納濾無法截流的cod
A. 納濾膜濃縮一倍cod會有什麼變化
納濾膜主要體現在除硬度 降COD上
B. 陶氏納濾系統進水COD1600,產水COD200,進水電導率30000,產水電導率29000,
1.將整機全部拆開,抄准備好使用相 應的螺絲刀。 2.拆除屏幕時,輕輕將屏幕連接主板的小晶元與主板分離。 3.拆除金屬屏蔽隔 離層前一定將入網證和入網證下的卡槽貼紙撕掉。 4.拿吹風機干吹,不能對著 屏幕長時間地吹,這樣的 高溫會破壞屏幕5.將主板正反兩面吹一 吹,確保沒有 水分殘留,聽筒處要盡量將水分 吹出。 6.將拆散了的手機,放在一個干噪的地方,最好大約放置兩天左右,再裝好。
有。焦化廢水在生化二沉池後有機物分子量並不大,所以超濾膜在焦化廢水處理中對COD的去除主要體現在了對膠體和微生物上面。
D. 納濾膜分離技術如何應用在廢水處理
納濾膜分離技術經抄常被應用到工業重金屬廢水處理中,應用納濾膜分離技術對重工業生產過程中產生的廢水進行處理:一方面可以實現對90%以上的廢水進行回收,使其鈍化;另一方面可以使肺水腫的金屬離子含量濃縮約10倍。將納濾膜應用在造紙廢水處理中,不僅可以實現對廢水中COD(約90%)的處理,而且其膜通量與傳統的聚碸超濾膜相比更高。
E. ge納濾膜可以處理cod濃度高的污水嗎
ge納濾膜可以處理cod濃度高的污水
為什麼在納濾系統中,納濾膜能夠耐受高濃度版COD?原因如下:
1、我們使用的權納濾工藝分離膜是三層膜結構,具有特殊的表面性質,表面光滑,電位低,不易形成吸附層,即便污染發生後也容易清洗再生。
2、納濾膜較為疏鬆,不能完全截流有機物,也不易在膜表面形成較高濃度的表面極化層。
3、納濾膜對硅酸鹽截留率非常低,對碳酸氫根等一價離子的截留率較低,對鋁、鐵等易形成沉澱的低濃度金屬離子的不能無安全截留,因此不易形成無機-有機復合污垢。
工藝分離RO/NF膜,特別是納濾膜,在多種高濃廢水處理達標排放或廢水回用處理中都獲得了成功,具有特殊材質和製作工藝的工業型膜元件的高濃度廢水應用中體現了耐污染性能及物流化學穩定性。高濃度廢水在系統設計、膜元件選型、運行/維護工藝等方面比較復雜,與常規的水處理應用差別較大,需要進行仔細的可行性論證和實驗研究。
F. 小弟是做垃圾滲濾液處理的,前一段時間購買了一批納濾膜,包裝什麼的都是新的。
納濾膜中有區分:凈水軟化用的、工藝物料用的。
前者對凈水進行軟化,負荷清,走清水回時通量較大,但耐答污染差;後者處理工藝物料、廢水用,要求抗污染性好,耐化學清洗好,相應地清水通量較小。前者便宜,後者貴。
如你所述,新膜清水通量大、壓力低,處理滲濾液則不如設備原配的膜。估計就是這個問題。
我本身賣納濾膜的,滲濾液納濾用的好是型號DK8040F30(工藝物料廢水用納濾),要是貪便宜的則會買凈水軟化的納濾。其實價格上差異並不是特別大,能用好的其實長期看更劃算。
G. 在納濾(膜分離)過程中,Rejection是什麼意思說的詳細一些謝!
Rejection是指截留率
面向飲用水制備過程的納濾膜分離技術
Application of nanofiltration membranes to drinking water proction
<<膜科學與技術 >>2003年04期
王大新 , 王曉琳
納濾膜分離技術在飲用水制備方面具有獨特的作用,是制備優質飲用水的有效方法.依據電荷效應,納濾膜可以降低水質硬度,去除飲用水中對人體有害的硝酸鹽、砷、氟化物和重金屬等無機污染物;依據篩分效應,納濾膜可以有效地去除農葯殘留物、三氯甲烷及其中間體、激素以及天然有機物等有機污染物.文章詳細綜述了國內外納濾膜技術在飲用水制備中應用研究的最新進展,納濾膜對地表水或地下水中存在的各種無機、有機污染物的分離特性及飲用水制備過程中的納濾膜污染與防治對策.
膜分離技術處理電鍍廢水的實驗研究
慧聰網 2005年9月20日10時17分 信息來源:夏俊方 網友評論 0 條 進入論壇
由圖9可知,當壓力(ΔP)小於3.0 MPa時,Cu離子截留率(R1)隨著壓力(ΔP)的增加而上升;當壓力(ΔP)大於3.0 MPa時,Cu離子截留率(R1)隨著壓力(ΔP)增加而呈下降趨勢。這一現象的原因和納濾過程相似。當壓力(ΔP)小於3.0 MPa時,Cu離子截留率(R1)的正向變化趨勢可和納濾過程作同樣的解釋。當壓力(ΔP)大於3.0 MPa時,Cu離子截留率(R1)的反向變化趨勢。這可能是由於壓力已經達到反滲透膜最佳運行壓力范圍的上限。此時,膜攔截溶質的能力已大為減弱,溶質開始大量透過膜片,導致其截留率呈下降趨勢。
由圖10可知,COD截留率(R2)隨著壓力(ΔP)的增加而上升。和Cu離子的上升變化趨勢的原因一樣,非平衡熱力學模型的Spiegler-Kedem方程能很好的解釋這一現象。
有一個問題:Cu離子的截留率(R1)和COD的截留率(R2)變化曲線不同,COD曲線沒有下降趨勢。這可能是由於反滲透膜對COD分子和Cu離子的截留能力有所差異。當運行壓力(ΔP)大於3.0 MPa時,膜對Cu離子的截留能力已經下降了很多,而對COD分子的截留能力下降不大。但可以發現,COD曲線隨著壓力的增加,已逐漸趨於平緩,這說明膜對COD的截留能力也在下降。
壓力實驗表明:SE抗污染反滲透膜的最佳運行壓力為3.0 MPa。
3.2.2濃縮倍數(n)對反滲透膜分離性能的影響
反滲透實驗採用3.0 MPa的壓力運行。反滲透濃縮實驗料液為納濾過程濃縮10倍的濃縮液,體積50L。
反滲透濃縮試驗採用濃水迴流方式,即濃水迴流入料液桶。濃縮倍數是按照料液桶內剩餘料液的體積與原始料液的體積比來確定。例如,料液桶內還剩下1/10料液時,即為濃縮10倍,取樣測試。
濃縮倍數對反滲透膜分離性能的影響曲線如圖11、12、13所示。
由圖11可知,膜通量(Jw)隨著料液濃度(C)增加而降低。這一現象和納濾過程一樣,也可以根據優先吸附——毛細孔流模型來解釋。
由圖12可知,在濃縮兩倍之前,Cu離子截留率(R1)隨濃縮倍數(n)增大而上升,之後則開始呈下降趨勢。這一現象可根據細孔理論來解釋。細孔理論的依據有兩點:其一是膜截留溶質分子主要考慮篩分作用的機理;其二是視溶質分子為剛性球。反滲透過程截留溶質(中性分子和電解質)主要是依靠篩分機理,因此可以用細孔理論來解釋。細孔理論表明:膜對溶質溶液的截留率在一定濃度范圍內隨溶液濃度的變化不大,可視為不變。在本實驗中,濃縮兩倍的濃度可能還未超出細孔理論所限定的范圍,溶質濃度雖然增加,但還不能大量通過膜片,因此溶質的透過量變化不是很大。而同時,膜通量(Jw)在下降,但下降趨勢不是很大。綜合溶質透過量和膜通量兩方面的因素,Cu離子的截留率呈略微上升的趨勢。濃縮2倍以後,該濃度值可能已經超過細孔理論所限定的范圍,溶質濃度的進一步增加導致其透過膜片的量開始逐步增加,因而Cu的截留率(R1)會呈下降趨勢。
由圖13可知,在濃縮6倍之前,COD離子截留率(R2)隨濃縮倍數(n)增大而上升,之後則開始呈下降趨勢。這一現象的原因和Cu離子截留率變化的原因一樣。反滲透膜截留COD分子和Cu離子所依據的都是篩分原理,導致COD截留率在濃縮6倍時出現下降趨勢,可能是6倍濃度是超過細孔理論所限定范圍的臨界點。
表2 反滲透濃縮分離實驗數據表
項目濃度濃縮倍數 滲透液(mg/L) 濃縮液(mg/L) 截留率 膜通量(L/min)
Cu離子 COD Cu離子 COD Cu離子 COD
初 始 4.07 343 1478 2430 99.72% 85.88% 0.393
2 倍 6.06 552 2950 4375 99.79% 87.38% 0.346
4 倍 17.17 923 5889 8010 99.71% 88.48% 0.224
6 倍 47.78 1200 9183 11920 99.48% 90.16% 0.133
8 倍 121.49 4160 12216 15000 99.01% 72.27% 0.036
10 倍 220.45 5510 14325 17020 98.46% 67.63% 0.021
6.反滲透濃縮的實驗結果
反滲透濃縮實驗的目的是希望能夠盡可能的濃縮料液,本次實驗是在納濾濃縮的基礎上將料液再濃縮10倍,實驗數據如表2所示。
由表2可以知道,在初始狀態時,料液Cu離子濃度為1478mg/L,滲透液濃度為4.07mg/L;料液濃縮10倍後,其濃度達到14625mg/L,透過液濃度為220.45mg/L。
在初始狀態時,料液COD值為2430mg/L,滲透液濃度為343mg/L;濃縮10倍後,濃縮液COD為17020mg/L,滲透液濃度為5510mg/L。
4. 結論
通過實驗室規模的實驗,研究了不同壓力(ΔP)和濃縮倍數(n)條件下,納濾膜和反滲透膜的分離性能,得到如下結論:
1.在ΔP=1.5 MPa條件下進行濃縮,納濾膜可以使料液濃縮近10倍,料液體積濃縮為原來的1/10。納濾膜對Cu離子的截留率在96%以上,對COD的截留率在57%以上。隨著濃度的增加,納濾膜的截留率會降低。
2.在ΔP=3.0 MPa條件下進行濃縮,反滲透膜可以使料液濃縮近10倍,料液體積濃縮為原來的1/10。反滲透膜對Cu離子的截留率在98%以上,對COD的截留率在67%以上。隨著濃度的增加,反滲透膜的截留率會降低。
3.本實驗在濃縮過程中,沒有調整料液pH值。原因是pH值對膜分離性能確有影響,但在實際工程中調整pH值需要增加設備投資和運行費用。綜合權衡效果和投資這兩方面的影響,實際工程中一般不會調節對廢水pH值後再進行膜分離處理。
4.和反滲透階段相比,納濾階段的透過液濃度不是太高。因此,納濾階段的濃縮倍數應該還可以提高。
Research on The Treatment of Electroplating Rinsing Wastewater
with Separating Membrane
Xia junfang1,Gao qilin2
(1. Xia junfang, Shanghai Wantyeah Environment engineering CO.,Ltd )
(2.Cao haiyun )
Abstract In this article, the NF+RO system is used to condense the copper electroplating rinsing wastewater. The study show: In the NF phase, at the condition of that pressure(ΔP)=1.5 MPa , the wastewater can be condensed 10 times; The rejection for copper is above 96% and COD is above 57%. In the RO phase, at the condition of that pressure(ΔP)=3.0 MPa , the wastewater can be condensed 10 times; The rejection for copper is above 98% and COD is above 67%. When the the concentration of the wastewater increased, the rejection of NF and RO decreased.
Key words: Membrane separating, Nanofiltration, Reverse Osmosis, Condense,
Electroplating Wastewater
參考文獻
[1] 許振良. 膜法水處理技術. 北京:化學工業出版社,2001 :1~2
[2] Wang X L et al. Electrolyte transport through nanofiltration membranes by the space-charge model and the comparison with Teorell-Meyer-Siever model. Journal of Membrane Science. 1995,103:117~133
[3] Nakao. S.,Kimura S. Models Transport Phenomena and Their Applications for Ultrafiltration Data. Journal of Chemical Engineering of Japan. 1982(15):200~204。
H. 我公司生產硫酸氨產品,產生廢水cod大於2000.怎麼辦求方法,謝謝
實現煤化工廢水零排放的技術途徑
廢水零排放在國外稱之為零液體排放(ZLD),是指企業不向地表水域排放任何形式的廢水。2008年國家質量監督檢驗檢疫總局頒布的GB/T21534-2008《工業用水節水術語》中對零排放的解釋為企業或主體單元的生產用水系統達到無工業廢水外排。簡言之,零排放就是將工業廢水濃縮成為固體或濃縮液的形式再加以處理,而不是以廢水的形式外排到自然水體。
廢水零排放是個系統工程,包括兩個層次,一是採用節水工藝等措施提高用水率,降低生產水耗,同時盡可能提高廢水回用率,從而最大限度利用水資源;二是採用高效的水處理技術,處理高濃度有機廢水及含鹽廢水,將無法利用的高鹽廢水濃縮為固體或濃縮液,不再以廢水的形式外排到自然水體。
廢水處置方式-含鹽廢水處理
典型現代煤化工企業廢水零排放整體解決方案見圖 1。
含鹽廢水的處理通常採用膜濃縮或熱濃縮技術將廢水中的雜質濃縮,清水回用於循環水系統,濃液(高鹽廢水)排放至蒸發塘自然蒸發或機械霧化蒸發。膜濃縮技術具有處理成本低、規模大、技術成熟等優點,缺點是對進水水質要求較高、容易發生污堵、濃縮倍數不高。膜濃縮技術的主要原理為反滲透(RO),所產清水中COD、鹽類等濃度較低,清水回收率一般在60%至80%,高效反滲透(HERO)可達到90%。納濾是介於反滲透和超濾之間的壓力驅動膜分離和濃縮過程,與反滲透相比,其操作壓力和能耗更低,但應用於廢水處理尚處研究階段。
熱濃縮主要有多效蒸發、機械壓縮蒸發、膜蒸餾等方式,濃縮效率較高,但設備龐大、能耗高。其中多效蒸發技術比較成熟,在許多行業中已經得到應用,清水回收率一般在90%左右;膜蒸餾可利用工業廢熱等廉價能源,對無機鹽、大分子等不揮發組分的截留率接近100%,但該方法尚處於研究階段。
廢水處置方式-濃液處理
含鹽廢水處理後產生的濃液,也成為高鹽廢水,含鹽量通常高達20%(質量分數)以上。國內應用較多的濃液處置方式有蒸發結晶、焚燒、沖灰、自然蒸發塘、機械霧化蒸發等,國外還有深井灌注等方式。
蒸發結晶法是使濃液中的鹽分以結晶方式析出。美國通用公司的專有技術——蒸汽壓縮結晶技術是熱效率最高的。該技術設備投資大,目前已在南非Sasol公司的煤間接液化項目及波蘭Debienskd煤礦等處成功運行,國內僅神華集團有限責任公司煤制油項目採用該技術處理催化劑設備過程中產生的少量高鹽廢水,尚處於運行階段。
焚燒法是將濃液送入焚燒爐焚燒,產生以鹽類為主的殘渣。該技術能耗高、防腐要求高、穩定運行比較困難,國內煤化工行業尚無運行實例。某煤制天然氣項目提出採用這種處理方式,目前正在進行初步設計。
沖灰法是將濃液送至煤場噴灑或鍋爐沖渣,濃液中的鹽分和有機物最終進入灰渣。部分小型煤化工項目和電廠多採用這種處置方式。
自然蒸發塘法是建設面積足夠大的池塘,貯存溶液,利用自然蒸發的方式蒸騰水分,使鹽分留在塘底,一般需要對蒸發塘採用相應的防滲措施。該方式比較適合於降雨量小、蒸發量大、地廣人稀地區的煤化工項目。
機械霧化蒸發是在自然蒸發的基礎上增加機械霧化蒸發器,高效增加蒸發速度,英國Horizon集團的專利設備——Parkwater機械霧化蒸發器是高效的高濃鹽水蒸發設備。該設備佔地成本低,節省投資成本。以我國西北地區自然蒸發量2000mm,濃水排放150t/h,年排放8000小時為例:
1.蒸發塘規模:自然蒸發塘需佔地120萬平方米,如增加Parkwater機械霧化蒸發器,蒸發塘只需佔地10萬平方米,體量40萬平方米,塘深可設4米。
2.蒸發塘建造投資大小:自然蒸發塘除土地成本外,每平方米建設成本約400元,即共需4.8億元。如增加Parkwater機械霧化蒸發器,除土地成本外,每立方米造價約400元,即共需4千萬元。
3.蒸發塘噸水處理成本:自然蒸發塘無能耗,Parkwater機械霧化蒸發器噸水能耗成本約2元。
4.土地成本:Parkwater機械霧化蒸發器可以節省土地110萬平方米,節省土地成本4.4億。
深井灌注法目前在美國、墨西哥等國家有應用實例。這種方式對自然地質條件要求很高,我國目前尚無相關法律法規和標准技術支持。
I. 納濾能否有效去除水中的COD BOD5和TOC
首先,納濾膜(Nanofiltration Membranes)是80年代末期問世的一種新型分離膜,其截留分子量介於反滲透膜和超濾膜之間,約為100-2000Da,由此推測納濾膜可能擁有lnm左右的微孔結構,故稱之為「納濾」。納濾膜大多是復合膜,其表而分離層由聚電解質構成,因而對無機鹽具有一定的截留率。國外已經商品化的納濾膜大多是通過界面縮聚及縮合法在微孔基膜上復合一層具有納米級孔徑的超薄分離層。
納濾膜能截留納米級(0.001微米)的物質。納濾膜的操作區間介於超濾和反滲透之間,截留溶解鹽類的能力為20%-98%之間,對可溶性單價離子的去除率低於高價離子,納濾一般用於去除地表水中的有機物和色素、地下水中的硬度及鐳,且部分去除溶解鹽,在食品和醫葯生產中有用物質的提取、濃縮。納濾膜的運行壓力一般3.5-30bar。
納濾過程的關鍵是納濾膜。對膜材料的要求是:具有良好的成膜性、熱穩定性、化學穩定性、機械強度高、耐酸鹼及微生物侵蝕、耐氯和其它氧化性物質、有高水通量及高鹽截留率、抗膠體及懸浮物污染,價格便宜且採用的納濾膜多為芳香族及聚酸氫類復合納濾膜。復合膜為非對稱膜,由兩部分結構組成:一部分為起支撐作用的多孔膜,其機理為篩分作用;另一部分為起分離作用的一層較薄的緻密膜,其分離機理可用溶解擴散理論進行解釋。對於復合膜,可以對起分離作用的表皮層和支撐層分別進行材料和結構的優化,可獲得性能優良的復合膜。膜組件的形式有中空纖維、卷式、板框式和管式等。其中,中空纖維和卷式膜組件的填充密度高,造價低,組件內流體力學條件好;但是這兩種膜組件的製造技術要求高,密封困難,使用中抗污染能力差,對料液預處理要求高。而板框式和管式膜組件雖然清洗方便、耐污染,但膜的填充密度低、造價高。因此,在納濾系統中多使用中空纖維式或卷式膜組件。
在我國,對納濾過程的理論研究比較早,但對納濾膜的開發尚處於初步階段。在美國、日本等國家,納濾膜的開發已經取得了很大的進展,達到了商品化的程度,如美國Filmtec公司的NF系列納濾膜、日本日東電工的NTR-7400系列納濾膜及東麗公司的UTC系列納濾膜等都是在水處理領域中應用比較廣泛的商品化復合納濾膜。
對於一般的反滲透膜,脫鹽率是膜分離性能的重要指標,但對於納濾膜,僅用脫鹽率還不能說明其分離性能。有時,納濾膜對分子量較大的物質的截留率反而低於分子量較小的物質。納濾膜的過濾機理十分復雜。由於納濾膜技術為新興技術,因此對納濾的機理研究還處於探索階段,有關文獻還很少。但鑒於納濾是反滲透的一個分支,因此很多現象可以用反滲透的機理模型進行解釋。關於反滲透的膜透過理論[2]有朗斯代爾、默頓等的溶解擴散理論;里德、布雷頓等的氫鍵理論;舍伍德的擴散細孔流動理論;洛布和索里拉金提出的選擇吸附細孔流動理論和格盧考夫的細孔理論等。
納濾膜的過濾性能還與膜的荷電性、膜製造的工藝過程等有關。不同的納濾膜對溶質有不同的選擇透過性,如一般的納濾膜對二價離子的截留率要比一價離子高,在多組分混合體系中,對一價離子的截留率還可能有所降低。納濾膜的實際分離性能還與納濾過程的操作壓力、溶液濃度、溫度等條件有關。如透過通量隨操作壓力的升高而增大,截留率隨溶液濃度的增大而降低等。
所以,納濾膜可以去除大部分COD及BOD和TOC
J. 納濾膜處理造紙廠的廢水有什麼優勢
納濾膜,是深度處理的一種技術,在污水處理廠裡面,基本上是最後一道工序了,一般性造紙廠的廢水是混合在污水廠的綜合池裡面的,所以最後一道納濾膜處理,可以讓水質達到純凈水的程度,缺點就是成本太高了