當前位置:首頁 » 廢水回用 » 污水處理水生植物

污水處理水生植物

發布時間: 2021-03-08 20:14:45

⑴ 人工濕地污水處理系統上面應該種植哪些植

沒有泥巴,種不了樹了。只能在水面養些水生植物或水草類,如水葫蘆版、金魚藻、苦草、輪葉黑藻權、逸樂草、菊花草、狐尾草、紅蓮子草、玉嬋花、花葉蘆竹、歐洲蘆荻、傘草、梭魚草、紫莖芋、再力花、歐洲慈姑、黃菖蒲、花葉水蔥、睡蓮、荷花、千屈菜、澤瀉、香蒲等。

⑵ 可凈化水體污染的水生植物

通過分析水生植物對水中氮、磷等營養元素和污染物的吸收及分解作用,可選擇不同的水生植物及其組合來適應不同的受污染水體。

1、水生大型植物富集氮磷是治理、調節和抑制湖泊富營養化的有效途徑之一,通過根部吸收底質中的氮磷,減少污染。沉水植物對滇池草海水體(含底泥)總氮去除速率:物種去除能力的大小順序依次為伊樂藻>苦草>狐尾藻>篦齒眼子菜>金魚藻>菹草>輪藻。

2、藻類、浮萍、石蓮花等植物可以大量富集水中的重金屬,不過會造成植物死亡,沿食物鏈沉積。

3、荷花、蘆葦、水蔥、蒲草等挺水植物也能夠起到凈化水質的作用,還具有觀賞作用。

⑶ 污水處理池裡面的植物是什麼有什麼作用

沒有泥巴,種不了樹了。只能在水面養些水生植物或水草類,如水葫蘆、版金魚藻、苦草、輪葉權黑藻、逸樂草、菊花草、狐尾草、紅蓮子草、玉嬋花、花葉蘆竹、歐洲蘆荻、傘草、梭魚草、紫莖芋、再力花、歐洲慈姑、黃菖蒲、花葉水蔥、睡蓮、荷花、千屈菜、澤瀉、香蒲等。

⑷ 如何利用植物凈化污水

用人工濕地的方法可以有效的凈化污水!

  1. 人工濕地中的植物,可分為浮水植物、專沉水植物和挺屬水植物三類,

  2. 選擇植物是要根據:耐污凈化能力強,抗凍、抗熱、抗病蟲害等抗逆性強,根系發達適應性強,經濟和觀賞綜合利用價值高,利於物種間的搭配,易於管理方面選擇。

  3. 植物去污機理:第一,直接吸收利用污水中的N、P等營養物質,吸附和富集污水中的重金屬鉛(Pb)、鎘(Cd)、汞(Hg)、砷(As)等有害物質;第二,輸送氧氣到植物根區,為微生物生長、繁殖和降解反應提供氧氣;第三,增強和維持水體的水力傳輸能力。另外,人工濕地植物還具有其他作用:維持系統的穩定;釋放促進生物化學反應的酶和影響酶的分布;濕地植物的抑澡作用;濕地植物的景觀效應;經濟和生態價值等。

⑸ 什麼植物能夠凈化水

常見的凈水植物種類有藨草、蘆葦、香蒲、燈心草、菖蒲、莎草、荊三棱、茭草、水花生和田邊草。我國運用的最多的為蘆葦、香蒲等少量種類,各地對濕地植物的選擇一定程度上依賴於經驗,而對各種植物應用於污水處理的效果的系統研究較為缺乏。

⑹ 人工濕地污水處理系統上面應該種植哪些植物

沒有泥巴,種來不了樹自了。只能在水面養些水生植物或水草類,如水葫蘆、金魚藻、苦草、輪葉黑藻、逸樂草、菊花草、狐尾草、紅蓮子草、玉嬋花、花葉蘆竹、歐洲蘆荻、傘草、梭魚草、紫莖芋、再力花、歐洲慈姑、黃菖蒲、花葉水蔥、睡蓮、荷花、千屈菜、澤瀉、香蒲等。

⑺ 哪些水生植物可以凈化水體污染

《水生植物對污染物的清除及其應用》 人類的活動會使大量的工業、農業和生活廢棄物排入水中,使水受到污染。水污染可根據污染雜質的不同而主要分為化學性污染、物理性污染和生物性污染三大類,基本上以化學性污染為主。具體污染雜質有無機污染物質、無機有毒物質、有機有毒物質、植物營養物質等。而對於這些污染物的清除中,水生植物起著非常重要的作用。 水生植物指生理上依附於水環境、至少部分生殖周期發生在水中或水表面的植物類群。水生植物大致可區分為四類:挺水植物、沉水植物、浮葉植物與漂浮植物。而大型水生植物是除小型藻類以外所有水生植物類群。水生植物是水生態系統的重要組成部分和主要的初級生產者,對生態系統物質和能量的循環和傳遞起調控作用。它還可固定水中的懸浮物,並可起到潛在的去毒作用。水生植物在環境化學物質的積累、代謝、歸趨中的作用也是不可忽視的。用水生植物來監測水生污染、對污染物進行生態毒理學評價及其進入生物鏈以後的生物積累、修飾和轉運,對植物生態的保護和人畜健康方面有非常重要的意義[1]。 1 水生植物對污染物的清除 1.1 水生植物對氮磷的清除 湖泊富營養化已成為一個世界性的環境問題。利用水生大型植物富集氮磷是治理、調節和抑制湖泊富營養化的有效途徑之一。湖泊水環境包括水體和底質兩部分,水體中的氮磷可由生物殘體沉降、底泥吸附、沉積等遷移到底質中。對過去的營養狀況的追蹤表明,水生植物可調節溫度適中的淺水湖中水體的營養濃度[2]。而大型沉水植物則通過根部吸收底質中的氮磷,從而具有比浮水植物更強的富集氮磷的能力。沉水植物有著巨大的生物量,與環境進行著大量的物質和能量的交換,形成了十分龐大的環境容量和強有力的自凈能力。在沉水植物分布區內, COD、BOD,總磷、銨氮的含量都普遍遠低於其外無沉水植物的分布區 [3]。而漂浮植物的緻密生長使湖水復氧受阻,水中溶解氧大大降低,水體的自凈能力並未提高,且造成二次污染,影響航運。挺水植物則必須在濕地、淺灘,湖岸等處生長,即合適深度的繁衍場所,具有很大的局限性。 不同的沉水植物對水體中的總氮總磷均有顯著的去除作用。在關於常見沉水植物對滇池草海水體(含底泥)總氮去除速率的研究中發現:物種去除能力的大小順序依次為伊樂藻>苦草>狐尾藻>篦齒眼子菜>金魚藻>菹草>輪藻。隨著時間的延長,水體中總氮濃度呈負指數形式衰退,且在實驗的總氮濃度范圍內(2.628~16.667 mg/L)每種沉水植物的去除速率隨總氮濃度的增加而增加[4]。此外,黑藻(Hydrilla verticillata (L.f.) Royle)對磷的需求較低,並可利用重碳酸鹽作為光合作用的碳源[5]。 磷吸收是主動過程[6]。在亞熱帶濕地中,磷主要是在植物內流動,而氮主要是通過沉積作用和反硝化作用進行流動。對於夏季浮游植物(主要是外來藍藻),磷是限制因子。據推測:磷循環強烈依賴於大型植物的調節;底泥中磷的衰竭影響植物香蒲(Typha domingensis)的減少,而隨後磷的有效性的增加又使其重現[7]。在對東湖的圍隔實驗中,結果顯示了沉水植物在磷營養滯留物中的關鍵地位[8]。沉水植物均能從葉、根狀莖(主要是葉)來去除水中的標記碳,從而促進了流水生境中碳的吸收、遷移和釋放[9]。淡水沉水植物系統對營養物的去除有很好的作用:對氮主要是通過反硝化作用,對磷則是生物吸收和隨後的植株收獲[10]。 1.2 水生植物對重金屬的清除 水生植物對重金屬Zn、Cr、Pb、Cd、Co、Ni、Cu等有很強的吸收積累能力。眾多的研究表明,環境中的重金屬含量與植物組織中的重金屬含量成正相關,因此可以通過分析植物體內的重金屬來指示環境中的重金屬水平。戴全裕在20世紀80年代初從水生植物的角度對太湖進行了監測和評價,認為水生植物對湖泊重金屬具有監測能力。水生大型植物以其生長快速、吸收大量營養物的特點為降低水中重金屬含量提供了一個經濟可行的方法,例如可以通過控制浮萍(Lemna minor)的濃度使有機和金屬工業廢物的含量降低到最小 [11]。在室內實驗中,浮萍(Lemna gibba)可大幅度降低廢水中的鐵和鋅,對錳的去除效率達100%[12]。浮萍對重金屬的富集程度超過了藻類和被子植物Azolla filliculoides,尤其是鋅的富集系數很高,植株內的濃度比外面培養基內高2700倍[13]。 重金屬在植物體內的含量很低,且極不均勻。在同一湖泊中,不同種類的水生植物含量差別很大;同一種類在不同湖泊中,水生植物體內的重金屬含量相差也很大。水生植物的富集能力順序一般是:沉水植物>浮水植物>挺水植物。植物對重金屬的吸收是有選擇性的。當必需元素Zn和Cd與硫蛋白中巰基結合時,Cd可以置換Zn。所以Zn/Cd值是一個反映植物積累能力的很好指標,同時也間接地指示了對植物的破壞程度。實驗證明,沉水植物和浮水植物盡管能夠吸收很多重金屬,特別是Cd的吸收,但是這種吸收不斷增加會導致營養元素的喪失,如果程度嚴重,會導致植物死亡。所以沉水植物和浮水植物適合在低污染區域作為吸收重金屬的載體,同時可以監測水體重金屬含量[14]。 此外,水生植物會控制重金屬在植物體內的分布,使得更多的重金屬積累在根部。水生植物根部的重金屬含量一般都比莖葉部分高得多。但也有例外的情況,這可能與它們不同的吸收途徑有關。對藻類吸收可溶性金屬的動力學機制已經研究得比較清楚。藻類對金屬的吸收是分兩步進行的:第一步是被動的吸附過程(即在細胞表面的物理吸附或離子交換),發生時間極短,不需要任何代謝過程和能量提供;第二步可能是主動的吸收過程,與代謝活動有關,這一吸收過程是緩慢的,是藻細胞吸收重金屬離子的主要途徑。藻類大量富集重金屬,同時沿食物鏈向更高營養級轉移,造成潛在的危險,但另一方面,又可以利用這一特點來消除廢水中的污染。重金屬以各種途徑進入自然水體,其對水體危害是十分嚴重的,因此利用藻類凈化含重金屬廢水具有重要的意義[15]。 金屬不同於有機物,它不能被微生物所降解,只有通過生物的吸收得以從環境中除去。植物具有生物量大且易於後處理的優勢,因此利用植物對金屬污染位點進行修復是解決環境中重金屬污染問題的一個很重要的選擇。植物對重金屬污染位點的修復有三種方式:植物固定,植物揮發和植物吸收。植物通過這三種方式去除環境中的金屬離子。有關水生植物對放射性核素的積累也有報道,如Whicker等發現水生大型植物石蓮花(Hydrocotyle spp.)比其他15種水生植物積累137Cs和90Sr的能力強[16]。用拂尾藻(Najas graminea Del.)吸收銅、鉛、鎘、鎳等金屬發現,吸收過程在約0.01 min-1 恆定速率下與 Lagergren動力模型相關,同時平衡結果和朗繆爾(Langmuir)吸收等溫線相關[17] 。 1.3 水生植物對有毒有機污染物的清除 植物的存在有利於有機污染物質的降解。水生植物可能吸收和富集某些小分子有機污染物,更多的是通過促進物質的沉澱和促進微生物的分解作用來凈化水體。農業污染是一種「非點狀源」的污染,大多數農業污染物包括來自作物施肥或動物飼養地的氮磷以及農葯等。對除草劑莠去津來說,它在環境中大量存在,小溪中一般為1~5 μg/L,含量較高時為20 μg/L,而靠近農田的區域達500 μg/L,甚至1 mg/L[18]。水生大型植物常生長在施用點附近,農葯濃度很高,暴露時間很長,所以水生大型植物和浮游植物對於莠去津比無脊椎動物、浮游動物和魚類更敏感。高等植物雖不能礦化莠去津,但可以用不同的途徑來修飾。Zablotowics等[19]在研究藻類對伏草隆的降解中發現,纖維藻和月芽藻能使阿特拉津去烴基。衣、綠藻屬也能降解阿特拉津[20]。一種高忍耐性地衣(Parmelia sulcata Taylor)的藻層比率的變化可顯示出當地空氣污染的變化[21]。毒死蜱(chlorpyrifos)在伊樂藻(Elodea densa)和水體中的分布表明,水生植物可吸收有機成分並有將其從水生環境中去除的能力[22]。金魚藻(Ceratophyllum demersum)對滅害威的吸著能力的研究中,生長活躍的小枝是老枝吸收的5倍。膜構造及其完整性好象是重要的決定因子[23]。水生植物對RHC,DDT,PCBs殘留的吸收和積累中,果實比植株,葉比根貯存更多[24]。 某些植物也可降解TNT。據Best等報道,對受美國依阿華陸軍彈葯廠爆炸物所污染的地表水進行水生植物和濕地植物修復的篩選與應用研究中發現,狐尾藻屬植物(Myriophyllum aquaticum Vell verdc)的效果甚佳。Roxanne等研究了受TNT污染地表水的植物修復技術,在所用濃度為1、5、10 mg/kg的土壤條件下,與對照相比,利用植物的降解,移除量可達100%。William等研究了植物對三氯乙烯(TCE)污染淺層地下水系的氣化、代謝效應,結果發現,污染場所中所有採集的植物樣品都可檢測出TCE的氣化揮發以及3種中間產物。Aitchison等發現,水培條件下雜交楊的莖、葉可快速去除污染物1,4-二氧六環化合物,8 d內平均清除量達54%[25]。 多環芳香烴化合物(PAHs)是一大類有機毒性物質。在浮萍,紫萍,水葫蘆,水花生,細葉滿江紅等5種水生植物中,均受到萘的傷害,隨萘濃度的增加而傷害程度加深,其中水葫蘆受害最輕,所以對萘污染的凈化可作為首選對象。而浮萍的敏感性最大,可用作萘對水生植物的毒性檢測 [26]。此外水生植物也可有效消除雙酚、酞酸酯等環境激素和火箭發動機的燃料庚基的毒性。浮萍(Lemna gibba)在8 d內把90%的酚代謝為毒性更小的產物[27]。COD的去除效率由對照組的52%~60%上升為74%~78%[28]。鉻,銅,鋁等金屬的存在也可不同程度地影響浮萍對COD的去除效率[29]。 1.4 水生植物與其他生物的協同作用對污染物的清除 根系微生物與鳳眼蓮等植物有明顯的協同凈化作用。一些水生植物還可以通過通氣組織把氧氣自葉輸送到根部,然後擴散到周圍水中,供水中微生物,尤其是根際微生物呼吸和分解污染物之用。在鳳眼蓮、水浮蓮等植物根部,吸附有大量的微生物和浮游生物,大大增加了生物的多樣性,使不同種類污染物逐次得以凈化。利用固定化氮循環細菌技術(Immobilized Nitrogen CyclingBacteria,INCB),可使氮循環細菌從載體中不斷向水體釋放,並在水域中擴散,影響了水生高等植物根部的菌數,從而通過硝化-反硝化作用,進一步加強自然水體除氮能力和強化整個水生生態系統自凈能力。這對進一步研究健康水生生態系統退化的機理及其修復均具有重要意義[30]。 水生大型植物能抑制浮游植物的生長,從而降低藻類的現存量。在水生態環境中,水生高等植物對藻類的抑製作用較為明顯。主要表現在兩個方面:一是藻類數量急劇下降;二是藻類群落結構改變。水生植物與藻類在營養、光照、生存空間等方面存在競爭。除人工控制和低溫等條件下,一般是水生植物生長占優勢。 水生植物與藻類之間的相生相剋(異株克生現象)作用在污水凈化和水體生態優化方面有重要應用潛力。顧林娣等[31]發現苦草能分泌生化抑制物質,且抑製作用的大小和種植水濃度呈正相關。在淺水湖泊中種植苦草等高等植物,放養適量的魚類,這樣就既可以保護水質,又可以發展漁業生產,增加經濟效益。不僅如此,野外實驗和實驗室研究還表明,鳳眼蓮等水生植物還通過根系向水中分泌一系列有機化學物質。這些物質在水中含量極微的情況下即可影響藻類的形態、生理生化過程和生長繁殖,使藻類數量明顯減少。有害植物(Typha spp.)常覆蓋濕地和其他淡水環境,造成物種單一。這種香蒲侵入的一個重要機制就是向周圍環境中釋放相生相剋物質——植物毒素[32]。利用植物分泌物和植物周圍的微生物與藻類間的相生相剋關系,來去除藻類。這對於富營養化水體污染的防治和治理,水生態系的恢復和重建很有意義[33]。 1.5 水生植物的其他凈水(改善水質)功能 水生植物在不同的營養級水平上存在維持水體清潔和自身優勢穩定狀態的機制:水生植物有過量吸收營養物質的特性,可降低水體營養水平;減少因為攝食底棲生物的魚類所引起沉積物重懸浮,降低濁度。水生植物的改善水質的功能,如穩定底泥、抑藻抑菌等,也具有重要的實踐意義。氧氣是一種非常重要的物質。水體富營養化引起的藻類水華造成水體透明度降低,飲用水質量下降。組織缺氧使大型植物退化,減少了水生植物多樣性。海洋底層大陸架的缺氧,使海底生物大量死亡,給當地經濟和人類生存帶來了嚴重的威脅。沉水植物與沉積物、水體流動間有緊密聯系。在生態系統中,它能起到提高水質,穩定底泥,減小渾濁的作用[34]。 2 水生植物在污染治理中的應用 2.1 人工濕地 介質、水生植物和微生物是人工濕地的主要組成部分。其中的水生植物除直接吸收利用污水中的營養物質及吸附、富集一些有毒有害物質外,還有輸送氧氣至根區和維持水力傳輸的作用。而且水生植物的存在有利於微生物在人工濕地縱深的擴展。污水中的氮一部分被植物吸收作用去除,同時可利用態磷也能被植物直接吸收和利用。通過對水生經濟作物的不斷收獲,從而移出氮、磷等污染物。同時發達的水生植物根系為微生物和微型動植物提供了良好的微生態環境,它們的大量繁殖為污染有機物的高效降解、遷移和轉化提供了保證。介質、水生植物和微生物的有機組合,相互聯系和互為因果的關系形成了人工濕地的統一體,強化了濕地凈化污水的功能[35]。 利用人工濕地和水生大型植物來凈化水體,作為一種凈化技術,日益受到關注。它可以創立豐富的生態系統和最小的環境輸出。可以保護環境,具有運行費用低和令人滿意的凈化效率等特點。一個水生植物系統需要大量區域、設計規格和維護方法,從而達到單位面積上的最適宜的優化效應。這在日本的琵琶湖(Lake Kasumigaura)已經進行了三年的實驗[36]。在匈牙利,人工濕地主要有三種類型:空白水面系統、潛流系統和人工漂移草地系統。在Nyirbogdány的污水處理系統中,COD的去除速率平均約為60%,水質達自然水體標准[37]。 2.2 生物修復 生物修復(Bioremediation)是新近發展起來的一項清潔環境的低投資、高效益、應用方便、發展潛力較大的新興技術。它利用特定的生物(植物,微生物或原生動物)吸收,轉化,清除或降解環境污染物,實現環境凈化,生態效應恢復的生物措施。對無機(主要是重金屬)污染的生物修復主要是通過植物途徑,又稱植物修復(Phytoremediation),而對有機污染的生物修復則主要靠微生物的降解,吸收與轉化等途徑。雖然強調限制性排放,加強廢物管理,然而隨著人口的持續增長,工農業的迅速發展以及都市化的不斷擴大,對水體的有機污染仍呈大幅度增長趨勢。特別是近年來大量使用生物異源物質(Xenobiotics),因抗性強,難以被微生物分解,使污染環境的恢復更加困難[38]。 2.3 穩定塘 穩定塘法也叫生物塘、氧化塘,是通過人工控制生物氧化過程來進行污水處理的工藝,具有基建投資少、處理過程簡單、易管理等特點,在中小型常規污水處理領域具有廣泛的應用前景。它主要利用菌藻的共同作用處理廢水中的有機污染物。穩定塘可用於生活污水、農葯廢水、食品工業廢水和造紙廢水等的處理,效果顯著穩定。吳振斌等[39,40]用綜合生物塘系統處理城鎮污水,結果發現COD、BOD、TSS、N、P等污染組分去除效率較高,細菌、病毒及誘變活性明顯下降。在污水凈化的同時,收獲大量的水生植物及魚,蚌等水產品。 小型綜合強化氧化塘通過採用物理化學與生物相結合的方法,將爐渣吸附和水生植物水葫蘆運用於氧化塘處理印染廢水,取得了良好的效果,COD 去除率達76.5%,色度脫色率高達96.9%。經處理後的廢水達到國家綜合排放一級標准。而單位處理量投資和運行費用只有活性污泥法的1/10,因此採用這種方式投資省、運轉費用低、處理效果好、管理方便、環境與經濟效益顯著[41]。另外,從小規模生產實驗可以得出,應用好氧接觸氧化,顫藻附著生物床和水生植物聯合的生物處理新工藝對去除雞糞厭氧發酵液中的COD,氨氮和其他如磷、鉀、錳、鋅、鎂元素及色素等有很好的效果,能使處理後的廢水達GB 8978—88污水綜合排放標准。其中顫藻附著生物床脫氮效果最好,且可回收作為良好的牲畜飼料。而水生植物塘由於漂浮植物體的龐大的須根系,極高的生長速率和巨大的生物量都有利於吸附、吸收水中的污染物,從而對COD的去除作用較強,平均達71.7%[42]。 2.4 水質凈化 水質凈化技術已成為養魚工業可持續發展的瓶頸與籌碼。20世紀80年代以來,已有利用浮游植物凈化養殖污水的研究報道。但因藻水分離困難,使這種微藻凈水模式在循環水養魚系統中的應用受到限制。而大型植物則具有凈化水質、節省能源和收獲餌料的綜合效果[43]。高等水生植物對水環境中的污染物具有較強的吸收作用,其效能因植物種類及處理組合方式不同而異。高等水生植物凈水效果的高低依賴於各自生理活性的增強(主要體現在酶活性的提高)。 鳳眼蓮、水浮蓮、紫萍等植物在溫暖季節生長繁殖極快,能迅速覆蓋水面,凈化效果好。水花生、蘆葦等抗性較強,種群密度大,凈化效果較好,並具有抵抗風浪和分隔水面等功能。伊樂藻,菹草等沉水植物在水下生長不影響水的透光,還通過光合作用向水中提供大量氧氣,並且在低溫季節也可很好生長。水花生、槐葉萍、浮萍等植物的抗寒性較強。蓮藕等本身即具有一定的經濟價值[44]。 2.5 湖泊治理與植被修復 沉水植物可以明顯改善水體的理化性質。它的存在有效降低了顆粒性物質的含量,可改善水下光照條件,使透明度保持在較高水平,水體電導率也相對較低。水生植物還可以增強底質的穩定和固著。有人發現在熱帶地區,把水生植物和生物固定膜結合起來的處理系統在適宜的地帶非常地適用[45]。在比利時的佛來德斯的eekhoven水庫,水生植物還被用於預過濾停滯水庫的生物調節[46]。在乾燥氣候下,兩種高等水生植物Typha latifolia 和Juncus subulatus 都表現出較高的凈化效率,其多孔性也有助於污水的過濾[47]。 對於淺水湖泊而言,重建水生植被是富營養化治理和湖泊生態恢復的重要措施。我國的湖泊已有約65%呈現富營養狀態,還有約29%正在轉向富營養狀態。對其治理,必須考慮利用水生植物的自身治污特性。水生植物可以顯著提高富營養水體的水質,對有毒的有機污染也有明顯的凈化作用。恢復以沉水植物為主的水生植被是合理有效的水質凈化和生態系統恢復的重要措施,在這個方面已有人做了不少工作[48]。 沉水植被(Submersed Aquatic Vegetation,SAV)的建立主要受限制於芽植體的有無,而水體的透明度和沉積物中的營養(尤其是N)的水平是植物群落建立的關鍵[49]。馬劍敏等[50]在1993—1995年間對武漢東湖的布圍和網圍受控生態系統中的植被恢復、結構優化及水質進行了初步研究。結果發現:控制養殖規模是恢復水生植被的前提;在受控生態系統中,水生維管束植物生物量增加,生長良好的水生維管束植物能使水中N、P濃度明顯降低;恢復水生植被時,應以沉水植物為主體,蓮、蘆葦、苦草、狐尾藻和金魚藻適應性較強,可作為重建水生植被的物種。而渾濁是影響恢復的因素之一,光合有效水平對莖生長最重要[51]。Kahl通過衰退模型來確定光衰減系數是否與預計的5%透光區相異,從而作為沉水植物治理和修復的重要參考[52]。通過對博斯騰湖的研究表明,水面上有水生植物生長時,其蒸發蒸騰量低於自由水面的蒸發量,而且降低了水體的礦化度並凈化了水體,並且可為養殖業提供大量優質飼料。利用植被改善其生態環境,投資少,效益明顯而持久[53]。研究還表明,水生植物床對於低透明度河流中顆粒性有機物質(Particulate Organic Matter,POM)的保持和短期貯存在不同空間層次上有重要作用。其重要性因草床密度、表面覆蓋率及葉落時間的不同而有差異[54]。 3 小結與展望 綜上所述,水生植物能夠不同程度地清除被污染水體的氮、磷,重金屬及有機污染物,並在污水治理中得到了廣泛的應用。通過分析水生植物對水中氮、磷等營養元素和污染物的吸收及分解作用,可選擇不同的水生植物及其組合來適應不同的受污染水體。還可通過控制水生植物的數量來調控凈化能力的大小,以修復受污染水體並保持水質。 科學的管理和轉化利用是治理的關鍵。如適量的水葫蘆生長有利於水質的凈化,在水葫蘆長到適當的時候就需要適時打撈,並通過發酵轉化等後續技術將之轉化利用,防止其腐爛造成的二次污染。沉水植物的治理對湖泊生態系統有著重大影響,但如果缺乏反饋機制結果會更惡劣 ,因為大量的沉水植物的生長也會帶來負面影響。對過多的大型植物生長可採用機械收割、沖刷、抽乾等措施。 http://www.chinacitywater.org/bbs/viewthread.php?tid=14902&extra=page%3D1

⑻ 如何用水生植物進行污水處理

不能,應該先物理沉澱,在經過各種微生物分解,在用水生植物,直接用水生植物會使情況更糟糕

⑼ 水上植物浮島的凈化綠化污水處理效果

水生植物包括濕生植物、挺水植物、浮葉植物、沉水植物、漂浮植專物五種類型。其中濕生植屬物、挺水植物、浮葉植物及漂浮植物在富營養化條件下其生產力可以超過陸生植物。利用水生植物富集N、P是治理、調節和抑制水環境富營養化的有效途徑之一。目前,國內浮島建設上形式各樣。主要區別大都在浮島載體上,良好的耐用的浮島需要滿足以下條件:1.結構具有足夠的穩定性,防止被風浪吹走或是單元之間的碰撞;2.經久耐用,需要抗老化、無污染,耐腐蝕;3.經濟性,達到設計效果的同時減少投資成本;4.可擴展,便於運輸易於拼接,可自由組合。浮島植物吸收和吸附水體中氮磷等營養鹽供給自身生長,從而改善水質。植物根系吸收水體中氮、磷等物質後,可通過木質化使其成為植物體的組成部分,也可通過揮發、代謝或礦化作用使其轉化為二氧化碳、水貨無毒性作用的中間代謝物;發達的根系釋放大量能降解有機物的分泌物,故加速了水體中有機物的降解。(2)植物根系增大水體接觸氧化的表面積,並能分泌大量的酶,加速污染物質的分解。由於植物能將氧氣輸送至根系區,植物根區還原態介質變成了氧化態,根取得狀況為好氧。

⑽ 探究實驗:探究水生植物對水生環境的適應方式

綜述了水生植物適應水環境的特點,在污水處理中的應用及其對水質的凈化作用。隨著人們對其研究的深入,特別是在工藝選擇和凈化機理等方面的努力,水生植物必將在水污染控制中發揮更重要的作用,從而更大程度地造福人類。

關鍵詞:水生植物;水環境;凈化作用

地球表面積71%被水覆蓋,大洋承納了整個生物圈內97%的水體,極地冰固化了生物圈內2%的水體,只有不到1%的水體以淡水形態存在於江、河、湖泊中,這也是我們人類和其他生物賴以生存的基礎。但是,隨著工業化的進程和人類數量的不斷增加,生態環境不斷受到破壞,水污染日趨嚴重,我國90%以上的公園水體都遭到不同程度的污染,化學需氧量(COD)、生化需氧量(BOD)、總氮(TN)、總磷 (TP)和非離子氨等指標,大多超過國家地面水環境質量四類標准[1]。水體污染問題受到了廣泛的關注,學者對如何預防和治理水體污染做了大量的研究[2~4]。在污水處理中,傳統污染水處理方法如生化二級處理法,工藝成熟,處理效果理想,但建造、運行、管理費用過高;化學法(如加入硫酸銅等)和換水法處理污水,雖然均有一定效果,但化學法易產生二次污染,換水法不夠方便、經濟,且僅適宜於小型水體。為了尋找高效低耗的水污染處理技術,20世紀70年代,水生植物開始受到人們的關注。水生植物不僅具有較高的觀賞價值,還能主動吸收水體中的養分物質,對富營養化水體可起到凈化作用。為此,筆者就水生植物適應水環境的特點,對水質的凈化作用和機理進行了概括和分析,為科技工作者治理水體污染提供一些理論與依據。

1 水生植物在污水處理中的應用及其適應水環境的特點

凡生長在水中或濕土壤中的植物,以大型的草本植物為主,包括水生、濕生和沼生植物,通稱為水生植物(hydrophyte)[5]。水生植物可分3種生活型,這3種類型的水生植物在污水處理系統中存在一些不同方式(詳見表1)。

水生植物生活在溫度變化平緩,光照強度弱,氧含量少的過量水環境中,與陸地環境迥然不同。水生植物之所以能適應水環境是因為其在長期的演化過程中,從植物體各器官的形態、結構到生長、繁殖等生理機能,都表現出了對水環境的高度適應[6]。

1.1 獨特的葉片結構能適應弱光的條件

水環境里光線微弱,然而水生植物光合性能並不亞於陸生植物。原來,水生植物的葉片通常薄而柔軟,有的葉片細裂如絲呈線狀,如金魚藻;有的呈帶狀,如芳草。水車前的葉子寬大、薄而透明。葉綠體除了分布在葉肉細胞里,還分布在表皮細胞內,最有趣的是葉綠體能隨著原生質的流動而流向迎光面。這使水生植物能更有效地利用水中的微弱光。黑藻和狐尾藻等沉水植物,它們的柵欄組織不發達,通常只有一層細胞,由於深水層光質的變化,體內褐色素增加呈墨綠色,可以增強對水中短波光的吸收。漂浮植物,浮葉的上表面能接受陽光,柵欄組織發育充分,可由 5~6 層細胞組成。挺水植物的葉肉分化則更接近於陸生植物。

1.2 通氣結構能適應缺氧的條件

水中氧氣缺乏,含氧量不足空氣中的1/20,水生植物要尋找和保證空氣的供應,因此那些漂浮或挺水植物具有直通大氣的通道。如蓮藕,空氣中的氧從氣孔進入葉片,再沿著葉柄那四通八達的通氣組織向地下根部擴散,以保證水中各部分器官的正常呼吸和代謝的需要,這種通氣系統屬於開放型。沉水植物金魚藻的通氣系統則屬於封閉型,其體內既可貯存自身呼吸所釋放的二氧化碳,以供光合作用時的需要,同時又能將光合作用所釋放的氧貯存起來滿足呼吸時的需要。

1.3 輸導組織的退化

水生植物很容易得到水分,因而其輸導組織都表現出不同程度的退化,特別是木質部更為突出。沉水植物木質部上留下一個空腔,被韌皮部包圍著。浮水植物的維管束也相當退化。

1.4 發達的氣囊組織

在池塘和湖泊中,常可見到各種浮水植物安靜地漂浮於水面。它們藉助於增加浮力的結構,使葉片浮於水面接受陽光和空氣。如水葫蘆,它的葉柄基部中空膨大,變成很大的氣囊。菱葉的葉柄基部也有這種大氣囊。當菱花凋落的時候,水底下就開始結出沉沉的菱角。這些菱角本來會使全株植物沒入水中,可是就在這個時候,葉柄上長出了浮囊,這就使植物擺脫了沒頂的危脅。而且,水越深,葉柄上的浮囊也就越大。千姿百態的水生植物,在長期進化的過程中,形成了許多與水環境相適應的形態結構,從而繁衍不息,在整個植物類群中,占據一定的位置。

2 水生植物對水質的凈化作用

2.1 具凈化作用的水生植物

我國利用水生植物凈化水質的研究始於70年代中期,包括靜態條件下單一物種及多種植物配植對污染物濃度較高污水的凈化作用,及動態方法研究水生植物對污水處理效果[7]。近30年來,對東湖、巢湖、滇池、太湖、洪湖、保立湖、鴨兒湖、白洋淀等淺水湖泊的富營養化控制和濕地生態系統恢復的大量研究證明[8~10],水生植物可以吸收、富集水中的營養物質及其它元素,可增加水體中的氧氣含量,或抑制有害藻類繁殖的能力,遏止底泥營養鹽向水中的再釋放利於水體的生物平衡等。水生高等植物能有效地凈化富營養化湖水,提高水體的自凈能力[11],也是人工濕地系統發揮凈化作用必不可少的因素之一[12~14]。

有些水生植物如水蔥、風信子、香蒲等具有較高的觀賞價值,同時還可以處理污水,是兼具觀賞價值和污水處理研究的重點選擇材料[15]。

2.2 水生植物凈化水質的機理

通過種植水生植物凈化水質,是利用許多水生植物特別是水生維管束植物能夠大量吸收營養物質,或降解轉化有毒有害物質為無毒物質的性質。在廢水或受到污染的天然水體中種植大量耐污染凈化較強的水生高等植物,使其通過自身的生命活動將水中的污染物質分解轉化或富集到體內,恢復水域中的養分平衡;同時通過水生植物的光合作用放出氧氣,增加水中溶解氧含量,從而改善水質,減輕或消除水污染。

2.2.1 植物自身的性狀和抗性能力

水生植物由於長期生活在一種缺氧、弱光的環境中,本身形態解剖結構上形成特殊性[16]。根、莖、葉形成完整的通氣組織,保證器官和組織對O2的需要[17];葉片呈肉質,如香蒲表皮有厚角質層,柵欄組織發達,污染點處的根、莖、葉表皮細胞排列緊密等結構能抵抗因污染受害而引起的同化功能下降、水分過分蒸騰,增強了香蒲植物的耐污性和抵抗力[12]。

2.2.2 植物的吸收、富集作用

水生植物根系發達,利於吸收水中物質。如鳳眼蓮生長過程需要大量的N、P營養物[18],它吸收後生長迅速,對於凈化富營養化水體效果明顯[19],實驗第3天鳳眼蓮使養殖水體的Cu離子消失率達53%,實驗第6天則可達75%[20]。香蒲植物吸收廢水中的重金屬時,吸收能力大小依次是根>地下莖>葉,並且按照一定的比例從生境中吸取各種元素,形成新的動態平衡,防止對某元素吸收過多而引起毒害。植物吸收污染物後,尤其是重金屬離子、農葯和其他人工合成有機物等,便富集、固定在體內或土壤中,減少水體中污染物量。研究表明,Pb, Zn進入香蒲體內,主要積聚在皮層細胞中的細胞壁上,只有少量進入原生質,可見細胞壁對重金屬有較高的親和力[21]。

2.2.3 凈化塘的沉降、吸附和過濾作用

凈化塘里水生植物生長旺盛,根系發達,與水體接觸面積大,形成密集的過濾層。如香蒲,它的地下莖和根形成縱橫交錯的地下莖網,水流緩慢時重金屬和懸浮顆粒被阻隔而沉降,防止其隨水流失[23],同時又在其表面進行離子交換、整合、吸附、沉澱等,不溶性膠體為根系吸附,凝集的菌膠團把懸浮性的有機物和新陳代謝產物沉降下來[22]。

2.2.4 生化作用

植物凈化污水的過程中生化作用也起到很大作用,這方面已有大量的研究[19,23,24],光合作用產生的O2和大氣中的O2直接輸送到植株各處,並向水中擴散,一方面根系通過釋放O2,氧化分解根系周圍的沉降物;另一方面使水體底部和基質土壤形成許多厭氧和好氧小區,為微生物活動創造條件,進而形成「根際區」。這樣,植物代謝產物和殘體及溶解的有機碳給濕地中的菌落提供食物源;同時,大量微生物在基質表面形成灰色生物膜,增加了微生物的數量和分解代謝的面積,使植物根部的污染物(富集或沉降下來的)被微生物分解利用或經生物代謝降解過程而去除。富營養化水體中,也可依靠水生植物根莖上的微生物使反硝化菌、氨化菌等加速NH3—N向NO2—N和NO3—N的轉化過程,便於水生植物吸收與利用,減少底泥向水體中的營養鹽釋放。

2.2.5 對浮游藻類的競爭抑製作用

富營養化嚴重的水體中,藻類瘋長,水質惡化。栽種水生植物後,同浮游藻類競爭營養物質以及所需的光熱條件,同時分泌出抑藻物質,破壞藻類正常的生理代謝功能,迫使藻類死亡,以防止其帶來的毒素[23,24]。這樣可以提高水體透明度,改善水中的DO含量,促進沉水植物與共生菌的生長,進一步凈化水質。

2.3 利用水生植物凈化污水的處理方式

凈化塘——目前在利用水生植物凈化污水時通常是以凈化塘的方式,如鳳眼蓮凈化塘、香蒲植物凈化塘等[25~27]。凈化塘是以某種水生植物占絕對優勢而組成的特殊水生生態系統,這個系統通過水生植物群落的阻濾、沉降、吸附等物理作用以及植物體的吸收、積累等作用而達到對污水的凈化效果。最近幾年水生植物凈化塘在國內外發展都比較快,能凈化的污水種類越來越多,已由凈化生活污水發展到工業廢水和城市混合污水。處理規模也越來越大。從利用人工的凈化塘發展到利用天然湖塘、湖灣放養水生植物凈化水質和底泥。在水生植物的利用上,由一種植物為主發展到多種植物搭配,以相互取長補短,達到最佳的凈化效果。比如選用耐寒植物伊樂藻和喜溫植物鳳眼蓮及菱組建成的常綠型人工水生植被。不僅使實驗區內常年保持較好的水質,而且對外來污染沖擊有很強的緩沖能力,它可用於水源保護、局部性水質控制、污水凈化生態工程、小型富營養水體的生態恢復等[28]。

人工濕地系統——本世紀七十年代發展起來的人工濕地系統是利用水生植物處理污水的又一發展方向[29,30],由於建造和運轉費用低、維護簡單、效果好,且為眾多野生動物提供了棲息地,成了研究的重點。如蘆葦濕地可用於處理生活污水和部分工業廢水,如造紙廢水、紡織廢水、啤酒廢水、煉油廢水、養殖和飼料及食品加工廢水等。其基建投資、運轉費用和能耗均為常規二級處理方法的1/3~1/5,並有較好的經濟效益和生態效益[31]。Nyakang等[32]利用香蒲、蘆葦、美人蕉等觀賞性水生植物,經過一塊濕地和三個池塘構成的賓館和游泳池污水處理系統,在達到去污目的的同時也營造了優美的水體景觀。Koottatep等[33]還發現進入濕地約50%的總氮是被植物吸收的。濕地系統去除污染物的機理主要是通過沉降、過濾、化學沉澱和吸附、微生物反應和植物吸收等反應過程除去水中的污染物。所以濕地是一種低成本、易操作和高效率的污水處理方法。

水域浮床技術——水域浮床技術早期僅應用於農業生產,近10年來有學者利用該技術進行水污染控制。它採用人工新材料作浮床,並通過獨特的肥料供應、植物栽培與相應的工程措施,在自然水域的水面上無土栽培植物,在改善水域環境的同時,增加水產品產量[34~37]。

根際過濾技術(Rhizofiltration) ——根際過濾技術是近幾年發展的一種植物修復技術,用來處理放射性核素廢水、重金屬廢水以及富含營養鹽的廢水。它利用超積累植物的根系從廢水中吸收、富集和沉澱污染物,是更經濟、更適於現場操作的原位污染治理技術[38~39]。

3 結語

眾多研究表明,利用水生植物處理系統進行水污染控制具有投資、維護和運行費用低,管理簡便,污水處理效果好,可改善和恢復生態環境、回收資源和能源以及收獲經濟植物等諸多優點,在污水處理和富營養化水體凈化等方面均表現出良好的效果。未來的研究應注重本土原生植物的特性、跨區域引進新型物種的意義、水生植物修復的機理、物質循環、根系與水或土壤的微環境關系、植物與周圍微生物如何共同作用等方面。目前利用水生植物凈化污水尚有許多不足之處,但隨著人們對其研究的深入,特別是在工藝選擇和凈化機理等方面的努力,水生植物必將在水污染控制中發揮更重要的作用,從而更大程度地造福人類。

熱點內容
丁度巴拉斯情人電影推薦 發布:2024-08-19 09:13:07 瀏覽:886
類似深水的露點電影 發布:2024-08-19 09:10:12 瀏覽:80
《消失的眼角膜》2電影 發布:2024-08-19 08:34:43 瀏覽:878
私人影院什麼電影好看 發布:2024-08-19 08:33:32 瀏覽:593
干 B 發布:2024-08-19 08:30:21 瀏覽:910
夜晚看片網站 發布:2024-08-19 08:20:59 瀏覽:440
台灣男同電影《越界》 發布:2024-08-19 08:04:35 瀏覽:290
看電影選座位追女孩 發布:2024-08-19 07:54:42 瀏覽:975
日本a級愛情 發布:2024-08-19 07:30:38 瀏覽:832
生活中的瑪麗類似電影 發布:2024-08-19 07:26:46 瀏覽:239