集中式污水處理廠
① 如何為化工企業提供集中式污水處理服務
國家會把重點關注到中小型和新建的污水處理廠隨著大城市的污水處理水平越來越高。同時又提出當地的水再回用。那麼這些地方的污水處理程度不是很高,也就是非集中式地處理污水處理廠。
污水處理按照其作用可分為物理法、生物法和化學法三種。
①物理法:主要利用物理作用分離污水中的非溶解性物質,在處理過程中不改變化學性質。常用的有重力分離、離心分離、反滲透、氣浮等。物理法處理構築物較簡單、經濟,用於村鎮水體容量大、自凈能力強、污水處理程度要求不高的情況。
②生物法:利用微生物的新陳代謝功能,將污水中呈溶解或膠體狀態的有機物分解氧化為穩定的無機物質,使污水得到凈化。常用的有活性污泥法和生物膜法。生物法處理程度比物理法要高。
③化學法:是利用化學反應作用來處理或回收污水的溶解物質或膠體物質的方法,多用於工業廢水。常用的有混凝法、中和法、氧化還原法、離子交換法等。化學處理法處理效果好、費用高,多用作生化處理後的出水,作進一步的處理,提高出水水質。
② 什麼叫污水集中處理率
污水處理率指經過處理的生活污水、工業廢水量占污水排放總量的比重。
計算公式:
污水處理率=污水處理量÷污水排放總量×100%
截至2013年底,全國城市污水處理率為89.21%。
2016年北京市《政府工作報告》提出:突出抓好水資源管理。實行最嚴格的水資源管理制度,全面推進節水型城市建設。做好南水北調江水調度保障和運行管理,加快黃村水廠等設施建設,啟動農村飲水安全鞏固提升工程,增強供水安全保障能力。實施水污染防治工作方案,落實新一輪污水處理設施建設三年行動計劃,加大污水直排治理力度,提高污泥處理能力,防治農業面源污染。加強水源地保護,綜合治理涼水河、清河等流域水系,著力解決支流溝渠「臟亂臭」問題,建設27條生態清潔小流域。大力實施雨洪利用工程,加快建設「海綿城市」。
全面完成第二個污水處理與再生水利用三年行動方案,城鄉污水處理率提高到95%以上。加快城鄉結合部和城中村污水管網建設,新建、改造污水管線1000公里,基本實現中心城污水全收集。建成清河第二、槐房等中心城污水處理廠,中心城污水處理率達到99%,新城污水處理率達到95%。污泥處理能力達到6400噸/日,基本實現無害化、資源化處理。
嚴格落實「以水定城、以水定地、以水定人、以水定產」要求,涵養保護地下水,科學利用外調水,高效利用再生水,提高供水保障能力,構建安全可靠的供水體系。充分發揮南水北調中線工程調水能力,在實現年調水10億立方米的基礎上爭取多調水,到2020年再生水利用量達到12億立方米。
③ 城鎮污水處理廠污水集中處理率是什麼意思
城鎮污水處理廠的處理量除以根據供水量系數法計算或實得城鎮污水產生總量即為城鎮污處理廠污水集中處理率。一般是用來衡量是否收集完善的一個指標。
④ 蕭山臨江工業園區 集中污水處理廠在哪裡
蕭山區紅十五線最末端,浙江恆逸高新材料有限公司和浙江巴陵恆逸己內醯胺有限公司的對面!
⑤ 工業園區集中污水處理廠與單個企業污水處理廠的不同
一般都是工業園區的污水處理廠排放標准嚴格,但是如果企業是直接排入自然水體內那標准和工業園區污容水處理廠差不多。但是如果企業處於飲用水源保護地 或者一些自然保護區的話 那他們將執行非常嚴格的標准 一般都是比普通工業園區的污水處理廠排放標准更嚴格。
⑥ 污水排放到園區集中式污水處理廠後環保責任同步轉移嗎
排放符合污水處理廠的指標要求就行了。
⑦ 什麼是非集中式污水處理廠
國家會把重點關注到中小型和新建的污水處理廠隨著大城市的污水處專理水平越來屬越高。同時又提出當地的水再回用。那麼這些地方的污水處理程度不是很高,也就是非集中式地處理污水處理廠。
污水處理按照其作用可分為物理法、生物法和化學法三種。
①物理法:主要利用物理作用分離污水中的非溶解性物質,在處理過程中不改變化學性質。常用的有重力分離、離心分離、反滲透、氣浮等。物理法處理構築物較簡單、經濟,用於村鎮水體容量大、自凈能力強、污水處理程度要求不高的情況。
②生物法:利用微生物的新陳代謝功能,將污水中呈溶解或膠體狀態的有機物分解氧化為穩定的無機物質,使污水得到凈化。常用的有活性污泥法和生物膜法。生物法處理程度比物理法要高。
③化學法:是利用化學反應作用來處理或回收污水的溶解物質或膠體物質的方法,多用於工業廢水。常用的有混凝法、中和法、氧化還原法、離子交換法等。化學處理法處理效果好、費用高,多用作生化處理後的出水,作進一步的處理,提高出水水質。
⑧ 工業園區集中式污水廠提標改造工藝
北極星節能環保網訊:摘要:以某化工園區集中式污水廠一期工程處理廢水為研究對象,研究了Fenton氧化預處理和臭氧催化氧化深度處理的工藝條件。實驗結果表明:Fenton氧化能有效地去除廢水中的COD,提高廢水的可生化性,有利於後續生化處理;臭氧催化氧化能進一步降低生化出水COD,起到達標保障作用。在此基礎上,該污水廠擴建工程(處理規模1.5萬m3/d)設計採用了「Fenton氧化+初沉池+A2/O+二沉池+臭氧催化氧化+砂濾+紫外消毒」的主體工藝。
1引言
某工業集中式污水廠一期工程處理規模為0.3萬m3/d,原設計主要處理對象為工業區內的綜合污水,其中化工企業排放的工業廢水佔80%,另包括20%的生活污水。目前實際進水全部為工業廢水。一期工程污水處理採用「水解調節+A/O+BAF+微絮凝過濾」的主體工藝路線。污水廠實際污水進水水量約為2000m3/d。由於工業區大量企業簽約入園,並已陸續開工建設,將使工業區污水水量迅速增加,需要啟動污水廠擴建工程建設,污水廠擴建工程設計規模為1.5萬m3/d。筆者在分析一期工程運行情況基礎上,通過小試工程實驗研究確定了擴建工程的工藝流程。
2擴建改造工藝分析
2.1一期工程運行分析
一期工程於2009年建成通水,2012年1月通過竣工驗收,運行基本正常。2013年統計的平均進出水主要水質指標情況見表1。
2.2改造擴建工程工藝選擇
污水廠接納的污水主要為有機硅、香精香料、生物制葯及五金電氣等企業排放的廢水。根據當地環保部門要求,納管COD要求為COD≤500 mg/L(B/C≥0.3)或COD≤200 mg/L(B/C<0.3)。
由於該污水廠處於環境敏感區域,有必要在生化處理單元後面增設保障處理單元,在生化處理系統不穩定時,起到達標保障作用。本文主要研究前端Fenton氧化預處理和後端臭氧催化氧化深度處理的可行性和工藝條件,在實驗研究基礎上確定了擴建工程處理工藝。
3小試工程實驗
3.1廢水來源與水質
取該污水廠2014年4月9日事故池廢水(主要為4月6~8日排入事故池的污水廠進水)進行Fenton氧化實驗,取2014年4月1日排放口廢水進行臭氧催化氧化實驗。
3.2實驗材料和方法
3.2.1試劑
七水合硫酸亞鐵、雙氧水(30%)、濃硫酸(98%)、氫氧化鈉、聚丙烯醯胺(陰離子型)、催化劑A和B(載體為活性炭,負載過渡族金屬)等。
3.2.2主要實驗儀器設備
磁力攪拌器、pH計(SPM-10A數字酸度計)、氧氣源臭氧發生器等。
3.2.3實驗方法
(1)Fenton氧化實驗方法,本方案對pH值、H2O2/Fe2+摩爾比、H2O2投加量、反應時間等因子進行優化試驗。
①pH值條件實驗:取污水廠廢水200 mL/批次,按200 mg/L的H2O2(30%濃度)用量和4∶1的H2O2/Fe2+摩爾比投加硫酸亞鐵和雙氧水,Fenton反應pH值分別控制在2.5、3、3.5、4、4.5、5,反應時間2h,Fenton氧化反應出水用鹼調pH值至8.0,投加PAM,攪拌混凝,靜置沉澱後測定上清液COD。
②H2O2和Fe2+摩爾比實驗:雙氧水濃度200 mg/L,pH值3.5,反應時間2h,按2∶1、3∶1、4∶1、6∶1、8∶1、10∶1的H2O2/Fe2+摩爾比投加硫酸亞鐵,其它同上。
③反應時間實驗:pH值3.5,按3∶1的H2O2/Fe2+摩爾比和100 mg/L的H2O2(30%濃度)用量投加硫酸亞鐵和雙氧水,水樣反應時間分別為0.5 h、1 h、1.5 h、2 h、2.5 h和3 h,其它同上。
(2)臭氧催化氧化實驗方法。在Ф10 cm×80 cm有機玻璃柱中填充50 cm高度的催化劑,加入廢水至水位高出催化劑頂5 cm,開啟臭氧發生器,通過催化劑層底部的曝氣頭通入臭氧,反應一定時間後取樣測定廢水的COD。
(4)分析方法。COD測定:採用快速消解分光光度法(HJ/T399-2007)。
3.3實驗結果與討論
3.3.1Fenton氧化實驗
通過實驗表明,隨著初始pH值的升高,COD的去除率增大,當pH值升至3~3.5時,COD去除率達到最大值約50%,之後隨著pH值的繼續上升,COD去除率開始下降。根據Fenton反應機理,Fenton試劑的強氧化作用是由H2O2被Fe2+催化分解產生羥基自由基(OH˙),從而引發的一系列鏈式反應。
Fe2++H2O2→Fe3++OH-+OH˙(1)
Fe3++H2O2→Fe2++H++HO2˙(2)
Fe2++OH˙→Fe3++OH-(3)
Fe3++HO2˙→Fe2++O2+H+(4)
OH˙+H2O2→H2O+HO2˙(5)
Fe2++HO2˙→Fe3++HO-2(6)
根據反應式(1),初始pH值的升高會抑制OH˙的產生;同時過多的OH-使溶液中的Fe2+和Fe3+以氫氧化物的形式沉澱而失去催化能力。根據反應式(2)當pH值較低時,溶液中的H+濃度過高,Fe3+不能被順利的還原為Fe2+,後面的鏈反應不能順利進行下去,催化反應受阻。
3.3.2Fenton實驗小結
通過上述實驗可以得出以下結論。
(1)Fenton氧化對去除污水處理廠廢水中的COD是有效的,最大COD去除率可達到50%以上。較適合的Fenton氧化反應條件為:pH值為3~3.5,雙氧水投加量100 mg/L,H2O2/Fe2+摩爾比3∶1,反應時間1.5~2.0 h。
(2)Fenton氧化可以提高廢水的B/C比,有利於後續生化處理。這些參數是在實驗用的廢水水質條件下的優化結果,工程實際運行時可根據進水水質來調整和優化參數,以達到效果合適、成本較低的要求。
3.4臭氧催化氧化實驗
實驗結果說明,臭氧催化氧化能夠有效去除難以生化降解的COD,可以作為生化後的深度處理方法,能夠作為污水達標處理的保障技術之一。
4工藝流程
目前該工程正在施工中,擴建工程設計處理規模1.5萬m3/d,其中生活污水0.3萬m3/d,工業廢水1.2萬m3/d,另一期工業廢水0.3萬m3/d。為調節水質水量和應對事故來水,新增工業廢水事故/調節池。工業廢水經Fenton氧化預處理提高可生化性後,與生活污水一起進入「混合水解池-A/O池-二沉池」,生化去除大部分的COD。生化出水經臭氧催化氧化處理進一步去除COD,然後經砂濾去除SS,最後經紫外消毒後達標排放。擴建工程設計與原一期工程相比,增加了Fenton氧化預處理和臭氧催化氧化深度處理單元,能夠保障處理出水達到《城鎮污水處理廠污染物排放標准》(GB18918-2002)中的一級A標准。
5結論
(1)實驗結果表明,Fenton氧化能有效地去除廢水中的COD,提高廢水的可生化性,有利於後續生化處理。
(2)臭氧催化氧化能進一步降低生化出水COD,起到達標保障作用。
(3)在分析一期工程運行情況基礎上,通過實驗研究,該污水廠擴建工程(處理規模1.5萬m3/d)設計採用了「Fenton氧化+初沉池+A2/O+二沉池+臭氧催化氧化+砂濾+紫外消毒」的主體工藝。