光敏樹脂種類
① 快速成型設備的種類
設備的種類:
三維掃描儀、快速成型機、三坐標測量機/儀逆向工程軟/點雲處理/三維檢測軟體、FreeForm觸覺式設計系統 http://list.b2b.hc360.com/supplysup/022060.html 上有很多相關信息 去看看吧!
快速成型技術的原理、工藝過程及技術特點:
快速成型屬於離散/堆積成型。它從成型原理上提出一個全新的思維模式維模型,即將計算機上製作的零件三維模型,進行網格化處理並存儲,對其進行分層處理,得到各層截面的二維輪廓信息,按照這些輪廓信息自動生成加工路徑,由成型頭在控制系統的控制下,選擇性地固化或切割一層層的成型材料,形成各個截面輪廓薄片,並逐步順序疊加成三維坯件.然後進行坯件的後處理,形成零件。
快速成型的工藝過程具體如下:
l )產品三維模型的構建。由於 RP 系統是由三維 CAD 模型直接驅動,因此首先要構建所加工工件的三維CAD 模型。該三維CAD模型可以利用計算機輔助設計軟體(如Pro/E , I-DEAS , Solid Works , UG 等)直接構建,也可以將已有產品的二維圖樣進行轉換而形成三維模型,或對產品實體進行激光掃描、 CT 斷層掃描,得到點雲數據,然後利用反求工程的方法來構造三維模型。
2 )三維模型的近似處理。由於產品往往有一些不規則的自由曲面,加工前要對模型進行近似處理,以方便後續的數據處理工作。由於STL格式文件格式簡單、實用,目前已經成為快速成型領域的准標准介面文件。它是用一系列的小三角形平面來逼近原來的模型,每個小三角形用 3 個頂點坐標和一個法向量來描述,三角形的大小可以根據精度要求進行選擇。 STL 文件有二進制碼和 ASCll 碼兩種輸出形式,二進制碼輸出形式所佔的空間比 ASCII 碼輸出形式的文件所佔用的空間小得多,但ASCII碼輸出形式可以閱讀和檢查。典型的CAD 軟體都帶有轉換和輸出 STL 格式文件的功能。
3 )三維模型的切片處理。根據被加工模型的特徵選擇合適的加工方向,在成型高度方向上用一系列一定間隔的平面切割近似後的模型,以便提取截面的輪廓信息。間隔一般取0.05mm~0.5mm, 常用 0.1mm 。間隔越小,成型精度越高,但成型時間也越長,效率就越低,反之則精度低,但效率高。
4 )成型加工。根據切片處理的截面輪廓,在計算機控制下,相應的成型頭(激光頭或噴頭)按各截面輪廓信息做掃描運動,在工作台上一層一層地堆積材料,然後將各層相粘結,最終得到原型產品。
5 )成型零件的後處理。從成型系統里取出成型件,進行打磨、拋光、塗掛,或放在高溫爐中進行後燒結,進一步提高其強度。
快速成型特術具有以下幾個重要特徵:
l )可以製造任意復雜的三維幾何實體。由於採用離散/堆積成型的原理.它將一個十分復雜的三維製造過程簡化為二維過程的疊加,可實現對任意復雜形狀零件的加工。越是復雜的零件越能顯示出 RP 技術的優越性此外, RP 技術特別適合於復雜型腔、復雜型面等傳統方法難以製造甚至無法製造的零件。
2 )快速性。通過對一個 CAD 模型的修改或重組就可獲得一個新零件的設計和加工信息。從幾個小時到幾十個小時就可製造出零件,具有快速製造的突出特點。
3 )高度柔性。無需任何專用夾具或工具即可完成復雜的製造過程,快速製造工模具、原型或零件
4 )快速成型技術實現了機械工程學科多年來追求的兩大先進目標.即材料的提取(氣、液固相)過程與製造過程一體化和設計(CAD )與製造( CAM )一體化
5 )與反求工程( Reverse Engineering)、CAD 技術、網路技術、虛擬現實等相結合,成為產品決速開發的有力工具。
因此,快速成型技術在製造領域中起著越來越重要的作用,並將對製造業產生重要影響。
快速成型技術的分類:
快速成型技術根據成型方法可分為兩類:基於激光及其他光源的成型技術(Laser Technology),例如:光固化成型(SLA )、分層實體製造(LOM)、選域激光粉末燒結(SLS)、形狀沉積成型(SDM)等;基於噴射的成型技術(Jetting Technoloy),例如:熔融沉積成型(FDM)、三維印刷( 3DP )、多相噴射沉積( MJD )。下面對其中比較成熟的工藝作簡單的介紹。
1、SLA(Stereolithogrphy Apparatus)工藝 SLA 工藝也稱光造型或立體光刻,由Charles Hul 於 1984 年獲美國專利。 1988 年美國 3D System公司推出商品化樣機SLA-I,這是世界上第一台快速成型機。SLA 各型成型機機占據著 RP 設備市場的較大份額。
SLA 技術是基於液態光敏樹脂的光聚合原理工作的。這種液態材料在一定波長和強度的紫外光照射下能迅速發生光聚合反應,分子量急劇增大,材料也就從液態轉變成固態。
SLA工作原理:液槽中盛滿液態光固化樹脂激光束在偏轉鏡作用下,能在液態表而上掃描,掃描的軌跡及光線的有無均由計算機控制,光點打到的地方,液體就固化。成型開始時,工作平台在液面下一個確定的深度.聚焦後的光斑在液面上按計算機的指令逐點掃描,即逐點固化。當一層掃描完成後.未被照射的地方仍是液態樹脂。然後升降台帶動平台下降一層高度,已成型的層面上又布滿一層樹脂,刮板將粘度較大的樹脂液面刮平,然後再進行下一層的掃描,新周化的一層牢周地粘在前一層上,如此重復直到整個零件製造完畢,得到一個三維實體模型。
SLA 方法是目前快速成型技術領域中研究得最多的方法.也是技術上最為成熟的方法。 SLA 工藝成型的零件精度較高,加工精度一般可達到 0.1 mm ,原材料利用率近 100 %。但這種方法也有白身的局限性,比如需要支撐、樹脂收縮導致精度下降、光固化樹脂有一定的毒性等。
2、LOM(Laminated Object Manufacturing,LOM)工藝LOM工藝稱疊層實體製造或分層實體製造,由美國Helisys公司的Michael Feygin於 1986 年研製成功。LOM工藝採用薄片材料,如紙、塑料薄膜等。片材表面事先塗覆上一層熱熔膠。加工時,熱壓輥熱壓片材,使之與下面已成型的工件粘接。用CO2激光器在剛粘接的新層上切割出零件截面輪廓和工件外框,並在截面輪廓與外框之間多餘的區域內切割出上下對齊的網格。激光切割完成後,工作台帶動已成型的工件下降,與帶狀片材分離。供料機構轉動收料軸和供料軸,帶動料帶移動,使新層移到加工區域。工作合上升到加工平面,熱壓輥熱壓,工件的層數增加一層,高度增加一個料厚。再在新層上切割截面輪廓。如此反復直至零件的所有截面粘接、切割完。最後,去除切碎的多餘部分,得到分層製造的實體零件。
LOM 工藝只需在片材上切割出零件截面的輪廓,而不用掃描整個截面。因此成型厚壁零件的速度較快,易於製造大型零件。工藝過程中不存在材料相變,因此不易引起翹曲變形。工件外框與截面輪廓之間的多餘材料在加工中起到了支撐作用,所以 LOM 工藝無需加支撐。缺點是材料浪費嚴重,表面質量差。
3、SLS(Selective Laser Sintering)工藝 SLS工藝稱為選域激光燒結,由美國德克薩斯大學奧斯汀分校的C.R.Dechard於 1989 年研製成功。 SLS工藝是利用粉末狀材料成型的。將材料粉末鋪灑在已成型零件的上表面,並刮平,用高強度的CO2激光器在剛鋪的新層上掃描出零件截面,材料粉末在高強度的激光照射下被燒結在一起,得到零件的截面,並與下面已成型的部分連接。當一層截面燒結完後,鋪上新的一層材料粉末,有選擇地燒結下層截面。
燒結完成後去掉多餘的粉末,再進行打磨、烘乾等處理得到零件。
SLS工藝的特點是材料適應面廣,不僅能製造塑料零件,還能製造陶瓷、蠟等材料的零件,特別是可以製造金屬零件。這使SLS工藝頗具吸引力。SLS工藝無需加支撐,因為沒有燒結的粉末起到了支撐的作用。
4、3DP (Three Dimension Printing)工藝三維印刷工藝是美國麻省理工學院E-manual Sachs等人研製的。已被美國的Soligen公司以DSPC(Direct Shell Proction Casting)名義商品化,用以製造鑄造用的陶瓷殼體和型芯。
3DP 工藝與SLS工藝類似,採用粉末材料成型,如陶瓷粉末、金屬粉末。所不同的是材料粉末不是通過燒結連結起來的,而是通過噴頭用粘結劑(如硅膠)將零件的截面「印刷」在材料粉來上面。
用粘結劑粘接的零件強度較低,還須後處理。先燒掉粘結劑,然後在高溫下滲人金屬,使零件緻密化,提高強度。
5 . FDM (Fused Depostion Modeling)工藝 熔融沉積製造( FDM )工藝由美國學者Scott Crump於 1988 年研製成功。 FDM 的材料一般是熱塑性材料,如蠟、 ABS 、尼龍等。以絲狀供料。材料在噴頭內被加熱熔化。噴頭沿零件截面輪廓和填充軌跡運動,同時將熔化的材料擠出,材料迅速凝固,並與周圍的材料凝結。
快速成型技術的應用領域:
目前RP技術的發展水平而言,在國內主要是應用於新產品(包括產品的更新換代)開發的設計驗證和模擬樣品的試制上,即完成從產品的概念設計(或改型設計)--造型設計--結構設計--基本功能評估--模擬樣件試制這段開發過程。對某些以塑料結構為主的產品還可以進行小批量試制,或進行一些物理方面的功能測試、裝配驗證、實際外觀效果審視,甚至將產品小批量組裝先行投放市場,達到投石問路的目的。
快速成型的應用主要體現在以下幾個方面:
(1)新產品開發過程中的設計驗證與功能驗證。RP技術可快速地將產品設計的CAD模型轉換成物理實物模型,這樣可以方便地驗證設計人員的設計思想和產品結構的合理性、可裝配性、美觀性,發現設計中的問題可及時修改。如果用傳統方法,需要完成繪圖、工藝設計、工裝模具製造等多個環節,周期長、費用高。如果不進行設計驗證而直接投產,則一旦存在設計失誤,將會造成極大的損失。
(2)可製造性、可裝配性檢驗和供貨詢價、市場宣傳,對有限空間的復雜系統,如汽車、衛星、導彈的可製造性和可裝配性用RP方法進行檢驗和設計,將大大降低此類系統的設計製造難度。對於難以確定的復雜零件,可以用RP,技術進行試生產以確定最佳的合理的工藝。此外,RP原型還是產品從設計到商品化各個環節中進行交流的有效手段。比如為客戶提供產品樣件,進行市場宣傳等,快速成型技術已成為並行工程和敏捷製造的一種技術途徑。
(3)單件、小批量和特殊復雜零件的直接生產。對於高分子材料的零部件,可用高強度的工程塑料直接快速成型,滿足使用要求;對於復雜金屬零件,可通過快速鑄造或直接金屬件成型獲得。該項應用對航空、航天及國防工業有特殊意義。
(4)快速模具製造。通過各種轉換技術將RP原型轉換成各種快速模具,如低熔點合金模、硅膠模、金屬冷噴模、陶瓷模等,進行中小批量零件的生產,滿足產品更新換代快、批量越來越小的發展趨勢。快速成型應用的領域幾乎包括了製造領域的各個行業,在醫療、人體工程、文物保護等行業也得到了越來越廣泛的應用。
快速成型技術的主要應用各行業的應用狀況如下:
◆汽車、摩托車:外形及內飾件的設計、改型、裝配試驗,發動機、汽缸頭試制。
◆家電:各種家電產品的外形與結構設計,裝配試驗與功能驗證,市場宣傳,模具製造。
◆通訊產品:產品外形與結構設計,裝配試驗,功能驗證,模具製造。
◆航空、航天:特殊零件的直接製造,葉輪、渦輪、葉片的試制,發動機的試制、裝配試驗。
◆輕工業:各種產品的設計、驗證、裝配,市場宣傳,玩具、鞋類模具的快速製造。
◆醫療:醫療器械的設計、試產、試用,CT掃描信息的實物化,手術模擬,人體骨關節的配製。
◆國防:各種武器零部件的設計、裝配、試制,特殊零件的直接製作,遙感信息的模型製作。
總之,快速成型技術的發展是近20年來製造領域的突破性進展,它不僅在製造原理上與傳統方法迥然不同,更重要的是在目前產業策略以市場響應速度為第一的狀況下,RP技術可以縮短產品開發周期,降低開發成本,提高企業的競爭力。下面通過一些事例,說明該項技術在產品開發過程中起的作用。
1.設計驗證:用於新產品外觀設計玲證和結構設計驗證,找出設計缺陷,完善產品設計。在現代產品設計中,設計手段日趨先進,計算機輔助設計使得產品設計快捷、直觀,但由於軟體和硬體的局限,設計人員仍無法直觀地評價所設計產品的效果和結構的合理性以及生產工藝的可行性。快速成型技術為設計人員迅速得到產品樣品,直觀評判產品提供了先進的技術手段。我公司為某摩托車生產廠新型250摩托車製作的覆蓋件樣件,包括油箱、前後擋板、車座和側蓋等共13件。採用AFS成型技術,僅用12天就完成了全部製作。設計人員將樣件裝在車體上,經過認真評價和反復比較,對產品的外觀做了重新修改,達到了理想狀態。這一驗證過程,使設計更趨完美,避免了盲目投產造成的浪費。
2.裝配驗證:制出樣品實件,進行裝配實驗。天津某公司委託我方加工傳真機外殼及電話。用戶不僅要進行外觀評價,而且要將傳真機的內部部件裝入樣件中,進行裝配實驗和結構評價。該公司首先選擇傳統加工方法,分塊加工,手工粘結,僅加工一套電話聽筒就耗資肆仟元,耗時20天。預計製作傳真機樣品需2個月,費用為2•5萬元。我公司用快速成型技術,僅用15天就將該產品一套共六件交給委託方。用戶在裝配實驗中發現了7處裝配干涉和結構不合理處。將前後兩種方法相比,傳真機BABS塑料組裝樣件傳統加工方法工序繁多,手工拼接費時、費力,材料浪費大、加工周期長。對復雜的結構和曲面,加工粗糙,尺寸精度低,製作的實物模型與設計模型之間不能建立一一對應的關系,因而在裝配實驗中很難檢查出設計錯誤。而自動成型法,高度自動化,一次成型,周期短,精度高,與設計模型之間具有一一對應的關系,更適合樣品組裝件的生產和製造。
3.功能驗證:我公司為某摩托車廠製作250型雙缸摩托車汽缸頭。這是一款新設計的發動機,用戶需要10件樣品進行發動機的模擬實驗。該零件具有復雜的內部結構,傳統機加工無法加工,只能呆用鑄造成型。整個過程需經過開模、制芯、組模、澆鑄、噴砂和機加等工序,與實際生產過程相同。其中僅開模一項就需三個月時間。這對於小批量的樣品製作無論在時間上還是成木上都是難以接受的。我們採用選區激光燒結技術,以精鑄熔模材料為成型材料,在快速成型機上僅用5天即加工出該零件的10件鑄造熔模,再經熔模鑄造工藝,10天後得到了鑄造毛坯。經過必要的機加工,30天即完成了此款發動機的試制。
4.快速鑄造:在製造業特別是航空、航天、國防、汽車等重點行業,共基礎的核心部件一般均為金屬零件,而且相當多的金屬零件是非對稱性的、有不規則曲面或結構復雜而內部又含有精細結構的零件。這些零件的生產常採用鑄造或解體加工的方法。在鑄造生產中,模板、芯盒、壓蠟型、壓鑄模的製造往往是用機加工的方法來完成的,有時還需要鉗工進行修整,不僅周期長、耗資大,而且從模具設計到加工製造是一個多環節的復雜過程,咯有失誤就會導致全部返工。特別是對一些形狀復雜的鑄件,如葉片、葉輪、發動機缸體、缸蓋等,模具的製造是一個難度更大的問題,即使使用數控加工中心等昂貴的設備,在加工技術與工藝可行性方面仍有很大困難。可以設想,如果遇到此類零件的試制或小批量生產,其製造周期、成本及風險是相當大的。
激光快速成型技術已被證明是解決小批量復雜零件製造的非常有效的手段。迄今為止,我們己通過激光快速成型成功地生產了包括葉鈴、葉片、發動機轉子、泵體、發動機缸體、缸蓋等千餘仕掃盤鑽件 我們將快速成型與鑄造工藝的結合稱為快速鑄造工藝。圖5給出了快速鑄造工藝與傳統鑄造工藝的比較。由於快速鑄造過程無須開模具,因而大大節省了製造周期和費用。圖6是採用快速鑄造方法生產的燃氣二動機S段,零件直徑80Omm,高410m們,按傳統金屬鑄件方法製造,模具製造周期約需半年,費用幾十萬。用快速鑄造方法,快速成型鑄造熔模7天(分6段組合),拼裝、組合、鑄造10天,費用每件不超過2萬(共6件)。用快速成型方法生產的新型坦克增壓器的鑄造熔模,我們用5天時間就完成了37件蠟模的生產,使整個試制任務比原計劃提前了3個月。
5.翻模成型:實際應用上,很多產品必須通過模具才能加工出來。用成型機先製作出產品樣件再翻制模具,是一種既省時又節省費用的方法。發動機泵殼原型件產品用傳統機加工方法很難加工,必須通過模具成型。據估算,開模時間要8個月,費用至少30萬。如果產品設計有誤,整套模具就全部報廢。我們用快速成型法為該產品製作了塑料樣件,作為模具母模用於翻制硅膠模。將該母模固定於鋁標准模框中,澆入配好的硅橡膠,靜置12•20小時,硅橡膠完全固化,打開模框,取出硅橡膠用刀沿預定分型線劃開,將母模取出,用於澆鑄泵殼蠟型的硅膠模即翻製成功。通過該模製出蠟型,經過塗殼、焙燒、失蠟、加壓澆鑄、噴砂,一件合格的泵殼鑄件在短短的兩個月內製造出來,經過必要的機加工,即可裝機運行,使整個試制周期比傳統方法縮短了三分之二,費用節省了四分之三。
6.樣品製作:製造產品替代品,用於展示新產品,進行市場宣傳,如通訊、家電及建築模型製作等。
7.工藝和材料驗證:快速製作各種蠟模,用於精鑄新工藝和新型材料的摸索、驗證以及新產品製造所需輔助工具及部件的試驗。近無餘量精鑄葉片的實驗品。首先按不同收縮率用成型機一次製作幾個葉片蠟模,然後塗殼、編號、失蠟鑄造。將所得葉片鑄件進行測量,反復幾次即可確定不同材料無餘量精鑄收縮率,為批量生產奠定基礎。如果用開模具的辦法進行此項試驗,其費用和周期都將大大增加。發動機高速渦輪,要求材質高,鑄件密實。使用激光快速自動成型機,製作精鑄用蠟模四個,編號塗殼,使用不同配比特殊合金,分別澆鑄,對所得四件樣品進行測試,分別加以比較分析,即確定材料最佳配方。從制模到取得結果僅需一個月。
8.反求工程與快速成型:成型機成型的一件摩托車的前面板樣件,面板上包含了一個前大燈和二個側燈的外罩,它們與面板構成一個完整的曲面。這是一個用反向工程進行零件詳細設計的典型實例。整個工藝過程是首先由模型工根據摩托車的整體形象要求用油泥製作概念模型,經評審滿意後用三座標測量儀進行數值化,測量數據用Pro/E軟體的Scantools模塊進行整理並轉換成曲面模型,再轉換成實體模型並進"細節"計。糟加筋、孔和車孔的輪廓等結構,最後由成型機製作出樣件模型,經過打磨和噴漆的處理後裝在摩托車上進行外觀、裝配等檢驗,整個過程從完成三座標測量到得到樣件僅用一周時間。此時得到的樣件模型巴不同於最初的油泥模型,而成為與實際零件壁厚、尺寸一致,筋、孔等結構齊全的零件模型,這比油泥模型無疑是一個很大的進步。如果這時需對模型進行修改,只需在CAD系統上就可完成。當模型的外觀和細部結構確定無誤後,就可利用最後的模型數據進行模具設計和加工。
② 3D列印材料種類有哪些
科技媒體3D列印網訊 3D列印材料是3D列印技術發展的重要物質基礎,目前,3D列印材料主要包括工程塑料、光敏樹脂、橡膠類材料、金屬材料和陶瓷材料等,除此之外,彩色石膏材料、人造骨粉、細胞生物原料以及砂糖等食品材料也在3D列印領域得到了應用。3D列印所用的這些原材料都是專門針對3D列印設備和工藝而研發的,與普通的塑料、石膏、樹脂等有所區別,其形態一般有粉末狀、絲狀、層片狀、液體狀等。
工程塑料簡介
工程塑料指被用做工業零件或外殼材料的工業用塑料,是強度、耐沖擊性、耐熱性、硬度及抗老化性均優的塑料。工程塑料是當前應用最廣泛的一類3D列印材料,常見的有ABS類材料、PC類材料、尼龍類材料等。
光敏樹脂簡介
光敏樹脂即ultraviolet rays(UV)樹脂,由聚合物單體與預聚體組成,其中加有光(紫外光)引發劑(或稱為光敏劑)。在一定波長的紫外光(250nm~300nm)照射下能立刻引起聚合反應完成固化。光敏樹脂一般為液態,可用於製作高強度、耐高溫、防水材料。
橡膠類材料簡介
橡膠類材料具備多種級別彈性材料的特徵,這些材料所具備的硬度、斷裂伸長率、抗撕裂強度和拉伸強度,使其非常適合於要求防滑或柔軟表面的應用領域。3D列印的橡膠類產品主要有消費類電子產品、醫療設備以及汽車內飾、輪胎、墊片等。
金屬材料簡介
近年來,3D列印技術逐漸應用於實際產品的製造,其中,金屬材料的3D列印技術發展尤其迅速。在國防領域,歐美發達國家非常重視3D列印技術的發展,不惜投入巨資加以研究,而3D列印金屬零部件一直是研究和應用的重點。目前,應用於3D列印的金屬粉末材料主要有鈦合金、鈷鉻合金、不銹鋼和鋁合金材料等,此外還有用於列印首飾用的金、銀等貴金屬粉末材料。
陶瓷材料簡介
陶瓷材料具有高強度、高硬度、耐高溫、低密度、化學穩定性好、耐腐蝕等優異特性,在航空航天、汽車、生物等行業有著廣泛的應用。但由於陶瓷材料硬而脆的特點使其加工成形尤其困難,特別是復雜陶瓷件需通過模具來成形。模具加工成本高、開發周期長,難以滿足產品不斷更新的需求。
其他3D列印材料
除了上面介紹的3D列印材料外,目前用到的還有彩色石膏材料、人造骨粉、細胞生物原料以及砂糖等材料。彩色石膏材料是一種全彩色的3D列印材料,是基於石膏的、易碎、堅固且色彩清晰的材料。
③ 3d 列印機有哪些種類分別是如何工作的
SLA技術
SLA是「 lithography Appearance」的縮寫,即立體光固化成型法。SLA是最早實用化的3D列印技術,採用液態光敏樹脂原料。其工作原理是,通過CAD設計出三維模型,利用離散程序將模型進行切片處理,設計掃描路徑,產生的數據將精確控制激光掃描器和升降台的運動;激光光束通過數控裝置控制的掃描器,按設計的掃描路徑,照射到液態光敏樹脂表面,使表面特定區域內的一層樹脂固化,加工完畢就生成零件的一個截面;然後升降台下降一定距離,固化層上覆蓋另一層液態樹脂,再進行第二層掃描,第二層牢固地粘結在前一層上,這樣一層層疊加而成三維工件原型。將原型從樹脂中取出後,進行最終固化,再經打光、電鍍、噴漆或著色處理即得到要求的產品。
LOM技術
LOM是「Laminated Object Manufacturing」的縮寫,即分層實體製造法,又稱層疊法成形。箔材疊層實體製作是根據三維CAD 模型每個截面的輪廓線,在計算機控制下,發出控制激光切割系統的指令,使切割頭作X 和Y 方向的移動。供料機構將地面塗有熱溶膠的箔材(如塗覆紙、塗覆陶瓷箔、金屬箔、塑料箔材)一段段的送至工作台的上方。激光切割系統按照計算機提取的橫截面輪廓用二氧化碳光束對箔材沿輪廓線將工作台上的箔材割出輪廓線,並將無輪廓區切割成小碎片。然後,由熱壓機構將一層層箔材壓緊並粘合在一起。可升降工作台支撐正在成型的工件,並在每層成型之後,降低一個層厚,以便送進、粘合和切割新的一層箔材。最後形成由許多小廢料塊包圍的三維原型零件。取出並將多餘的廢料小塊剔除,最終獲得三維產品。
SLS技術
SLS是「Selective Laser Sintering」的縮寫,即選擇性激光燒結。SLS列印機工作面由粉末缸和成型缸組成,粉末缸活塞(送粉活塞)上升,由鋪粉輥將粉末在成型缸活塞(工作活塞)上均勻鋪上一層,計算機根據原型的切片模型控制激光束的二維掃描軌跡,有選擇地燒結固體粉末材料以形成零件的一個層面。粉末完成一層後,工作活塞下降一個層厚,鋪粉系統鋪上新粉。控制激光束再掃描燒結新層。如此循環往復,層層疊加,直到三維零件成型。最後將未燒結的粉末回收到粉末缸,並取出成型件。在燒結之前,整個工作台被加熱至一定溫度,可減少成型中的熱變形,並利於層與層之間的結合。
FDM技術
FDM是「Fused Deposition Modeling」的縮寫,即熔積成型法,是一種將各種絲材(如工程塑料ABS、聚碳酸酯PC 等)加熱熔化進而堆積成型方法。FDM工作原理是:加熱噴頭在計算機的控制下,根據產品零件的截面輪廓信息,作X-Y 平面運動,熱塑性絲狀材料由供絲機構送至熱熔噴頭,在噴頭中加熱和熔化成半液態,然後被擠壓出來,有選擇性的塗覆在工作台上,快速冷卻後形成一層大約0.127mm 厚的薄片輪廓。一層截面成型完成後工作台下降一定高度,再進行下一層的熔覆,好像一層層"畫出"截面輪廓,如此循環,最終形成三維產品零件。
知乎作者王仲庸
④ 3D列印機有哪些種類
作者:安森垚
鏈接:https://www.hu.com/question/20382142/answer/84028929
來源:知乎
著作權歸作者所有。商業轉載請聯系作者獲得授權,非商業轉載請註明出處。
其實,3d列印機雖然品牌眾多五花八門,但是本質上的工作原理是一樣的,那到底是個什麼工作原理呢。
既然是列印嘛,那我們就先看一看傳統的,在紙張上列印的噴墨列印機。
圖 高精度模型
好了,就說這么多了,已經5點了,在知乎上回答了比較多的人文類問題得到大家很多的支持,遇到自己專業的東西自然更希望更好的像大家普及這方面的知識。
其實對於3d列印,有一句話叫做——19世紀的構想,20世紀的基礎技術,21世紀的市場。
可以說在工業設計逐漸進步以及建模軟體花樣翻新的今天,3d列印對於復雜造型的量產和個性化定製以及高分子材料加工都有著不可估量的空間,21世紀的3d列印仍然還會飛速的發展,在一代一代的設計者和製造者的努力下,我相信3d列印真的可以,徹底改變這個世界。
⑤ 快速成型材料種類及工藝方法
目前快速成型主要工藝方法。本文僅介紹目前工業領域較為常用的工藝方法。
1熔積成型法(Fused DePOSTTTION Modeling)
在熔積成型法( FDM)的過程中,龍門架式的機械控制噴頭可以在工作台的兩個主要方向移動,工作台可以根據需要向上或向下移動。熱塑性塑料或蠟制的熔絲從加熱小口處擠出。最初的一層是按照預定的軌跡以固定的速率將熔絲擠出在泡沫塑料基體上形成的。當第一層完成後,工作台下降一個層厚並開始迭加製造一層。FDM工藝的關鍵是保持半流動成型材料剛好在熔點之上,通常控制在比熔點高1℃左右。
FDM製作復雜的零件時,必須添加工藝支撐。下一層熔絲將鋪在沒有材料支撐的空間。解決的方法是獨立於模型材料單獨擠出一個支撐材料,支撐材料可以用低密度的熔絲,比模型材料強度低,在零件加工完成後可以將它拆除。
在FDA4機器中層的厚度由擠出絲的直徑決定,通常是從0. 50mm到0. 25mm(從0. 02in到0. O1 in)這個值代表了在垂直方向所能達到的最好的公差范圍。在x-y平面,只要熔絲能夠擠出到特徵上,尺寸的精確度可以達到0. 025mm(O.OO1in)。
FDM的優點是材料的利用率高,材料的成本低,可選用的材料種類多,工藝干凈、簡單、易於操作且對環境的影響小。缺點是精度低,結構復雜的零件不易製造,表面質量差,成型效率低,不適合製造大型零件。該工藝適合於產品的概念建模以及它的形狀和功能測試,中等復雜程度的中小成型,由於甲基丙烯酸ABS材料具有較好的化學穩定型,可採用伽馬射線消毒,特別適於醫用。
2光固化法(Stereolithography )
光固化法是目前應用最為廣泛的一種快速成型製造工藝,它實際上比熔積法發展的還早。光固化採用的是將液態光敏樹脂固化(硬化)到特定形狀的原理。以光敏樹脂為原料,在計算機控制下的紫外激光按預定零件各分層截面的輪廓為軌跡對液態樹脂逐點掃描,使被掃描區的樹脂薄層產生光聚合反應,從而形成零件的一個薄層截面。
成型開始時工作台在它的最高位置(深度a),此時液面高於工作台一個層厚,零件第一層的截面輪廓進行掃描,使掃描區域的液態光敏樹脂固化,形成零件第一個截面的固化層。然後工作台下降一個層厚,使先固化好的樹脂表面再敷上一層新的液態樹脂然後重復掃描固化,與此同時新固化的一層牢固地粘接在前一層上,該過程一直重復操作到達到b高度。此時已經產生了一個有固定壁厚的圓柱體環形零件。這時可以注意到工作台在垂直方向下降了距離ab。到達b高度後,光束在x-y面的移動范圍加大從而在前面成型的零件部分上生成凸緣形狀,一般此處應添加類似於FDM的支撐。當一定厚度的液體被固化後,該過程重復進行產生出另一個從高度b到c的圓柱環形截面。但周圍的液態樹脂仍然是可流動的,因為它並沒有在紫外線光束范圍內。零件就這樣由下及上一層層產生。而沒有用到的那部分液態樹脂可以在製造別的零件或成型時被再次利用。可以注意到光固化成型也像FDM成型法一樣需要一個微弱的支撐材料,在光固化成型法中,這種支撐採用的是網狀結構。零件製造結束後從工作台上取下,去掉支撐結構,即可獲得三維零件。
光固化成型所能達到的最小公差取決於激光的聚焦程度,通常是0.00125mm(0.0005in)。傾斜的表面也可以有很好的表面質量。光固化法是第一個投人商業應用的RF(快速成型)技術。目前全球銷售的SL(光固化成型)設備約佔Rl'設備總數的70%左右。SL(光固化成型)工藝優點是精度較高,一般尺寸精度控制在10. 1 mm;表面質量好,原材料的利用率接近100%,能製造形狀特別復雜、特別精細的零件,設備的市場佔有率很高。缺點是需要設計支撐,可以選擇的材料種類有限,容易發生翹曲變形,材料價格較貴。該工藝適合成型製造比較復雜的中小件。
3激光選區燒結(Selective Laser Sinering)
激光選區燒結(Selective Laser Sintering,簡稱SLS)是一種將非金屬(或普通金屬)粉末有選擇地燒結成單獨物體的工藝。該法採用CO:激光器作為能源,目前使用的在加工室的底部裝備了兩個圓筒:
1)一個是粉末補給筒,它內部的活塞被逐漸地提升通過一個滾動機構給零件造型筒供給粉末;
2)另一個是零件造形筒,它內部的活塞(工作台)被逐漸地降低到熔結部分形成的地方。
首先在工作台上均勻鋪上一層很薄(l00~200μm)的粉末,激光束在計算機控制下按照零件分層輪廓有選擇性地進行燒結,從而使粉末固化成截面形狀,一層完成後工作台下降一個層厚,
⑥ 3D列印機有哪些種類
3d列印機的結構類型來有自Prusai3結構、箱體結構、三角洲機型等,不同的結構有不同的優勢。1,Prusai3結構。
Prusai3是Reprap列印機prusamendel的第三代機型。優點是結構簡單,易於上手,適合第一次接觸3D列印的diy愛好者。
2,箱體結構。
箱式結構是目前市面上較為流行的結構,相比較一般diy機型在外觀上看起來更加商業化。優點是成型精度高,列印速度快。電路板與電源等電子部件可隱藏至機體內,空間利用率高。
3,三角洲機型。
這種結構興起於90年代,因其速度快、精度高、柔性強等優點使並聯機器人成為了現代工業機器人重要部分。優點是結構簡單,方便修理維護,列印速度快,傳動效率高,佔地面積小。
3d列印機品牌推薦選擇創想三維,創想三維自2014年成立以來,銷量逐年成倍增長,重點產品長期穩居全球銷量榜前列,亞馬遜、天貓、京東等電商排名第一,是國內消費級3D列印機「隱形冠軍」,在消費級3D列印機領域公司綜合實力遠超業界同行。
⑦ 目前的3D列印技術具體有哪幾種類型
所謂3D列印機就是可以「列印」出真實3D物體的一種設備,功能上與激光成型技術一樣,採用分層加工、迭加成形,即通過逐層增加材料來生成3D實體,與傳統的去除材料加工技術完全不同。
⑧ FDM 3D列印技術最常用的材料有哪些
材料種類類要根據機器類型 FDM類機器:主要材料 PLA(環保材料) 、 ABS 、 尼龍版 、PHA 、 反各種塑料權 見些木質材料屬於PLA 光固化類:主要材料 光敏樹脂 (UV膠 ) 其: 金屬粉末 、陶瓷 、 食
⑨ 桌面級3D列印機有哪些種類
你指的種類是品牌嗎?桌面機3D列印機技術難度低,國內好多家都在做,性能不錯,價格也不高。性價比來說,比進口的高。
⑩ 常用的3D列印材料類型有哪些
FDM機器一般用PLA和ABS較多
;SLA機器是用光敏樹脂
等,機器種類不一樣,所用材料不一樣,還有列印尼龍的金屬的