大孔吸附劑和大孔離子交換劑區別
Ⅰ 離子交換樹脂 大孔吸附樹脂 是同一個概念么 具體是有什麼區別
離子抄交換樹脂是水處理用到的所有種類,大孔吸附樹脂,就是陽離子交換樹脂。陽樹脂是起吸附作用的,沒看到用陽柱,陰柱的時候水先通過陽柱吸附在到陰柱啊!陽樹脂也分很多種,你說的陽樹脂型號是D113外觀為乳白色或淡黃色。批發離子交換樹脂(名字電話),我對這個可是專業!
Ⅱ 求助MCI 和大孔吸附樹脂的區別
離子交換樹脂主要是根據官能團上的功能基團(如H+,OH-離子)與料液中的陰陽離子發生置內換反應,從而達到凈化或純容化分離的目的;大孔吸附劑主要是根據比表面積的吸附和孔容孔徑的攔截完成吸附、分離和純化的目的,當然部分大孔吸附劑同時具備離
Ⅲ 吸附樹脂和離子交換樹脂有區別嗎,是一樣的嗎
吸附樹脂和離子交換樹脂有區別嗎,是一樣的嗎?
離子交換樹脂出三部分組成:一是網狀結構的高分子骨架.二是連接在骨架上的功能基團,三是和功能基帶相反電荷的可交換離子。三者互為依存、統一於每粒離子交換的珠體之中。離於交換樹脂作為商品,它在運輸、貯藏和使用時往往部含一定量的水份,因此水分子充滿於每粒離子交換樹脂的骨架、功能基和反離子之間。
採用常規的懸浮聚合方法,可製得凝膠型的離子交換樹脂,產品一般是透明的、無孔的,樹脂吸水後樹脂相內產生微孔。採用制孔技術可製得大孔型離子交換樹脂,它不同於凝膠樹脂,不論大孔樹脂是處於干態或濕態、收縮或溶脹,都存在著比凝膠型樹脂更多、更大的孔道,比表面也就更大,有利於離子的遷移擴散,提高交換速率和工作效率
與離子交換樹脂相比較,吸附樹脂的組成中不存在功能基及功能基的反離子,它類似於不含功能基及功能基反離子的大孔樹脂,在製造時往往投入更多的交聯劑和更嚴格地選用致孔劑,以合成具有更大比表而積的不同孔徑、不同孔容和不同比表面積的吸附樹脂。
根據所帶的功能基的特性,離子交換樹脂可分為陽離子交換樹脂、陰離子交換樹脂和其它樹脂。帶有酸性功能基、並能與陽離子進行交換的稱為陽離子交換樹脂,帶有鹼性功能基並能與陰離子進行交換的稱為陰離子交換樹脂。基於功能基上酸、鹼有強弱之分,離子交換樹脂又可細分為強酸性(一SO,H)、中強酸(一PO(OH))及弱酸性(—COOH)、強鹼(一N+R,Cl)、弱鹼性(一NH,,—NRH,-NR)離子交換樹脂。在強鹼性離子交換樹脂中將含有[(N+(CH2)C1)]的樹脂叫強鹼I型樹脂,含有[(N+(CH3)2(CH,CH,0HD]的樹脂叫強鹼Ⅱ型樹脂。帶有鰲合基、氧化還原基、陽陰兩性基的樹脂;分別稱為鰲合樹脂、氧化還原樹脂和兩性樹脂。上述樹脂通常都用酸、鹼、鹽再生,而弱酸弱鹼的兩性樹脂可用熱水再生,故弱酸弱鹼的兩性樹脂又稱熱再生樹脂.
吸附樹脂可以大體上分為非極性吸附劑、中極性和強極性吸附劑三大類。非極性吸附樹脂是偶極矩很小的單體聚合製得並不帶任何功能基的吸附樹脂。苯乙烯——二乙烯苯體系的吸附劑是非極性吸附樹脂的代表。這類非極性吸附樹脂的孔表面的疏水性很強,最適於從極性溶劑(如水)中吸附非極性的有機物。中極性吸附材脂是含酯基的吸附樹脂。例如,丙烯酸甲酯或甲基丙烯酸甲酯與雙甲基丙烯酸乙二醇酯等交聯劑共聚的吸附劑,其孔表面疏水和親水部分共有,既可用於極性溶劑中吸附非極性物質,也可用於非極性溶劑中吸附極性物質。強極性(或稱極性)吸附樹脂是指含醯氨基、氰基、酚羥基等極性功能基的吸附樹脂,它適用於非極性溶劑中吸附極性物質。有時,將含氮、氧、硫等配體的離子交換樹脂也稱為強極性吸附樹脂,因此,離子交換樹脂和強極性吸附樹脂之間沒有嚴格的界限。
Ⅳ 大孔陽離子交換樹脂和凝膠陽離子交換樹脂的區別
大孔型復樹脂是制什麼?
大孔型離子交換樹脂是一種大孔結構且帶有官能團的網狀結構的聚合物,孔徑不會隨著環境、溫度的變化而變化,孔徑一般在10nm左右,外觀一般為不透明乳白色。
凝膠型樹脂是什麼?
凝膠型離子交換樹脂是離子交換樹脂的一種,是由純單體混合物經縮合或聚合而成的,外觀一般為透明的球型顆粒,凝膠樹脂的結構為微孔狀,凝膠型離子交換樹脂可以分為強酸性、弱酸性、強鹼性、弱鹼性及螯合性五種。
大孔型樹脂和凝膠型樹脂有什麼區別?
大孔型離子交換樹脂是針對凝膠型離子交換樹脂的缺點而研製的,大孔型離子交換樹脂和凝膠型離子交換樹脂的主要區別就是它們的孔徑不一樣,凝膠型離子交換樹脂的孔徑一般在3nm以下,在乾的凝膠型離子交換樹脂中,這些孔徑就會消失,而大孔型離子交換樹脂的孔徑一般在10nm左右,這些孔徑的大小不會因為環境的變化而改變。
凝膠型離子交換樹脂在干態和非水系統中不能使用,而且在使用的過程中可能會發生「中毒」的現象,從而失去離子交換的能力,而大孔型離子交換樹脂能夠在在干態和非水系統中使用,而且不會發生「中毒」的現象,但是大孔型離子交換樹脂具有交換容量較低,再生時酸鹼用量大及價格較高等缺點。
Ⅳ 凝膠型離子交換樹脂和大孔型離子交換樹脂的不同之處
大孔型樹脂是什麼?
大孔型離子交換樹脂是一種大孔結構且帶有官能團的網狀專結構的聚合物,孔屬徑不會隨著環境、溫度的變化而變化,孔徑一般在10nm左右,外觀一般為不透明乳白色。
凝膠型樹脂是什麼?
凝膠型離子交換樹脂是離子交換樹脂的一種,是由純單體混合物經縮合或聚合而成的,外觀一般為透明的球型顆粒,凝膠樹脂的結構為微孔狀,凝膠型離子交換樹脂可以分為強酸性、弱酸性、強鹼性、弱鹼性及螯合性五種。
大孔型樹脂和凝膠型樹脂有什麼區別?
大孔型離子交換樹脂是針對凝膠型離子交換樹脂的缺點而研製的,大孔型離子交換樹脂和凝膠型離子交換樹脂的主要區別就是它們的孔徑不一樣,凝膠型離子交換樹脂的孔徑一般在3nm以下,在乾的凝膠型離子交換樹脂中,這些孔徑就會消失,而大孔型離子交換樹脂的孔徑一般在10nm左右,這些孔徑的大小不會因為環境的變化而改變。
凝膠型離子交換樹脂在干態和非水系統中不能使用,而且在使用的過程中可能會發生「中毒」的現象,從而失去離子交換的能力,而大孔型離子交換樹脂能夠在在干態和非水系統中使用,而且不會發生「中毒」的現象,但是大孔型離子交換樹脂具有交換容量較低,再生時酸鹼用量大及價格較高等缺點。
Ⅵ 怎麼區分離子大孔吸附樹脂和直接說的大孔吸附樹脂呀 急急急急
肉眼無法區分!離子樹脂主要用途:離子交換;大孔吸附樹脂(非離子)主要用於:吸附分離有機分子!
Ⅶ 打孔吸附樹脂和陰陽離子交換樹脂有什麼區別
rightleder .萊特·萊德·離子交換樹脂的種類很多,常用的是聚苯乙烯型離子交換樹脂。它是以苯乙烯和二乙烯苯聚合而成球形網狀結構,其中二乙烯苯是交聯劑。經濃硫酸磺化後,即製得聚苯乙烯型磺酸基陽離子交換樹脂。如果用其它基團代替磺酸基,就可以得到一系列陽離子交換樹脂。例如—COOH、—OH等。這些基團上的氫離子可被樣品溶液中的陽離子交換。離子交換樹脂內含有一定量的水份,在運輸及貯存過程中應盡量保持這部分水。如貯存過程中樹脂脫了水,應先用濃食鹽水(-10%)浸泡,再逐漸稀釋,不得直接放於水中,以免樹脂急劇膨脹而破碎。
在長期貯存中,強型樹脂應轉變成鹽型,弱型樹脂可轉變成相應的氫型或游離鹼型也可轉為鹽型,然後浸泡在潔凈的水中。樹脂在貯存或運輸過程中,應保持在5-40°C的溫度環境中,避免過冷或過熱,影響質量。若冬季沒有保溫設備時,可將樹脂貯存在食鹽水中,食鹽水的溫度可根據氣溫而定。
大孔吸附樹脂是一類不含交換基團且有大孔結構的高分子吸附樹脂,具有良好的大孔網狀結構和較大的比表面積,可以有選擇地通過物理吸附水溶液中的有機物,是20世紀60年代發展起來的新型有機高聚物吸附劑,已在環保、食品、醫葯等領域得到了廣泛的應用。
Ⅷ 大孔樹脂在水處理中是離子交換,還是吸附作用
本身具有吸附作用,通過溶劑和溶液選擇,起到離子交換作用。
大孔吸附樹脂是通內過物理容吸附從溶液中有選擇地吸附有機物質,從而達到分離提純的目的。其理化性質穩定,不溶於酸、鹼及有機溶劑,對有機物選擇性好,不受無機鹽類及強離子、低分子化合物存在的影響,在水和有機溶劑中可吸附溶劑而膨脹。可仔細看看它的介紹:
http://ke..com/view/1063837.htm
Ⅸ 大孔型離子交換與普通離子交換樹脂有何區別
大孔樹脂更具有吸附的效果。北京華豫清源國際貿易有限公司,杜笙離子交換樹脂
Ⅹ 大孔樹脂和聚醯胺樹脂有什麼區別
這是我自己總結的 希望對你有幫助
一 大孔樹脂
1.原理: 大孔吸附樹脂是以苯乙烯和丙酸酯為單體,加入乙烯苯為交聯劑,甲苯、二甲苯為致孔劑,它們相互交聯聚合形成了多孔骨架結構。
不同於以往使用的離子交換樹脂,大孔吸附樹脂為吸附性和篩選性原理相結合的分離材料。
吸附性是由於范德華力或產生氫鍵的結果。
篩選性是由於其本身多孔性結構所決定。
因此,有機化合物根據吸附力的不同及分子量的大小,在樹脂的吸附機理和篩分原理作用下實現分離。
2.類型
按其極性和所選用的單體分子結構分為:
(1)非極性大孔樹脂 苯乙烯、二乙烯苯聚合物,也稱芳香族吸附劑。(如HPD-100,D-101等)
(2)中等極性大孔樹脂 聚丙烯酸酯型聚合物,以多功能團的甲基丙烯酸酯作為交聯劑,也稱脂肪族吸附劑。
(3)極性大孔樹脂 含硫氧、醯胺基團,如丙烯醯胺。
(4)強極性大孔樹脂 含氮氧基團,如氧化氮類。
3 選擇
選擇樹脂要綜合各方面的因素(如:待分離化合物的分子大小、所含特有基團等)
適當孔徑下,應有較高的比表面積;具有適宜的極性;與被吸附物質有相似的功能基。
二 聚醯胺
1.原理:聚醯胺(polyamide,PA)是由醯胺聚合而成的一類高分子物質,又叫尼龍、錦綸
色譜中常用的聚醯胺有:尼龍-6(己內醯胺聚合而成)和尼龍-66(己二酸與己二胺聚合而成)。既親水又親脂,性能較好,水溶性物質和脂溶性物質均可分離。錦綸11,1010的親水性較差,不能使用含水量高的溶劑系統。原理暫時有2種:
①氫鍵吸附原理:酚、酸的羥基與聚醯胺中羰基形成氫鍵;
芳香硝基、醌類化合物的硝基或羥基(醌)與聚醯胺中游離氨基形成氫鍵;
脫吸附通過溶劑分子形成新氫鍵取代原有氫鍵而完成。
②雙重層析原理:
聚醯胺既有非極性的脂肪鍵,又有極性的醯胺鍵。
當用含水極性溶劑作流動相時,聚醯胺作為非極性固定相,其色譜行為類似反相分配色譜,所以苷比苷元容易洗脫。
當用非極性氯仿-甲醇作為流動相時,聚醯胺則作為極性固定相,其色譜行為類似正相分配色譜,所以苷元比其苷容易洗脫。
2.適用:
聚醯胺層析可用於黃酮、酚類、有機酸、生物鹼、萜類、甾體、苷類、糖類、氨基酸衍生物、核苷類等的化合物的分離,尤其是對黃酮類、酚類、醌類等物質的分離遠比其它方法優越。
特點:對黃酮等物質的層析是可逆的;分離效果好,可分離極性相近的類似物,其柱層析的樣品容量大,適用於制備分離。