離子交換樹脂鑒別原理
原則上和分子集團的大小沒直接關系(有間接關系的),主要看的是被吸附集團的 極性,也就是電子雲的分布。看哪種更適合被樹脂吸附
但是分子基團的大小對電子雲的分布也是有些影響的,所以說有會有間接關系。
B. 離子交換樹脂的原理
離子交換來樹脂是由空間源網狀結構骨架(即母體)與附屬在骨架上的許多活性基團所構成的不溶性高分子化合物。活性基團遇水電離,分成二部分:(1)固定部分,仍與骨架牢固結合,不能自由移動,構成固定離子;(2)活動部分,能在一定空間內自由移動,並與其周圍溶液中的其他同性離子進行交換反應,稱為可交換離子或反離子。以強酸性陽離子交換樹脂為例,可寫成R-SO3-H+,其中R代表樹脂母體即網狀結構部分,-SO3- 代表活性基團的固定離子,H+為活性基團的可交換離子。有時更簡單地寫成R-H+。離子交換通過不溶性的電解質(樹脂)與溶液中的另一種電解質進行化學反應。這一反應可以是中和反應、中性鹽分解或復分解反應。譬如中和反應:
R-H+ + NaOH= RNa+H2O 利用這個反應可以去除水的鹼度。
C. 離子交換樹脂提取生物鹼的原理是什麼
通過離子交換樹脂的聚合多孔性及官能團進行吸附,由於這一交換過程速度很快回,離子交換樹脂答對生物鹼的親和性也很好,水處理填料樹脂因此在這個過程中,有機物對離子交換樹脂的污染很小。吸附飽和後,再用稀濃度的酸液進行分布洗脫,稀的酸液洗下的是正電荷很弱的雜質,它們可以與活性官能鍵結合,但是不穩定,然後再用較高濃度的酸液將吸附的生物鹼洗脫,最後用高濃度的酸液洗脫與活性官能團結合很牢固的陽離子雜質。為了確保離子交換樹脂的吸附容量,往往在使用到一定周期後,會採用NaOH溶液進行逆轉型復甦。
D. 離子交換樹脂的原理及應用是什麼
原理
離子交換樹脂是一種聚合物,帶有相應的功能基團。一般情況下,常規的鈉離子交換樹脂帶有大量的鈉離子。當水中的鈣鎂離子含量高時,離子交換樹脂可以釋放出鈉離子,功能基團與鈣鎂離子結合,這樣水中的鈣鎂離子含量降低,水的硬度下降。硬水就變為軟水,這是軟化水設備的工作過程。
當樹脂上的大量功能基團與鈣鎂離子結合後,樹脂的軟化能力下降,可以用氯化鈉溶液流過樹脂,此時溶液中的鈉離子含量高,功能基團會釋放出鈣鎂離子而與鈉離子結合,這樣樹脂就恢復了交換能力,這個過程叫作「再生」。
由於實際工作的需要, 軟化水設備的標准工作流程主要包括:工作(有時叫做產水,下同)、反洗、吸鹽(再生)、慢沖洗(置換)、快沖洗五個過程。不同軟化水設備的所有工序非常接近,只是由於實際工藝的不同或控制的需要,可能會有一些附加的流程。任何以鈉離子交換為基礎的軟化水設備都是在這五個流程的基礎上發展來的(其中,全自動軟化水設備會增加鹽水重注過程)。
反洗:工作一段時間後的設備,會在樹脂上部攔截很多由原水帶來的污物,把這些污物除去後,離子交換樹脂才能完全曝露出來,再生的效果才能得到保證。反洗過程就是水從樹脂的底部洗入,從頂部流出,這樣可以把頂部攔截下來的污物沖走。這個過程一般需要5-15分鍾左右。
吸鹽(再生):即將鹽水注入樹脂罐體的過程,傳統設備是採用鹽泵將鹽水注入,全自動的設備是採用專用的內置噴射器將鹽水吸入(只要進水有一定的壓力即可)。在實際工作過程中,鹽水以較慢的速度流過樹脂的再生效果比單純用鹽水浸泡樹脂的效果好,所以軟化水設備都是採用鹽水慢速流過樹脂的方法再生,這個過程一般需要30分鍾左右,實際時間受用鹽量的影響。
慢沖洗(置換):在用鹽水流過樹脂以後,用原水以同樣的流速慢慢將樹脂中的鹽全部沖洗干凈的過程叫慢沖洗,由於這個沖洗過程中仍有大量的功能基團上的鈣鎂離子被鈉離子交換,根據實際經驗,這個過程中是再生的主要過程,所以很多人將這個過程稱作置換。這個過程一般與吸鹽的時間相同,即30分鍾左右。
快沖洗:為了將殘留的鹽徹底沖洗干凈,要採用與實際工作接近的流速,用原水對樹脂進行沖洗,這個過程的最後出水應為達標的軟水。一般情況下,快沖洗過程為5-15分鍾。
應用
1)水處理
水處理領域離子交換樹脂的需求量很大,約占離子交換樹脂產量的90%,用於水中的各種陰陽離子的去除。目前,離子交換樹脂的最大消耗量是用在火力發電廠的純水處理上,其次是原子能、半導體、電子工業等。
2)食品工業
離子交換樹脂可用於製糖、味精、酒的精製、生物製品等工業裝置上。例如:高果糖漿的製造是由玉米中萃出澱粉後,再經水解反應,產生葡萄糖與果糖,而後經離子交換處理,可以生成高果糖漿。離子交換樹脂在食品工業中的消耗量僅次於水處理。
3)制葯行業
制葯工業離子交換樹脂對發展新一代的抗菌素及對原有抗菌素的質量改良具有重要作用。鏈黴素的開發成功即是突出的例子。近年還在中葯提成等方面有所研究。
4)合成化學和石油化學工業
在有機合成中常用酸和鹼作催化劑進行酯化、水解、酯交換、水合等反應。用離子交換樹脂代替無機酸、鹼,同樣可進行上述反應,且優點更多。如樹脂可反復使用,產品容易分離,反應器不會被腐蝕,不污染環境,反應容易控制等。
甲基叔丁基醚(MTBE)的制備,就是用大孔型離子交換樹脂作催化劑,由異丁烯與甲醇反應而成,代替了原有的可對環境造成嚴重污染的四乙基鉛。
5)環境保護
離子交換樹脂已應用在許多非常受關注的環境保護問題上。目前,許多水溶液或非水溶液中含有有毒離子或非離子物質,這些可用樹脂進行回收使用。如去除電鍍廢液中的金屬離子,回收電影製片廢液里的有用物質等。
6)濕法冶金及其他
離子交換樹脂可以從貧鈾礦里分離、濃縮、提純鈾及提取稀土元素和貴金屬。
其他補充:
離子交換技術有相當長的歷史,某些天然物質如泡沸石和用煤經過磺化製得的磺化煤都可用作離子交換劑。但是,隨著現代有機合成工業技術的迅速發展,研究製成了許多種性能優良的離子交換樹脂,並開發了多種新的應用方法,離子交換技術迅速發展,在許多行業特別是高新科技產業和科研領域中廣泛應用。近年國內外生產的樹脂品種達數百種,年產量數十萬噸。
在工業應用中,離子交換樹脂的優點主要是處理能力大,脫色范圍廣,脫色容量高,能除去各種不同的離子,可以反復再生使用,工作壽命長,運行費用較低(雖然一次投入費用較大)。以離子交換樹脂為基礎的多種新技術,如色譜分離法、離子排斥法、電滲析法等,各具獨特的功能,可以進行各種特殊的工作,是其他方法難以做到的。離子交換技術的開發和應用還在迅速發展之中。
離子交換樹脂的應用,是近年國內外製糖工業的一個重點研究課題,是糖業現代化的重要標志。膜分離技術在糖業的應用也受到廣泛的研究。
離子交換樹脂都是用有機合成方法製成。常用的原料為苯乙烯或丙烯酸(酯),通過聚合反應生成具有三維空間立體網路結構的骨架,再在骨架上導入不同類型的化學活性基團(通常為酸性或鹼性基團)而製成。
離子交換樹脂不溶於水和一般溶劑。大多數製成顆粒狀,也有一些製成纖維狀或粉狀。樹脂顆粒的尺寸一般在0.3~1.2mm 范圍內,大部分在0.4~0.6mm之間。它們有較高的機械強度(堅牢性),化學性質也很穩定,在正常情況下有較長的使用壽命。
離子交換樹脂中含有一種(或幾種)化學活性基團,它即是交換官能團,在水溶液中能離解出某些陽離子(如H+或Na+)或陰離子(如OH-或Cl-),同時吸附溶液中原來存有的其他陽離子或陰離子。即樹脂中的離子與溶液中的離子互相交換,從而將溶液中的離子分離出來。
離子交換樹脂的品種很多,因化學組成和結構不同而具有不同的功能和特性,適應於不同的用途。應用樹脂要根據工藝要求和物料的性質選用適當的類型和品種。
E. 離子交換樹脂的原理
離子交換抄樹脂是人工合成的顆粒狀有機高分子化合物,有交換劑本體(有機高聚物,用R表示)和交換基團兩部分組成。可以分為陽離子交換樹脂和陰離子交換樹脂兩類
可以通過硬水處理的過程來理解。硬水先後通過分別裝有陽離子交換樹脂和陰離子交換樹脂的離子交換柱。硬水中的Ca2+ Mg2+等陽離子和Clˉ等陰離子先後與交換樹脂中德H+和OHˉ起例子交換作用,從而軟化硬水。例子方程式為
陽離子交換樹脂的原理 2RSO3H+ Ca2+ = (RSO3)2Ca +2H+
陰離子交換樹脂的原理 RN(CH3)3OH +Clˉ = RN(CH3)3Cl + OHˉ
F. 陽離子交換樹脂的工作原理是怎麼樣的
陽離子交換樹脂吸附交換原理
強酸性陽離子樹脂
這類樹脂含有大量的強酸性基團,如磺酸基-SO3H,容易在溶液中離解出H+,故呈強酸性。樹脂離解後,本體所含的負電基團,如SO3-,能吸附結合溶液中的其他陽離子。這兩個反應使樹脂中的H+與溶液中的陽離子互相交換。強酸性樹脂的離解能力很強,在酸性或鹼性溶液中均能離解和產生離子交換作用。
樹脂在使用一段時間後,要進行再生處理,即用化學葯品使離子交換反應以相反方向進行,使樹脂的官能基團回復原來狀態,以供再次使用。如上述的陽離子樹脂是用強酸進行再生處理,此時樹脂放出被吸附的陽離子,再與H+結合而恢復原來的組成。
弱酸性陽離子樹脂
這類樹脂含弱酸性基團,如羧基-COOH,能在水中離解出H+ 而呈酸性。樹脂離解後餘下的負電基團,如R-COO-(R為碳氫基團),能與溶液中的其他陽離子吸附結合,從而產生陽離子交換作用。這種樹脂的酸性即離解性較弱,在低pH下難以離解和進行離子交換,只能在鹼性、中性或微酸性溶液中(如pH5~14)起作用。這類樹脂亦是用酸進行再生(比強酸性樹脂較易再生)。
其實陽離子交換樹脂在我們實際使用過程中,一般都是將樹脂變味其他離子形式進行運行,以滿足各種場景使用需求。例如經常會將強酸性的陽離子交換樹脂和NaCl一起轉變為鈉型的樹脂後再投入使用,當樹脂置換過程中就會放出Na+與溶液中的Ca2+、Mg2+等陽離子交換吸附,除去這些離子。反應時沒有放出H+,可避免溶液pH下降和由此產生的副作用(如蔗糖轉化和設備腐蝕等)。
而且這類樹脂以鈉型狀態運行使用後,可直接用鹽水對樹脂進行再生(不用強酸)。
G. 離子交換樹脂純水原理
H型陽樹脂先除去水中的陽離子,這樣的水呈現微酸性,再經過OH型的陰樹脂,將陰離子除去後,就得到了一級除鹽水,再經過混床後就是二級除鹽水了。
H. 離子交換樹脂鑒別實驗樹脂變色的原因
離子交換樹脂為什麼會變色?
離子交換樹脂是一種離子物質,在運輸、儲存或者是使用中,專可能屬會接觸到一些其他的物質,離子交換樹脂會變色主要就是因為與其他物質發生接觸,導致離子形態發生變化,從而導致樹脂變色,樹脂被污染也會導致樹脂變色。
離子交換樹脂變色的因素有哪些?
1.溫度:一般樹脂在長時間在高溫的環境中儲存,就會有一定的殘留物滲漏,導致樹脂顏色變深或者泛紅,如果在使用時溫度達到180℃甚至更高,那麼樹脂就會發生老化,顏色也會變黃。
2.污染:一般樹脂被污染之後,樹脂的顏色就會發生一定變化,樹脂被污染而發生變色是最為常見的一種,比如說001*7樹脂,在被氧化劑污染時,樹脂的顏色就會明顯變淡,再比如201*7,被鐵污染或者有機物污染時,顏色會加深,嚴重可能會變為黑色。
3.樹脂在使用的過程中,樹脂的吸附能力越來越少,樹脂的顏色也會越來越淡,而樹脂再生時,樹脂的顏色就會越來越深,這個是屬於正常現象,只要產水質量沒有問題就可以繼續使用。
詳情點擊:網頁鏈接
I. 未知離子交換樹脂的鑒別
Cu2+被交換上去了。陽離子交換樹脂。
不變色:陰離子交換樹脂。