離子交換色譜流動相有哪些原則
❶ HPLC用於分析生物鹼應該注意什麼
1、生物鹼HPLC的分析模式
根據HPLC分析生物鹼時所使用固定相性質、流動相組成及極性不同,其分析模式大致可分為:正相吸附色譜法、正相硅膠反相洗脫系統色譜法、反相色譜法及離子交換色譜法.
正相吸附色譜法:通常以硅膠基質為吸附固定相,流動相為不同極性的有機溶劑或不同比例混合溶劑,分離過程主要依靠生物鹼與吸附劑吸附作用的差異實現,為了改善分離,提高溶洗脫能力,常於流動相中加濃氨液、二乙胺、三乙胺等.該法應用於生物鹼分析的文獻較少.
正相硅膠一反相洗脫系統色譜法(NS-RE):通常採用未經化學改性的普通硅膠為固定相,以極性有機溶劑(甲醇、乙腈)和高pH緩沖溶液為流動相,分析包括生物鹼在內的鹼性葯物.該法柱效高,峰形對稱,是簡便有效的方法.在實際應用中,流動相的組成是主要的影響因素,流動相中除含有調節pH 的緩沖鹽外,有時還要三乙胺、溴化四丁基銨等競爭離子或烷基磺酸鈉等對離子.因此,影響保留與分離的主要因素是流動相pH、競爭離子種類及濃度 .
反相高效液相色譜法(RP-HPLC):近年來RP-HPLC應用於生物鹼分析方面的文獻很多,已成為常規的方法.但普通存在色譜峰的展寬拖尾,導致分離效能低,這主要緣於生物鹼結構中鹼性氮原子與固定相未鍵台酸性硅醇基的相互作用.即使是所測生物鹼在較低濃度下,仍常產生峰漂移及峰對稱性差等現象.針對此缺陷,研究工作者從適用於鹼性物質分析的反相填料的設計選擇,流動相中緩沖鹽的使用,流動相添加劑(離子對試劑、有機胺改性劑)等幾方面進行了較為廣泛細致的研究,並取得了一定的進展.
離子交換色譜法:該法以陽離子交換樹脂為固定相,利用質子化的生物鹼陽離子與離子交換劑交換能力的差異而達到分離生物鹼的目的,有關生物鹼高效液相離子交換色譜法的應用報道較少.
2、生物鹼HPLC分析檢測方法
目前,生物鹼HPLC分析檢測方式多以紫外法為主,在定性分析方面,紫外法檢測選擇性低,定性專屬性差.隨著二極體陣列檢測器使用的普及,顯著提高了液相分析檢測的選擇性.此外,根據生物鹼的理化性質,其它檢測方式如熒光法、電化學法、蒸發光散射法亦得到了應用.近年來,液相色譜-質譜聯用技術已應用於生物鹼分析,增強了對生物鹼的定性檢測能力,提高了檢測靈敏度.新的介面技術及離子化方法的發展.使得HPLC-MS在生物鹼的分析中得到較廣泛的應用,近年的文獻報道日漸增多.
3、生物鹼HPLC分析的樣品處理方法
因生物鹼常具有一定的鹼性,一般常用鹼化液液萃取或酸水提取等方法從中草葯、中成葯及生物樣品等較復雜體系中提取純化,以達到富集和去除雜質的目的.近年來,固相萃取(SPE)技術及超臨界流體萃取等現代提取純化技術亦應用於樣品的提取純化.
❷ 高效液相色譜常用什麼色譜法
高效液相色譜法按分離機制的不同分為液固吸附色譜法、液液分配色譜法(正相與反相)、離子交換色譜法、離子對色譜法及分子排阻色譜法。
1.液固色譜法 使用固體吸附劑,被分離組分在色譜柱上分離原理是根據固定相對組分吸附力大小不同而分離。分離過程是一個吸附-解吸附的平衡過程。常用的吸附劑為硅膠或氧化鋁,粒度5~10μm。適用於分離分子量200~1000的組分,大多數用於非離子型化合物,離子型化合物易產生拖尾。常用於分離同分異構體。
2.液液色譜法 使用將特定的液態物質塗於擔體表面,或化學鍵合於擔體表面而形成的固定相,分離原理是根據被分離的組分在流動相和固定相中溶解度不同而分離。分離過程是一個分配平衡過程。
塗布式固定相應具有良好的惰性;流動相必須預先用固定相飽和,以減少固定相從擔體表面流失;溫度的變化和不同批號流動相的區別常引起柱子的變化;另外在流動相中存在的固定相也使樣品的分離和收集復雜化。由於塗布式固定相很難避免固定液流失,現在已很少採用。現在多採用的是化學鍵合固定相,如C18、C8、氨基柱、氰基柱和苯基柱。
液液色譜法按固定相和流動相的極性不同可分為正相色譜法(NPC)和反相色譜法(RPC)。
正相色譜法 採用極性固定相(如聚乙二醇、氨基與腈基鍵合相);流動相為相對非極性的疏水性溶劑(烷烴類如正已烷、環已烷),常加入乙醇、異丙醇、四氫呋喃、三氯甲烷等以調節組分的保留時間。常用於分離中等極性和極性較強的化合物(如酚類、胺類、羰基類及氨基酸類等)。
反相色譜法 一般用非極性固定相(如C18、C8);流動相為水或緩沖液,常加入甲醇、乙腈、異丙醇、丙酮、四氫呋喃等與水互溶的有機溶劑以調節保留時間。適用於分離非極性和極性較弱的化合物。RPC在現代液相色譜中應用最為廣泛,據統計,它占整個HPLC應用的80%左右。
隨著柱填料的快速發展,反相色譜法的應用范圍逐漸擴大,現已應用於某些無機樣品或易解離樣品的分析。為控制樣品在分析過程的解離,常用緩沖液控制流動相的pH值。但需要注意的是,C18和C8使用的pH值通常為2.5~7.5(2~8),太高的pH值會使硅膠溶解,太低的pH值會使鍵合的烷基脫落。有報告新商品柱可在pH 1.5~10范圍操作。
正相色譜法與反相色譜法比較表
正相色譜法 反相色譜法
固定相極性 高~中 中~低
流動相極性 低~中 中~高
組分洗脫次序 極性小先洗出 極性大先洗出
從上表可看出,當極性為中等時正相色譜法與反相色譜法沒有明顯的界線(如氨基鍵合固定相)。
3.離子交換色譜法 固定相是離子交換樹脂,常用苯乙烯與二乙烯交聯形成的聚合物骨架,在表面未端芳環上接上羧基、磺酸基(稱陽離子交換樹脂)或季氨基(陰離子交換樹脂)。被分離組分在色譜柱上分離原理是樹脂上可電離離子與流動相中具有相同電荷的離子及被測組分的離子進行可逆交換,根據各離子與離子交換基團具有不同的電荷吸引力而分離。
緩沖液常用作離子交換色譜的流動相。被分離組分在離子交換柱中的保留時間除跟組分離子與樹脂上的離子交換基團作用強弱有關外,它還受流動相的pH值和離子強度影響。pH值可改變化合物的解離程度,進而影響其與固定相的作用。流動相的鹽濃度大,則離子強度高,不利於樣品的解離,導致樣品較快流出。
離子交換色譜法主要用於分析有機酸、氨基酸、多肽及核酸。
4.離子對色譜法 又稱偶離子色譜法,是液液色譜法的分支。它是根據被測組分離子與離子對試劑離子形成中性的離子對化合物後,在非極性固定相中溶解度增大,從而使其分離效果改善。主要用於分析離子強度大的酸鹼物質。
分析鹼性物質常用的離子對試劑為烷基磺酸鹽,如戊烷磺酸鈉、辛烷磺酸鈉等。另外高氯酸、三氟乙酸也可與多種鹼性樣品形成很強的離子對。
分析酸性物質常用四丁基季銨鹽,如四丁基溴化銨、四丁基銨磷酸鹽。
離子對色譜法常用ODS柱(即C18),流動相為甲醇-水或乙腈-水,水中加入3~10 mmol/L的離子對試劑,在一定的pH值范圍內進行分離。被測組分保時間與離子對性質、濃度、流動相組成及其pH值、離子強度有關。
5.排阻色譜法 固定相是有一定孔徑的多孔性填料,流動相是可以溶解樣品的溶劑。小分子量的化合物可以進入孔中,滯留時間長;大分子量的化合物不能進入孔中,直接隨流動相流出。它利用分子篩對分子量大小不同的各組分排阻能力的差異而完成分離。常用於分離高分子化合物,如組織提取物、多肽、蛋白質、核酸等。
色譜法的基本原理
利用樣品混合物中各組分理、化性質的差異,各組分程度不同的分配到互不相溶的兩相中。當兩相相對運動時,各組分在兩相中反復多次重新分配,結果使混合物得到分離。
兩相中,固定不動的一相稱固定相;移動的一相稱流動相。
分類:
根據流動相分—以氣體作流動相—氣相色譜——固定相為液體 氣-液色譜
固定相為固體 氣-固色譜
—以液體作流動相—液相色譜——固定相為液體 液-液色譜
固定相為固體 液-固色譜
—當流動相是在接近它的臨界溫度和壓力下工作的液體時——超臨界色譜
根據固定相的附著方式
—固定相裝在圓柱管中—柱色譜
—固定相塗敷在玻璃或金屬板上—薄膜色譜(平板色譜)
—液體固定相塗在紙上—紙色譜(平板色譜)
根據分離機理
—分配色譜—樣品組分的分配系數不同
—吸附色譜— 樣品組分對固定相表面吸附力不同
—體積排阻色譜—利用固定相孔徑不同,把樣品組分按分子大小分開
—離子交換色譜—不同離子與固定相商相反電荷間的作用力大小不同
根據極性
—流動相極性>固定相極性-反相色譜
—流動相極性<固定相極性-正相色譜
氣相色譜只適合分析較易揮發、且化學性質穩定的有機化合物,而HPLC則適合於分析那些用氣相色譜難以分析的物質,如揮發性差、極性強、具有生物活性、熱穩定性差的物質。所以,HPLC的應用范圍已經遠遠超過氣相色譜。
一、吸附色譜(adsorption chromatography)
又叫液固色譜法:流動相是液體,固定相是固體。
分離原理:固定相是固體吸附劑,吸附劑是多孔性微粒物質表面有吸附中心。樣品組分與流動相競爭吸附中 心。各組分的吸附能力不同,使組分在固定相中產生保留時間不同和實現分離。
固定相: 固定相通常是強極性的硅膠、氧化鋁、活性炭、聚乙烯、聚醯胺等固體吸附劑。活性硅膠最常用。
流動相: 弱極性有機溶劑或非極性溶劑與極性溶劑的混合物,如正構烷烴(己烷、戊烷、庚烷等)、二氯甲 烷/甲醇、乙酸乙酯/乙腈等。
應用: 對於極性,結構異構體分離和族分離仍是最有效的方法,如農葯異構體分離、石油中烷、烯、芳烴的 分離。 缺點是容易產生不對稱峰和拖尾現象。
二、分配色譜
原理: 固定液機械的吸附在惰性載體上,樣品分子依據他們在流動相和固定相間的溶解度不同,分別進入兩相分配而實現分離。
固定相:將一種極性或非極性固定液吸附在惰性固相載體上。如全多孔微粒硅膠吸附劑。
根據極性不同分類:正相分配色譜—固定相載體上塗布的是極性固定液;
流動相是非極性溶劑;
可分立極性較強的水溶性樣品;
弱極性組分先洗脫出來。
反相分配色譜—固定相載體上塗布的是非極性或弱極性固定液;
流動相是極性溶劑;
強極性組分先洗脫出來。
液-液分配色譜固定相中的固定液體往往容易溶解到流動相中去,所以重現性很差,且不能進行梯度洗脫,已經不大為人們所採用。
三、鍵合相色譜
考慮分配色譜法中固定液的缺點,因此將各種不同的有機關能團通過化學反應共價結合到固定相惰性載體上,固定相就不會溶解到流動相中去了。
鍵合固定相優點:○ 對極性有機溶劑有良好的化學穩定性
○使色譜柱的柱效高、壽命長
○實驗重現性好
○幾乎適於各種類相的有機化合物的分離,尤其是k』寬范圍的樣品
○可以梯度洗脫
根據極性不同分類:正相鍵合相色譜—固定相極性>流動相極性
固定相:二醇基、醚基、氰基、氨基等極性基團的有機分子。
適於分離脂榮、水溶性的極性、強極性化合物
反相鍵合相色譜—固定相極性<流動相極性
固定相:烷基、苯基等非極性有機分子。如最常用的ODS柱或C18柱就 是最典型的代表,其極性很小。
適於分離非機性、弱極性離子型樣品,
是當今液相色譜的最主要分離模式。
正相HPLC(normal phase HPLC):
是由極性固定相和非極性(或弱極性)流動相所組成的HPLC體系。其代表性的固定相是改性硅膠、氰基柱等,代表性的流動相是正己烷。吸附色譜也屬正相HPLC。
反相HPLC(reversed phase HPLC):
由非極性固定相和極性流動相所組成的液相色譜體系,與正相HPLC體系正好相反。其代表性的固定相是十八烷基鍵合硅膠(ODS柱,Octa Decyltrichloro Silane),代表性的流動相是甲醇和乙腈。
四、體積排阻色譜(SEC,size exclusion chromatograghy)
(又稱凝膠色譜和分子篩色譜)
原理: 以多孔凝膠(如葡萄糖,瓊脂糖,硅膠,聚丙烯醯胺等)作固定相,依據樣品分子量大小達到分離目 的。大分子不進入凝膠孔洞,沿多孔凝膠膠粒間隙流出,先被洗脫;小分子進入大部分凝膠孔洞, 在柱中被強滯留,後被洗脫。
根據樣品性質分類:凝膠過濾(GFC)—用於分析水溶性樣品,如多肽、蛋白、生物酶、寡聚核苷酸、多聚核 苷酸、多糖。
凝膠滲透(GPC)—用於分析脂溶性樣品,如測定高聚物的分子量。
SEC主要依據分子量大小進行分離,因此與樣品、流動相間的相互作用無關。因此不採用改變流動相的組成來改善分離度。
五、離子交換色譜
(ion exchange chromatography, IEC)
分離原理:使用表面有離子交換基團的離子交換劑作為固定相。帶負電荷的交換基團(如磺酸基和羧酸基)可以用於陽離子的分離;帶正電荷的交換基團(如季胺鹽)可以用於陰離子的分離。不同離子與交換基的作用力大小不同,在樹脂中的保留時間長短不同,從而被相互分離
❸ 我想買Merck默克液相色譜柱,但不清楚默克液相色譜柱具體有哪些類型產品,求解答,謝謝
1 液-固吸附色譜
固定相:固定吸附劑為,如硅膠、氧化鋁等,較常使用的是5~10μm的硅膠吸附劑;
流動相:各種不同極性的一元或多元溶劑。
分離原理:組分在固定相吸附劑上的吸附與解吸;
適用於分離相對分子質量中等的油溶性試樣,對具有官能團的化合物和異構體有較高選擇性;
缺點:非線形等溫吸附常引起峰的拖尾;
2 液-液分配色譜
固定相與流動相均為液體(互不相溶)
分離原理:組分在固定相和流動相上的分配
流動相:對於親水性固定液,採用疏水性流動相,即流動相的極性小於固定液的極性(正相 normal phase),反之,流動相的極性大於固定液的極性(反相 reverse phase)。正相與反相的出峰順序相反;
固定相:早期塗漬固定液,固定液流失,較少採用
化學鍵合固定相:(將各種不同基團通過化學反應鍵合到硅膠(擔體)表面的游離羥基上。C-18柱(反相柱)
3 離子交換色譜
固定相:陰離子離子交換樹脂與陽離子離子交換樹脂
流動相:陰離子離子交換樹脂作固定相,採用酸性水溶液;陽離子離子交換樹脂作固定相,採用鹼性水溶液
分離原理:組分在固定相上發生的反復離子交換反應;組分與離子交換劑之間親和力的大小與離子半徑、電荷、存在形式等有關。親和力大,保留時間長;
陽離子交換:R-SO3H+M+ = R-SO3M+ H+
陰離子交換:R-NR4OH + X - =R-NR4X+ OH-
應用:離子及可離解的化合物,氨基酸,核酸等。
4 離子色譜
離子色譜是在20世紀70年代中期發展起來的一種技術,其與離子交換色譜的區別是其採用了特製的、具有較低交換容量的離子交換樹脂作為柱填料,並採用淋洗液抑制技術和電導檢測器,是測定混合陰離子的有效方法。
固定相:交換容量非常低的特製離子交換樹脂
分離原理:離子交換原理
5 離子對色譜
分離原理:將一種(或多種)與溶質離子電荷相反的離子(對離子或反離子)加到流動相中使其與溶質離子結合形成疏水性離子對化合物,使其能夠在兩相之間進行分配
陰離子分離:常採用烷基銨類,如氫氧化四丁基銨或氫氧化十六烷基三甲胺作為對離子
陽離子分離:常採用烷基磺酸類,如己烷磺酸鈉作為對離子
反相離子對色譜:非極性的疏水固定相(C-18柱),含有對離子Y+的甲醇-水或乙腈-水作為流動相,試樣離子X-進入流動相後,生成疏水性離子對Y+X-後:在兩相間分配
6 排阻色譜
固定相:凝膠(具有一定大小孔隙分布)
分離原理:按分子大小分離。小分子可以擴散到凝膠孔隙,由其中通過,出峰最慢。中等分子只能通過部分凝膠孔隙,中蘇通過;而大分子被排斥在外,出峰最快;溶劑分子小,故在最後出峰。
全部在死體積前出峰;
可對相對分子質量在100-105范圍內的化合物按質量分離。
7 親和色譜
分離原理:利用生物大分子和固定相表面存在的某種特異性親和力,進行選擇性分離。
先在載體表面鍵合上一種具有一般反應性能的所謂間隔臂(環氧、聯胺等),再連接上配基(酶、抗原等),這種固載化的配基將只能和具有親和力特性吸附的生物大分子作用而被保留,改變淋洗液後洗脫。
具體信息請參考:http://www.labgou.com/ke/?p=247
❹ 誰能告訴我一下反向液相色譜的工作原理嗎它與正向的有什麼區別嗎
高效液相色譜法按分離機制的不同分為液固吸附色譜法、液液分配色譜法(正相與反相)、離子交換色譜法、離子對色譜法及分子排阻色譜法。
1.液固色譜法 使用固體吸附劑,被分離組分在色譜柱上分離原理是根據固定相對組分吸附力大小不同而分離。分離過程是一個吸附-解吸附的平衡過程。常用的吸附劑為硅膠或氧化鋁,粒度5~10μm。適用於分離分子量200~1000的組分,大多數用於非離子型化合物,離子型化合物易產生拖尾。常用於分離同分異構體。
2.液液色譜法 使用將特定的液態物質塗於擔體表面,或化學鍵合於擔體表面而形成的固定相,分離原理是根據被分離的組分在流動相和固定相中溶解度不同而分離。分離過程是一個分配平衡過程。
塗布式固定相應具有良好的惰性;流動相必須預先用固定相飽和,以減少固定相從擔體表面流失;溫度的變化和不同批號流動相的區別常引起柱子的變化;另外在流動相中存在的固定相也使樣品的分離和收集復雜化。由於塗布式固定相很難避免固定液流失,現在已很少採用。現在多採用的是化學鍵合固定相,如C18、C8、氨基柱、氰基柱和苯基柱。
液液色譜法按固定相和流動相的極性不同可分為正相色譜法(NPC)和反相色譜法(RPC)。
正相色譜法 採用極性固定相(如聚乙二醇、氨基與腈基鍵合相);流動相為相對非極性的疏水性溶劑(烷烴類如正已烷、環已烷),常加入乙醇、異丙醇、四氫呋喃、三氯甲烷等以調節組分的保留時間。常用於分離中等極性和極性較強的化合物(如酚類、胺類、羰基類及氨基酸類等)。
反相色譜法 一般用非極性固定相(如C18、C8);流動相為水或緩沖液,常加入甲醇、乙腈、異丙醇、丙酮、四氫呋喃等與水互溶的有機溶劑以調節保留時間。適用於分離非極性和極性較弱的化合物。RPC在現代液相色譜中應用最為廣泛,據統計,它占整個HPLC應用的80%左右。
隨著柱填料的快速發展,反相色譜法的應用范圍逐漸擴大,現已應用於某些無機樣品或易解離樣品的分析。為控制樣品在分析過程的解離,常用緩沖液控制流動相的pH值。但需要注意的是,C18和C8使用的pH值通常為2.5~7.5(2~8),太高的pH值會使硅膠溶解,太低的pH值會使鍵合的烷基脫落。有報告新商品柱可在pH 1.5~10范圍操作。
正相色譜法與反相色譜法比較表
正相色譜法 反相色譜法
固定相極性 高~中 中~低
流動相極性 低~中 中~高
組分洗脫次序 極性小先洗出 極性大先洗出
從上表可看出,當極性為中等時正相色譜法與反相色譜法沒有明顯的界線(如氨基鍵合固定相)。
3.離子交換色譜法 固定相是離子交換樹脂,常用苯乙烯與二乙烯交聯形成的聚合物骨架,在表面未端芳環上接上羧基、磺酸基(稱陽離子交換樹脂)或季氨基(陰離子交換樹脂)。被分離組分在色譜柱上分離原理是樹脂上可電離離子與流動相中具有相同電荷的離子及被測組分的離子進行可逆交換,根據各離子與離子交換基團具有不同的電荷吸引力而分離。
緩沖液常用作離子交換色譜的流動相。被分離組分在離子交換柱中的保留時間除跟組分離子與樹脂上的離子交換基團作用強弱有關外,它還受流動相的pH值和離子強度影響。pH值可改變化合物的解離程度,進而影響其與固定相的作用。流動相的鹽濃度大,則離子強度高,不利於樣品的解離,導致樣品較快流出。
離子交換色譜法主要用於分析有機酸、氨基酸、多肽及核酸。
4.離子對色譜法 又稱偶離子色譜法,是液液色譜法的分支。它是根據被測組分離子與離子對試劑離子形成中性的離子對化合物後,在非極性固定相中溶解度增大,從而使其分離效果改善。主要用於分析離子強度大的酸鹼物質。
分析鹼性物質常用的離子對試劑為烷基磺酸鹽,如戊烷磺酸鈉、辛烷磺酸鈉等。另外高氯酸、三氟乙酸也可與多種鹼性樣品形成很強的離子對。
分析酸性物質常用四丁基季銨鹽,如四丁基溴化銨、四丁基銨磷酸鹽。
離子對色譜法常用ODS柱(即C18),流動相為甲醇-水或乙腈-水,水中加入3~10 mmol/L的離子對試劑,在一定的pH值范圍內進行分離。被測組分保時間與離子對性質、濃度、流動相組成及其pH值、離子強度有關。
5.排阻色譜法 固定相是有一定孔徑的多孔性填料,流動相是可以溶解樣品的溶劑。小分子量的化合物可以進入孔中,滯留時間長;大分子量的化合物不能進入孔中,直接隨流動相流出。它利用分子篩對分子量大小不同的各組分排阻能力的差異而完成分離。常用於分離高分子化合物,如組織提取物、多肽、蛋白質、核酸等。
色譜法的基本原理
利用樣品混合物中各組分理、化性質的差異,各組分程度不同的分配到互不相溶的兩相中。當兩相相對運動時,各組分在兩相中反復多次重新分配,結果使混合物得到分離。
兩相中,固定不動的一相稱固定相;移動的一相稱流動相。
分類:
根據流動相分—以氣體作流動相—氣相色譜——固定相為液體 氣-液色譜
固定相為固體 氣-固色譜
—以液體作流動相—液相色譜——固定相為液體 液-液色譜
固定相為固體 液-固色譜
—當流動相是在接近它的臨界溫度和壓力下工作的液體時——超臨界色譜
根據固定相的附著方式
—固定相裝在圓柱管中—柱色譜
—固定相塗敷在玻璃或金屬板上—薄膜色譜(平板色譜)
—液體固定相塗在紙上—紙色譜(平板色譜)
根據分離機理
—分配色譜—樣品組分的分配系數不同
—吸附色譜— 樣品組分對固定相表面吸附力不同
—體積排阻色譜—利用固定相孔徑不同,把樣品組分按分子大小分開
—離子交換色譜—不同離子與固定相商相反電荷間的作用力大小不同
根據極性
—流動相極性>固定相極性-反相色譜
—流動相極性<固定相極性-正相色譜
氣相色譜只適合分析較易揮發、且化學性質穩定的有機化合物,而HPLC則適合於分析那些用氣相色譜難以分析的物質,如揮發性差、極性強、具有生物活性、熱穩定性差的物質。所以,HPLC的應用范圍已經遠遠超過氣相色譜。
一、吸附色譜(adsorption chromatography)
又叫液固色譜法:流動相是液體,固定相是固體。
分離原理:固定相是固體吸附劑,吸附劑是多孔性微粒物質表面有吸附中心。樣品組分與流動相競爭吸附中 心。各組分的吸附能力不同,使組分在固定相中產生保留時間不同和實現分離。
固定相: 固定相通常是強極性的硅膠、氧化鋁、活性炭、聚乙烯、聚醯胺等固體吸附劑。活性硅膠最常用。
流動相: 弱極性有機溶劑或非極性溶劑與極性溶劑的混合物,如正構烷烴(己烷、戊烷、庚烷等)、二氯甲 烷/甲醇、乙酸乙酯/乙腈等。
應用: 對於極性,結構異構體分離和族分離仍是最有效的方法,如農葯異構體分離、石油中烷、烯、芳烴的 分離。 缺點是容易產生不對稱峰和拖尾現象。
二、分配色譜
原理: 固定液機械的吸附在惰性載體上,樣品分子依據他們在流動相和固定相間的溶解度不同,分別進入兩相分配而實現分離。
固定相:將一種極性或非極性固定液吸附在惰性固相載體上。如全多孔微粒硅膠吸附劑。
根據極性不同分類:正相分配色譜—固定相載體上塗布的是極性固定液;
流動相是非極性溶劑;
可分立極性較強的水溶性樣品;
弱極性組分先洗脫出來。
反相分配色譜—固定相載體上塗布的是非極性或弱極性固定液;
流動相是極性溶劑;
強極性組分先洗脫出來。
液-液分配色譜固定相中的固定液體往往容易溶解到流動相中去,所以重現性很差,且不能進行梯度洗脫,已經不大為人們所採用。
三、鍵合相色譜
考慮分配色譜法中固定液的缺點,因此將各種不同的有機關能團通過化學反應共價結合到固定相惰性載體上,固定相就不會溶解到流動相中去了。
鍵合固定相優點:○ 對極性有機溶劑有良好的化學穩定性
○使色譜柱的柱效高、壽命長
○實驗重現性好
○幾乎適於各種類相的有機化合物的分離,尤其是k』寬范圍的樣品
○可以梯度洗脫
根據極性不同分類:正相鍵合相色譜—固定相極性>流動相極性
固定相:二醇基、醚基、氰基、氨基等極性基團的有機分子。
適於分離脂榮、水溶性的極性、強極性化合物
反相鍵合相色譜—固定相極性<流動相極性
固定相:烷基、苯基等非極性有機分子。如最常用的ODS柱或C18柱就 是最典型的代表,其極性很小。
適於分離非機性、弱極性離子型樣品,
是當今液相色譜的最主要分離模式。
正相HPLC(normal phase HPLC):
是由極性固定相和非極性(或弱極性)流動相所組成的HPLC體系。其代表性的固定相是改性硅膠、氰基柱等,代表性的流動相是正己烷。吸附色譜也屬正相HPLC。
反相HPLC(reversed phase HPLC):
由非極性固定相和極性流動相所組成的液相色譜體系,與正相HPLC體系正好相反。其代表性的固定相是十八烷基鍵合硅膠(ODS柱,Octa Decyltrichloro Silane),代表性的流動相是甲醇和乙腈。
四、體積排阻色譜(SEC,size exclusion chromatograghy)
(又稱凝膠色譜和分子篩色譜)
原理: 以多孔凝膠(如葡萄糖,瓊脂糖,硅膠,聚丙烯醯胺等)作固定相,依據樣品分子量大小達到分離目 的。大分子不進入凝膠孔洞,沿多孔凝膠膠粒間隙流出,先被洗脫;小分子進入大部分凝膠孔洞, 在柱中被強滯留,後被洗脫。
根據樣品性質分類:凝膠過濾(GFC)—用於分析水溶性樣品,如多肽、蛋白、生物酶、寡聚核苷酸、多聚核 苷酸、多糖。
凝膠滲透(GPC)—用於分析脂溶性樣品,如測定高聚物的分子量。
SEC主要依據分子量大小進行分離,因此與樣品、流動相間的相互作用無關。因此不採用改變流動相的組成來改善分離度。
五、離子交換色譜
(ion exchange chromatography, IEC)
分離原理:使用表面有離子交換基團的離子交換劑作為固定相。帶負電荷的交換基團(如磺酸基和羧酸基)可以用於陽離子的分離;帶正電荷的交換基團(如季胺鹽)可以用於陰離子的分離。不同離子與交換基的作用力大小不同,在樹脂中的保留時間長短不同,從而被相互分離。
❺ 高效液相色譜法的主要類型有哪些
高效液相色譜法分為:液-固色譜法、液-液色譜法、離子交換色譜法、凝膠色譜法。
1、液-固色譜法(液-固吸附色譜法)
固定相是固體吸附劑,它是根據物質在固定相上的吸附作用不同來進行分配的。
①液-固色譜法的作用機制
吸附劑:一些多孔的固體顆粒物質,其表面常存在分散的吸附中心點。
流動相中的溶質分子X(液相)被流動相S帶入色譜柱後,在隨載液流動的過程中,發生如下交換反應:
X(液相)+nS(吸附)<==>X(吸附)+nS(液相) 其作用機制是溶質分子X(液相)和溶劑分子S(液相)對吸附劑活性表面的競爭吸附。
吸附反應的平衡常數K為:
K值較小:溶劑分子吸附力很強,被吸附的溶質分子很少,先流出色譜柱。 K值較大:表示該組分分子的吸附能力較強,後流出色譜柱。
發生在吸附劑表面上的吸附-解吸平衡,就是液-固色譜分離的基礎。
②液-固色譜法的吸附劑和流動相
常用的液-固色譜吸附劑:薄膜型硅膠、全多孔型硅膠、薄膜型氧化鋁、全多孔型氧化鋁、分子篩、聚醯胺等。
一般規律:對於固定相而言,非極性分子與極性吸附劑(如硅膠、氧化銅)之間的作用力很弱,分配比k較小,保留時間較短;但極性分子與極性吸附劑之間的作用力很強,分配比k大,保留時間長。
對流動相的基本要求: 試樣要能夠溶於流動相中 流動相粘度較小
流動相不能影響試樣的檢測
常用的流動相:甲醇、乙醚、苯、乙腈、乙酸乙酯、吡啶等。
③液-固色譜法的應用
常用於分離極性不同的化合物、含有不同類型或不;數量官能團的有機化合物,以及有機化合物的不同的異構體;但液-固色譜法不宜用於分離同系物,因為液-固色譜對不同相對分子質量的同系物選擇性不高。
2、液-液色譜法(液-液分配色譜法)
將液體固定液塗漬在擔體上作為固定相。
①液-液色譜法的作用機制 溶質在兩相間進行分配時,在固定液中溶解度較小的組分較難進入固定液,在色譜柱中向前遷移速度較快;在固定液中溶解度較大的組分容易進入固定液,在色譜柱中向前遷移速度較慢,從而達到分離的目的。
液-液色譜法與液-液萃取法的基本原理相同,均服從分配定律:K=C固/C液 K值大的組分,保留時間長,後流出色譜柱。
②正相色譜和反相色譜
正相分配色譜用極性物質作固定相,非極性溶劑(如苯、正己烷等)作流動相。 反相分配色譜用非極性物質作固定相,極性溶劑(如水、甲醇、己腈等)作流動相。
一般地,正相色譜是固定液的極性大於流動相的極性,而反相色譜是固定相的極性小於流動相的極性。正相色譜適宜於分離極性化合物,反相色譜則適宜於分離非極性或弱極性化合物。
③液-液色譜法的固定相 常用的固定液為有機液體,如極性的β,β′氧二丙腈(ODPN),非極性的十八烷(ODS)和異二十烷(SQ)等。
缺點:塗漬固定液容易被流動相沖掉。 採用化學鍵合固定相則可以避免上述缺點。
使固定濃與擔體之間形成化學鍵,例如在硅膠表面利用硅烷化反應:形成Si-O-Si-C型鍵,把固定液的分子結合到擔體表面上。
優點:
化學鍵合固定相無液坑,液層薄,傳質速度快,無固定液的流失。 固定液上可以結合不同的官能團,改善分離效能。 固定液不會溶於流動相,有利於進行梯度洗提。
④液-液色譜法的應用
液-液色譜法既能分離極性化合物,又能分離非極性化合物,如烷烴、烯烴、芳烴、稠環、染料、留族等化合物。化合物中取代基的數目或性質不同,或化合物的相對分子質量不同,均可以用液-液色譜進行分離。
3、離子交換色譜法
原理:離子交換色譜法是基於離子交換樹脂上可電離的離子與流動相中具有相同電荷的被測離子進行可逆交換,由於被測離子在交換劑上具有不同的親和力(作用力)而被分離。
①離子交換色譜法的作用機制
聚合物的分子骨架上連接著活性基團,如:-SO3-,-N(CH3)3+等。為了保持離子交換樹脂的電中性,活性基團上帶有電荷數相同但正、負號相反的離子X,稱為反離子。
②溶劑和固定相
兩種類型:多孔性樹脂與薄殼型樹脂。
多孔性樹脂:極小的球型離子交換樹脂,能分離復雜樣品,進樣量較大;缺點是機械強度不高,不能耐受壓力。
薄殼型離子交換樹脂:在玻璃微球上塗以薄層的離子交換樹脂,這種樹脂柱效高,當流動相成分發生變化時,不會膨脹或壓縮;缺點是但柱子容量小,進樣量不宜太多。
③離子交換色譜法的應用
主要用來分離離子或可離解的化合物,凡是在流動相中能夠電離的物質都可以用離子交換色譜法進行分離。
廣泛地應用於:無機離子、有機化合物和生物物質(如氨基酸、核酸、蛋白質等)的分離。 4.凝膚色譜法(空間排阻色譜法)
凝膠是一種多孔性的高分子聚合體,表面布滿孔隙,能被流動相浸潤,吸附性很小。凝膠色譜法的分離機制是根據分子的體積大小和形狀不同而達到分離目的。
①凝膠色譜法的作用機制
體積大於凝膠孔隙的分子,由於不能進入孔隙而被排阻,直接從表面流過,先流出色譜柱;小分子可以滲入大大小小的凝膠孔隙中而完全不受排阻,然後又從孔隙中出來隨載液流動,後流出色譜柱;中等體積的分子可以滲入較大的孔隙中,但受到較小孔隙的排阻,介乎上述兩種情況之間。
凝膠色譜法是一種按分子尺寸大小的順序進行分離的一種色譜分析方法。
②凝膠色譜法的固定相
軟質凝膠、半硬質凝膠和硬質凝膠三種。
③凝膠色譜法的應用特點
保留時間是分子尺寸的函數,適宜於分離相對分子質量大的化合物,相對分子質量在400~8×105的任何類型的化合物。
保留時間短,色譜峰窄,容易檢測。
固定相與溶質分子間的作用力極弱,趁於零,柱的壽命長。
不能分辨分子大小相近的化合物,分子量相差需在10%以上時才能得到分離。
❻ 離子交換色譜法的流動相
離子交換色譜的流動相最常使用水緩沖溶液,有時也使用有機溶劑如甲醇,或乙專醇同水緩屬沖溶液混合使用,以提供特殊的選擇性,並改善樣品的溶解度。
離子交換色譜所用的緩沖液,通常用下列化合物配製:鈉、鉀、鋇的檸檬酸鹽,磷酸鹽,甲酸鹽與其相應的酸混合成酸性緩沖液或氫氧化鈉混合成鹼性緩沖液等。
❼ HPLC用於分析生物鹼應該注意什麼
1、生物鹼HPLC的分析模式
根據HPLC分析生物鹼時所使用固定相性質、流動相組成及極性不同,其分析模式大致可分為:正相吸附色譜法、正相硅膠反相洗脫系統色譜法、反相色譜法及離子交換色譜法。
正相吸附色譜法:通常以硅膠基質為吸附固定相,流動相為不同極性的有機溶劑或不同比例混合溶劑,分離過程主要依靠生物鹼與吸附劑吸附作用的差異實現,為了改善分離,提高溶洗脫能力,常於流動相中加濃氨液、二乙胺、三乙胺等。該法應用於生物鹼分析的文獻較少。
正相硅膠一反相洗脫系統色譜法(NS-RE):通常採用未經化學改性的普通硅膠為固定相,以極性有機溶劑(甲醇、乙腈)和高pH緩沖溶液為流動相,分析包括生物鹼在內的鹼性葯物。該法柱效高,峰形對稱,是簡便有效的方法。在實際應用中,流動相的組成是主要的影響因素,流動相中除含有調節pH 的緩沖鹽外,有時還要三乙胺、溴化四丁基銨等競爭離子或烷基磺酸鈉等對離子。因此,影響保留與分離的主要因素是流動相pH、競爭離子種類及濃度 。
反相高效液相色譜法(RP-HPLC):近年來RP-HPLC應用於生物鹼分析方面的文獻很多,已成為常規的方法。但普通存在色譜峰的展寬拖尾,導致分離效能低,這主要緣於生物鹼結構中鹼性氮原子與固定相未鍵台酸性硅醇基的相互作用。即使是所測生物鹼在較低濃度下,仍常產生峰漂移及峰對稱性差等現象。針對此缺陷,研究工作者從適用於鹼性物質分析的反相填料的設計選擇,流動相中緩沖鹽的使用,流動相添加劑(離子對試劑、有機胺改性劑)等幾方面進行了較為廣泛細致的研究,並取得了一定的進展。
離子交換色譜法:該法以陽離子交換樹脂為固定相,利用質子化的生物鹼陽離子與離子交換劑交換能力的差異而達到分離生物鹼的目的,有關生物鹼高效液相離子交換色譜法的應用報道較少。
2、生物鹼HPLC分析檢測方法
目前,生物鹼HPLC分析檢測方式多以紫外法為主,在定性分析方面,紫外法檢測選擇性低,定性專屬性差。隨著二極體陣列檢測器使用的普及,顯著提高了液相分析檢測的選擇性。此外,根據生物鹼的理化性質,其它檢測方式如熒光法、電化學法、蒸發光散射法亦得到了應用。近年來,液相色譜-質譜聯用技術已應用於生物鹼分析,增強了對生物鹼的定性檢測能力,提高了檢測靈敏度。新的介面技術及離子化方法的發展.使得HPLC-MS在生物鹼的分析中得到較廣泛的應用,近年的文獻報道日漸增多。
3、生物鹼HPLC分析的樣品處理方法
因生物鹼常具有一定的鹼性,一般常用鹼化液液萃取或酸水提取等方法從中草葯、中成葯及生物樣品等較復雜體系中提取純化,以達到富集和去除雜質的目的。近年來,固相萃取(SPE)技術及超臨界流體萃取等現代提取純化技術亦應用於樣品的提取純化。
❽ 色譜分析中柱長與分離度的關系
色譜分析來分離度R與柱長L的平方根成正自比。
色譜分析是指按物質在固定相與流動相間分配系數的差別而進行分離、分析的方法。其按流動相的分子聚集狀態可分為液相色譜、氣相色譜及超臨界流體色譜法等。按分離原理可分為吸附、分配、空間排斥、離子交換、親合及手性色譜法等諸多類別。按操作原理可分為柱色譜法及平板色譜法等。色譜法已成為應用最廣、葯典收載最多的一類分析方法。
(8)離子交換色譜流動相有哪些原則擴展閱讀:
色譜分析有兩個要素——流動相和固定相。在流動相從固定相的一端流到另一端的過程中,加在固定相起始端的溶質隨流動相流動,並在流動相和固定相之間來回轉移。不同的溶質與這兩相的親和力大小不同,溶質的移動速度也不同,因而得到分離。固定相一般是固體,也可以是固體上附著液體;流動相是液體或氣體。
色譜分析具有很多優點:分離效果好,設備簡單,操作方便,條件較溫和,方法多樣,能適應不同的需要。其缺點主要是:處理量小,周期長,不能連續操作;有的層析介質價格昂貴,有時找不到合適的介質。