH,增加鹽濃度,離子被取代而解吸下來。洗脫過程中,按K值不同,分成不同的區帶。
◆凝膠過濾層析
支持物是人工合成的交聯高聚物,在水中膨脹後成為凝膠。凝膠內為內水層,凝膠周圍的水為外水層。控制交聯度以形成不同孔徑的網狀結構。交聯度小的孔徑大,交聯度大的孔徑小。凝膠只允許被分離物質中小於孔徑的分子進入,大於孔徑的分子被排斥在外水層,最先被洗脫下來。而進入孔徑的分子也按分子量大小大致分離成不同的區帶。選擇不同規格的凝膠,可把一個混合物按分子量的差異分成不同的組分。這種方法曾被稱為分子篩。目前常用的凝膠商品有:葡聚糖凝膠(sephadex)、聚丙烯醯胺凝膠(bio-gel)、瓊脂糖凝膠(sepharose)和聚苯乙烯凝膠(styragel)等。
◆親和層析
在一對有專一的相互作用的物質中,把其中之一聯結在支持物上,用於純化相對的另一物質。常見的親和對如:酶和抑制劑,抗原和抗體,激素和受體等。支持物為瓊脂糖或纖維素等。
◆氣相層析
屬於分配層析或吸附層析,僅適用於分析分離揮發性和低揮發性物質。固定相是在惰性支持物(如磨細的耐火磚)上覆蓋一層高沸點液體,如硅油、高沸點石蠟和油脂、環氧類聚合物。外塗層約為支持物重量的20%。分析時操作溫度范圍,一般從室溫到200℃。特殊的層析柱能達到500℃。流動相常用氦、氬或氮為展層氣體。氣相層析分離的區帶十分清晰,是由於揮發性物質在兩相間能很快達到平衡,所需分析時間大為縮短,一般為數分鍾至10餘分鍾。檢測記錄系統繪出的各峰是測定流出氣體電阻變化的結果,因而測定樣品量可到微克和毫微克水平。具有快速、靈敏和微量的優點。氣相層析也能用於分離制備樣品,但需增加將流出氣體通過冷凍將分離物回收的裝置。
◆紙層析
以濾紙為支持物的分配層析。組成濾紙的纖維素是親水物質,能形成水相和展層溶劑的兩相系統,被分離物質在兩相中的分配保持平衡關系。紙層析用於分析簡單的混合物時可做單向層析。對於復雜的混合物,可做雙向層析。1944年A.J.P.馬丁第一次用紙層析分析氨基酸,得到很好的分離效果,開創了近代層析的發展和應用的新局面。70年代以後,紙層析已逐漸為其他分辨力更高、速度更快和更微量化的新方法,如離子交換層析、薄層層析、高效液相層析等所代替。
◆薄層層析
在玻璃片、金屬箔或塑料片上鋪上一層約1~2毫米的支持物,如纖維素、硅膠、離子交換劑、氧化鋁或聚醯胺等,根據需要做不同類型的層析。聚醯胺薄膜是一種特異的薄層,將尼龍溶解於濃甲酸中,塗在滌綸片基上,當甲酸揮發後,在滌綸片基上形成一層多孔的薄膜,其分辨力超過了用尼龍粉鋪成的薄層。薄層層析較紙層析優越在於分辨高,展層時間短。例如用紙層析做氨基酸分析,往往需要兩天時間,而且對層析條件要求嚴格,不易得到滿意的分離效果。如用薄層層析做,一般約需半小時,分離效果更好。薄層層析一般用於定性分析。也能用於定量分析和制備樣品。
◆高效液相層析(又名高壓液相色譜)
70年代新發展的層析法。其特點是:用高壓輸液泵,壓強最高可達5000psi(相當於34個標准大氣壓)。用直徑約3~10微米的超細支持物裝填均勻的不銹鋼柱。常用的支持物是在玻璃小珠上塗一層1~2微米的二氧化硅,經硫醯氯反應生成Si—Cl,進一步連接疏水的烷基,如Si—C18H37,或陽離子交換基團—Si(CH2)n—C6H4SO3H,或陰離子交換基團—Si(CH2)nNH2。這種支持物能承受很高的壓力,化學性能穩定。用不同類型支持物的HPLC,可做吸附層析、離子交換層析和凝膠過濾層析。其分析微量化可達10-10克水平。但用於制備,可以純化上克的樣品。展層時間短,一般需幾分鍾到10餘分鍾。其分析速度、精確度可與氣相層析媲美。HPLC適於分析分離不揮發和極性物質。而氣相層析只適用於揮發性物質,兩者互為補充,都是目前最為理想的層析法。HPLC配有程序控制洗脫溶劑的梯度混合儀,數據處理的積分儀和記錄儀等電子系統,成為一種先進的分析儀器,在生物化學、化學、醫葯學和環境科學的研究中發揮了重要作用。
◆反相層析
在吸附層析中,高極性物質在層析柱上吸附較牢,洗脫時發生拖尾現象和保留時間長的問題。如果在支持物上塗上一層高碳原子的疏水性強的烷烴類,洗脫液用極性強的溶劑,如甲醇和水的混合物。則被分離樣品中的極性強的物質不被吸附,最先洗下來,得到較好的分離效果。這種層析法與普通的吸附層析法相反,故稱為反相層析。目前用HPLC做反相層析常用的ODS柱,即在支持物的表面上連接了C18H37Si—基團。
◆同系層析
在核酸分析中,將樣品經核酸酶部分裂解成不同長度的核苷酸片段,用同位素標記後,在DEAE纖維素薄層上分離,用含有未標記的相同的核苷酸片段作展層溶劑,這樣,未標記的核苷酸把標記過的核苷酸推進,使按分子量大小不同把標記核苷酸片段,按由小到大的次序排列,達到分離的目的。於是把這種層析法稱為同系層析。同系層析和電泳相結合曾用於寡核苷酸的順序分析。
紙層析是層析法的一種,要了解紙層法還得從層析法開始.層析法又稱色層分析法或色譜法(Chromatography),是一種基於被分離物質的物理、化學及生物學特性的不同,使它們在某種基質中移動速度不同而進行分離和分析的方法。例如:我們利用物質在溶解度、吸附能力、立體化學特性及分子的大小、帶電情況及離子交換、親和力的大小及特異的生物學反應等方面的差異,使其在流動相與固定相之間的分配系數(或稱分配常數)不同,達到彼此分離的目的。
層析法的最大特點是分離效率高,它能分離各種性質極相類似的物質。而且它既可以用於少量物質的分析鑒定,又可用於大量物質的分離純化制備。因此,作為一種重要的分析分離手段與方法,它廣泛地應用於科學研究與工業生產上。現在,它在石油、化工、醫葯衛生、生物科學、環境科學、農業科學等領域都發揮著十分重要的作用。
層析根據固定相基質的形式分類,層析可以分為紙層析、薄層層析和柱層析。其中紙層析是指以濾紙作為基質的層析。
⑩ 從腹水中純化的抗體不溶解怎麼辦
分別採用辛酸硫酸銨法(CAAS)、硫酸銨沉澱法(AS)和DEAE離子交換層析法對小鼠IgG腹水進行了純化效果的比較.結果表明: CAAS法提取IgG的純度為67-5﹪,高於AS法(43-2﹪),低於DEAE法(100﹪);CAAS法提取IgG的回收率為51-2﹪,遠高於DEAE(8-9﹪),略低於AS法(63-8﹪).將不同純化方法獲得的IgG定容至相同濃度.ELISA試驗結果表明EAE法的OD值明顯降低,表明DEAE純化方法降低了IgG的免疫學活性.說明CAAS法是一種操作簡單、成本低、純化效果和回收效果較佳的提取小鼠腹水IgG的首選方法.
陰離子交換層析法純化gp130單克隆抗體B-S12