重金屬能通過離子交換膜嗎
㈠ 重金屬離子能否通過過濾的方式去除
如果是溶解於過濾介質中的普通意義上的過濾是不能被去除的,但可以通過精密過濾(如膜過濾反滲透)等可以去除;如果是以沉澱或者是懸浮於介質中的可以通過過濾的方式去除。請參考。
㈡ 單質可以通過離子交換膜嗎高中化學
單質可以通過離子交換膜,但不能產生交換。
㈢ 陰陽離子交換膜是干什麼
讓離子選擇透過,更好的完成反應。
㈣ 重金屬廢水怎麼處理
含重金屬廢水處理流程如下圖:
本方法適用於各類重金屬廢水甚至含絡合重金屬難處理廢水的處理,使出水滿足國標GB21900-2008的表3排放標准。
㈤ 水可以通過離子交換膜嗎
高中內容一般認為水分子可以通過質子交換膜。而且在溶液中一般的氫離子以水合氫離子的形式存在,水合氫離子能通過那麼水也就可以了。高中不用深究,關鍵先把題做好。
㈥ 有沒有電子可以通過而離子無法通過的膜
水分子要比離子大得多,是難以通過陰離子交換膜的。
陽離專子交換膜一般能使陽離子通過,主屬要是H+、Na+等。
陰離子交換膜的本質是一種鹼性電解質,對陰離子具有選擇透過性作用,因此還被稱為離子選擇透過性膜。一般以-NH3+、-NR2H+或者-PR3+等陽離子作為活性交換基團,並且在陰極產生OH-作為載流子,經過陰離子交換膜的選擇透過性作用移動到陽極。
陰離子交換膜具有非常廣泛的應用,它是分離裝置、提純裝置以及電化學組件中的重要組成部分,在氯鹼工業、水處理工業、重金屬回收、濕法冶金以及電化學工業等領域都起到舉足輕重的作用
㈦ 水能透過離子交換膜嗎
離子交換膜是一種含離子基團的、對溶液里的離子具有選擇透過能力的高分子膜。因內為一般在應用時主要是容利用它的離子選擇透過性,所以也稱為離子選擇透過性膜。水在膜中的滲透率就是離子在透過膜時帶過去的水量。實用上水滲透率是膜的一個性能,其值愈大,在電滲析時水損失愈大,通常疏水性高分子材料膜中水滲透率遠低於親水性高分子材料膜
㈧ 在環境自凈過程中,重金屬去了哪裡會被凈化嗎
含重金屬廢水處理:為使污水中所含的重金屬達到排水某一水體或再次使用的水質要求,對其進行凈化的過程。
目前,重金屬廢水處理的方法大致可以分為三大類:(1)化學法;(2)物理處理法;(3)生物處理法。
化學法
化學法主要包括化學沉澱法和電解法,主要適用於含較高濃度重金屬離子廢水的處理,化學法是目前國內外處理含重金屬廢水的主要方法。
2.1.1化學沉澱法
化學沉澱法的原理是通過化學反應使廢水中呈溶解狀態的重金屬轉變為不溶於水的重金屬化合物,通過過濾和分離使沉澱物從水溶液中去除,包括中和沉澱法、硫化物沉澱法、鐵氧體共沉澱法。由於受沉澱劑和環境條件的影響,沉澱法往往出水濃度達不到要求,需作進一步處理,產生的沉澱物必須很好地處理與處置,否則會造成二次污染。
2.1.2電解法
電解法是利用金屬的電化學性質,金屬離子在電解時能夠從相對高濃度的溶液中分離出來,然後加以利用。電解法主要用於電鍍廢水的處理,這種方法的缺點是水中的重金屬離子濃度不能降的很低。所以,電解法不適於處理較低濃度的含重金屬離子的廢水。
2.1.3螯合法[1]
螯合法又稱高分子離子捕集劑法,是指在廢水處理過程中通過投加適量的重金屬捕集劑,利用捕集劑與金屬離子鉛、鎘結合時形成相應的螯合物的原理實現鉛、鎘的去除分離。該反應能在常溫和較大pH范圍(3?11)下發生,同時捕集劑不受共存重金屬離子的影響。因此該方法去除率高,絮凝效果佳,污泥量少且整合物易脫水。
2.1.4納米重金屬水處理技術
納米材料因其比表面積遠超普通材料,故同一種物質將會顯示出不同的物化特型,很多新型的納米材料都不斷地在水處理行業中實驗、實踐。被環保部、科技部、工信部、財政部四部委聯合審批立項為「2011年國家重大科技成果轉化項目」———納米水處理工藝及系列產品,在江西銅業股份有限公司應用取得了歷史性的突破,填補了國內空白。
國內通常採用的重金屬廢水處理方法,包括石灰中和法和硫化法等。這些傳統的處理工藝,雖然可以將廢水中的重金屬去除掉,但是處理效果並不穩定,處理後回收的清水水質仍難以確保穩定達標排放,而且還會產生二次污染。納米重金屬水處理技術不僅能使處理後的出水水質優於國家規定的排放標准且穩定可靠,投資成本和運行成本較低,與水中重金屬離子反應快,吸附、處理容量是普通材料的10倍到1000倍,而且使沉澱的污泥量較傳統工藝降低50%以上,污泥中雜質也少,有利於後續處理和資源回收。有數據顯示,同樣是每日處理300立方米重金屬污水量,傳統工藝每天要產生25噸石灰渣污泥,而採用納米技術後每月只產生25噸納米金屬泥。尤其值得關注的是,這種污泥中的重金屬單位含量提高了30倍。若以銅冶煉廠的廢水處理為例,其回收的納米銅泥品位已達到20%,完全可以作為銅礦資源再生利用。
物理處理法
物理處理法主要包含溶劑萃取分離、離子交換法、膜分離技術及吸附法。
2.2.1溶劑萃取分離
溶劑萃取法是分離和凈化物質常用的方法。由於液液接觸,可連續操作,分離效果較好。使用這種方法時,要選擇有較高選擇性的萃取劑,廢水中重金屬一般以陽離子或陰離子形式存在,例如在酸性條件下,與萃取劑發生絡合反應,從水相被萃取到有機相,然後在鹼性條件下被反萃取到水相,使溶劑再生以循環利用。這就要求在萃取操作時注意選擇水相酸度。盡管萃取法有較大優越性,然而溶劑在萃取過程中的流失和再生過程中能源消耗大,使這種方法存在一定局限性,應用受到很大的限制。
2.2.2離子交換法
離子交換法是重金屬離子與離子交換劑進行交換,達到去除廢水中重金屬離子的方法。常用的離子交換劑有陽離子交換樹脂、陰離子交換樹脂、螯合樹脂等。幾年來,國內外學者就離子交換劑的研製開發展開了大量的研究工作。隨著離子交換劑的不斷涌現,在電鍍廢水深度處理、高價金屬鹽類的回收等方面,離子交換法越來越展現出其優勢。離子交換法是一種重要的電鍍廢水治理方法,處理容量大,出水水質好,可回收重金屬資源,對環境無二次污染,但離子交換劑易氧化失效,再生頻繁,操作費用高。
2.2.3膜分離技術
膜分離技術是利用一種特殊的半透膜,在外界壓力的作用下,不改變溶液中化學形態的基礎上,將溶劑和溶質進行分離或濃縮的方法,包括電滲析和隔膜電解。電滲析是在直流電場作用下,利用陰陽離子交換膜對溶液陰陽離子選擇透過性使水溶液中重金屬離子與水分離的一種物理化學過程。隔膜電解是以膜隔開電解裝置的陽極和陰極而進行電解的方法,實際上是把電滲析與電解組合起來的一種方法。上述方法在運行中都遇到了電極極化、結垢和腐蝕等問題。
2.2.4吸附法
吸附法是利用多孔性固態物質吸附去除水中重金屬離子的一種有效方法。吸附法的關鍵技術是吸附劑的選擇,傳統吸附劑是活性炭。還有黏土類吸附劑粉、煤灰吸附劑、生物質基材料和[1] 樹脂基吸附材料。活性炭有很強吸附能力,去除率高,但活性炭再生效率低,處理水質很難達到回用要求,價格貴,應用受到限制。近年來,逐漸開發出有吸附能力的多種吸附材料。有相關研究表明,殼聚糖及其衍生物是重金屬離子的良好吸附劑,殼聚糖樹脂交聯後,可重復使用10次,吸附容量沒有明顯降低。利用改性的海泡石治理重金屬廢水對Pb2+、Hg2+、Cd2+ 有很好的吸附能力,處理後廢水中重金屬含量顯著低於污水綜合排放標准。另有文獻報道蒙脫石也是一種性能良好的粘土礦物吸附劑,鋁鋯柱撐蒙脫石在酸性條件下對Cr 6+的去除率達到99%,出水中Cr 6+含量低於國家排放標准,具有實際應用前景。
生物處理法
生物處理法是藉助微生物或植物的絮凝、吸收、積累、富集等作用去除廢水中重金屬的方法,包括生物吸附、生物絮凝、植物修復等方法。
2.3.1生物吸附
生物吸附法是指生物體藉助化學作用吸附金屬離子的方法。藻類和微生物菌體對重金屬有很好的吸附作用,並且具有成本低、選擇性好、吸附量大、濃度適用范圍廣等優點,是一種比較經濟的吸附劑。用生物吸附法從廢水中去除重金屬的研究,美國等國家已初見成效。有研究者預處理假單胞菌的菌膠團後,將其固定在細粒磁鐵礦上來吸附工業廢水中Cu,發現當濃度高至100 mg/L時,除去率可達96%,用酸解吸,可以回收95%銅,預處理可以增加吸附容量。但生物吸附法也存在一些不足,例如吸附容量易受環境因素的影響,微生物對重金屬的吸附具有選擇性,而重金屬廢水常含有多種有害重金屬,影響微生物的作用,應用上受限制等,所以還需再進行進一步研究。
2.3.2生物絮凝
生物絮凝法是利用微生物或微生物產生的代謝物進行絮凝沉澱的一種除污方法。生物絮凝法的開發雖然不到20年,卻已經發現有17種以上的微生物具有較好的絮凝功能,如黴菌、細菌、放線菌和酵母菌等,並且大多數微生物可以用來處理重金屬。生物絮凝法具有安全無毒、絮凝效率高、絮凝物易於分離等優點,具有廣闊的發展前景。
2.3.3植物修復法
植物修復法是指利用高等植物通過吸收、沉澱、富集等作用降低已有污染的土壤或地表水的重金屬含量, 以達到治理污染、修復環境的目的。植物修復法是利用生態工程治理環境的一種有效方法,它是生物技術處理企業廢水的一種延伸。利用植物處理重金屬,主要有三部分組成:
(1)利用金屬積累植物或超積累植物從廢水中吸取、沉澱
或富集有毒金屬: (2)利用金屬積累植物或超積累植物降
低有毒金屬活性,從而可減少重金屬被淋濾到地下或通過
空氣載體擴散: (3)利用金屬積累植物或超積累植物將土
壤中或水中的重金屬萃取出來,富集並輸送到植物根部可收割部分和植物地上枝條部分。通過收獲或移去已積累和富集了重金屬植物的枝條,降低土壤或水體中的重金屬濃度。在植物修復技術中能利用的植物有藻類植物、草本植物、木本植物等。
藻類凈化重金屬廢水的能力主要表現在對重金屬具有很強的吸附力。褐藻對Au的吸收量達400mg/g,在一定條件下綠藻對Cu、Pb、La、Cd、Hg等重金屬離子的去除率達80%~90%。浩雲濤等分離篩選獲得了一株高重金屬抗性的橢圓小球藻(Chlorella ellipsoidea),並研究了不同濃度的重金屬銅、鋅、鎳、鎘對該藻生長的影響及其對重金屬離子的吸收富集作用。結果顯示,該藻Zn 和Cd 具有很高的耐受性。對四種重金屬的耐受能力依次為鋅>鎘>鎳>銅。該藻對重金屬具有很好的去除效果,15μmol/L Cu2+、300μmol/L Zn2+、100μmol/L Ni2+、30μmol/L Cd2+濃度72h處理,去除率分別達到40.93%、98.33%、97.62%、86.88%。由此可見,此藻類可應用於含重金屬廢水的處理。
草本植物凈化重金屬廢水的應用已有很多報道。風眼
蓮(Eichhoria crassipes Somis)是國際上公認和常用的一種治理污染的水生漂浮植物,它具有生長迅速,既能耐低溫、又能耐高溫的特點,能迅速、大量地富集廢水中Cd、Pb、Hg、Ni、Ag、Co、Cr等多種重金屬。張志傑等的研究結果表明,乾重lkg的風眼蓮在7~l0d可吸收鉛3.797g、鎘3.225g。周風帆等的 研究發現風眼蓮對鈷和鋅的吸收率分別高達97%和80%。香蒲(Typhao rientaliS Pres1)也是一種凈化重金屬的優良草本植物,它具有特殊的結構與功能,如葉片成肉質、柵欄組織發達等。香蒲植物長期生長在高濃度重金屬廢水中形成特殊結構以抵抗惡劣環境並能自我調節某些生理活動, 以適應污染毒害。招文銳等研究了寬葉香蒲人工濕地系統處理廣東韶關凡口鉛鋅礦選礦廢水的穩定性。歷時10年的監測結果表明,該系統能有效地凈化鉛鋅礦廢水。未處理的廢水含有高濃度的有害金屬鉛、鋅、鎘經人工濕地後,出水口水質明顯改善,其中鉛、鋅、鎘的凈化率分別達99.0%,97.%和94.9%,且都在國家工業污水的排放標准之下。此外,還有很多草本植物具有凈化作用,如喜蓮子草、水龍、刺苦草、浮萍、印度芥菜等。
採用木本植物來處理污染水體,具有凈化效果好,處理量大,受氣候影響小,不易造成二次污染等優點,越來越受到人們的重視。胡煥斌等試驗結果表明,蘆葦和池杉兩種植物對重金屬鉛和鎘都有較強富集能力,而木本植物池杉比草本植物蘆葦具有更好的凈化效果。周青等研究了5種常綠樹木對鎘污染脅迫的反應,實驗結果表明,在高濃度鎘脅迫下,5種樹木葉片的葉綠素含量、細胞質膜透性、過氧化氫酶活性及鎘富集量等生理生化特性均產生明顯變化,其中,黃楊、海桐,杉木抗鎘污染能力優於香樟和冬青。以木本植物為主體的重金屬廢水處理技術,能切斷有毒有害物質進入人體和家畜的食物鏈,避免了二次污染,可以定向栽培,在治污的同時,還可以美化環境,獲得一定的經濟效益,是一種理想的環境修復方法。
㈨ 什麼離子交換膜是只讓這個離子通過還是不讓
離子交換膜一般分為陽離子和陰離子交換膜 或者題目里會有提示 是什麼離子膜什麼離子就可以通過 比如陽離子可以讓陽離子通過
㈩ 陰離子交換交換膜能讓水分子通過嗎
水分來子要比離子大得多,是源難以通過陰離子交換膜的。
陽離子交換膜一般能使陽離子通過,主要是H+、Na+等。
陰離子交換膜的本質是一種鹼性電解質,對陰離子具有選擇透過性作用,因此還被稱為離子選擇透過性膜。一般以-NH3+、-NR2H+或者-PR3+等陽離子作為活性交換基團,並且在陰極產生OH-作為載流子,經過陰離子交換膜的選擇透過性作用移動到陽極。
陰離子交換膜具有非常廣泛的應用,它是分離裝置、提純裝置以及電化學組件中的重要組成部分,在氯鹼工業、水處理工業、重金屬回收、濕法冶金以及電化學工業等領域都起到舉足輕重的作用