反向樹脂柱
可以喝,但不能長期喝。因為經過離子交換樹脂的水屬於軟水,回而在世界衛生組織曾通過實答驗論證後公布,軟水會使人體內包括脂肪酶的各種酶活性降低,長期飲用會增加患心腦血管病的風險。特別是兒童長期飲用軟水,影響酶活性,會對生長發育造成影響。如果在煮飯、做菜時使用軟水,會導致飯菜中的營養物質流失到水中。
Ⅱ 色譜分離的概念
色譜分離技術是基於不同物質在由固定相和流動相構成的體系中具有不同的分配系數,在採用流動相洗脫過程中呈現不同保留時間,從而實現分離。傳統色譜分離技術採用固定的色譜塔進行,先進入一定量物料,然後採用洗脫劑不斷洗脫,在同一出口在不同時間段就可接到不同的產品組分,此過程費時費力。經過分析並加以改進,我們把固定相的樹脂做成可以連續流動的系統,利用物質與固定相的相對運動速度不同實現分離。類似龜兔賽跑的原理,我們把固定相比成一個傳送帶,把兔子烏龜分別比成快慢不同的兩組份,只要使固定相加上一個與洗脫方向相反的驅動力,使傳送帶運動速度處於兔子和烏龜速度中間,跑的快的兔子比固定相快從前頭得到,跑得慢的烏龜被傳送帶帶到後面得到。
我們可以採用SepTor IX轉盤系統來實現以上過程,轉盤上的樹脂即是施加了反向作用力的固定相。我們模擬了12柱系統進行分離中各柱中的情形:
目前連續色譜分離技術已經實現成熟的工業化,除了實際的移動床可以實現以外,還有另一種模擬移動床可以運用,目前我司工業化的為SepTot CR 模擬系統,其主要原理就是採用一個電磁閥組模擬移動床的實際切換樹脂柱的效果,即樹脂柱不動,而進出料口通過程序控制閥門,使進料和出料到相應的樹脂柱時打開或關閉。
Ⅲ 樹脂怎麼裝填呢
A實驗室
量取:將一定量的樹脂與去離子水在燒杯中進行混合,然後將混合的樹脂水溶
液倒入量筒中,使樹脂充分沉降,通過補加和移取,使樹脂床層與相應刻度持平,即完成樹脂的量取。
裝填:關閉離子交換柱下端的出口閥門,用水將量筒中的樹脂全部導入離子交換柱中,然後打開交換柱出口閥門,使樹脂在柱內沉降壓實,然後關閉交換柱出口閥門,待用。(注意:須保留液面高於樹脂床層1~2cm,避免干柱。)
B工業化
新樹脂裝柱前,應該使用清水和鹼液對樹脂交換柱相關管道進行清洗,清理出焊渣等固體廢料和附著在柱壁和管壁上的塵土與其他雜質。然後,向柱內注入1/3體積的水,取少量樹脂,將樹脂從交換柱頂部人孔處裝入柱內。關閉人孔,向柱內注水,同時打開交換柱下部排水閥門,用≥80目篩網在排水口攔截,觀察是否有樹脂泄露,如果有個別小顆粒,屬於正常現象;如果有大顆粒樹脂出現,且量比較多,說明交換柱下濾板有問題,應把樹脂和水放出,檢查下濾板焊縫和水帽,查找原因,進行檢修。檢修完畢後,再按照上面的方法檢測,直至確定符合要求,然後再將剩餘的樹脂加入交換柱內。
樹脂裝柱完成後,先用去離子水對樹脂進行反向清洗,清洗流速控制在2~4BV/h,清洗約1h,停止水洗,讓樹脂自然沉降完全;然後用去離子水對樹脂柱床進行正向清洗,清洗流速控制在4~6BV/h,清洗約1h後停止。
Ⅳ 誰能告訴我一下反向液相色譜的工作原理嗎它與正向的有什麼區別嗎
高效液相色譜法按分離機制的不同分為液固吸附色譜法、液液分配色譜法(正相與反相)、離子交換色譜法、離子對色譜法及分子排阻色譜法。
1.液固色譜法 使用固體吸附劑,被分離組分在色譜柱上分離原理是根據固定相對組分吸附力大小不同而分離。分離過程是一個吸附-解吸附的平衡過程。常用的吸附劑為硅膠或氧化鋁,粒度5~10μm。適用於分離分子量200~1000的組分,大多數用於非離子型化合物,離子型化合物易產生拖尾。常用於分離同分異構體。
2.液液色譜法 使用將特定的液態物質塗於擔體表面,或化學鍵合於擔體表面而形成的固定相,分離原理是根據被分離的組分在流動相和固定相中溶解度不同而分離。分離過程是一個分配平衡過程。
塗布式固定相應具有良好的惰性;流動相必須預先用固定相飽和,以減少固定相從擔體表面流失;溫度的變化和不同批號流動相的區別常引起柱子的變化;另外在流動相中存在的固定相也使樣品的分離和收集復雜化。由於塗布式固定相很難避免固定液流失,現在已很少採用。現在多採用的是化學鍵合固定相,如C18、C8、氨基柱、氰基柱和苯基柱。
液液色譜法按固定相和流動相的極性不同可分為正相色譜法(NPC)和反相色譜法(RPC)。
正相色譜法 採用極性固定相(如聚乙二醇、氨基與腈基鍵合相);流動相為相對非極性的疏水性溶劑(烷烴類如正已烷、環已烷),常加入乙醇、異丙醇、四氫呋喃、三氯甲烷等以調節組分的保留時間。常用於分離中等極性和極性較強的化合物(如酚類、胺類、羰基類及氨基酸類等)。
反相色譜法 一般用非極性固定相(如C18、C8);流動相為水或緩沖液,常加入甲醇、乙腈、異丙醇、丙酮、四氫呋喃等與水互溶的有機溶劑以調節保留時間。適用於分離非極性和極性較弱的化合物。RPC在現代液相色譜中應用最為廣泛,據統計,它占整個HPLC應用的80%左右。
隨著柱填料的快速發展,反相色譜法的應用范圍逐漸擴大,現已應用於某些無機樣品或易解離樣品的分析。為控制樣品在分析過程的解離,常用緩沖液控制流動相的pH值。但需要注意的是,C18和C8使用的pH值通常為2.5~7.5(2~8),太高的pH值會使硅膠溶解,太低的pH值會使鍵合的烷基脫落。有報告新商品柱可在pH 1.5~10范圍操作。
正相色譜法與反相色譜法比較表
正相色譜法 反相色譜法
固定相極性 高~中 中~低
流動相極性 低~中 中~高
組分洗脫次序 極性小先洗出 極性大先洗出
從上表可看出,當極性為中等時正相色譜法與反相色譜法沒有明顯的界線(如氨基鍵合固定相)。
3.離子交換色譜法 固定相是離子交換樹脂,常用苯乙烯與二乙烯交聯形成的聚合物骨架,在表面未端芳環上接上羧基、磺酸基(稱陽離子交換樹脂)或季氨基(陰離子交換樹脂)。被分離組分在色譜柱上分離原理是樹脂上可電離離子與流動相中具有相同電荷的離子及被測組分的離子進行可逆交換,根據各離子與離子交換基團具有不同的電荷吸引力而分離。
緩沖液常用作離子交換色譜的流動相。被分離組分在離子交換柱中的保留時間除跟組分離子與樹脂上的離子交換基團作用強弱有關外,它還受流動相的pH值和離子強度影響。pH值可改變化合物的解離程度,進而影響其與固定相的作用。流動相的鹽濃度大,則離子強度高,不利於樣品的解離,導致樣品較快流出。
離子交換色譜法主要用於分析有機酸、氨基酸、多肽及核酸。
4.離子對色譜法 又稱偶離子色譜法,是液液色譜法的分支。它是根據被測組分離子與離子對試劑離子形成中性的離子對化合物後,在非極性固定相中溶解度增大,從而使其分離效果改善。主要用於分析離子強度大的酸鹼物質。
分析鹼性物質常用的離子對試劑為烷基磺酸鹽,如戊烷磺酸鈉、辛烷磺酸鈉等。另外高氯酸、三氟乙酸也可與多種鹼性樣品形成很強的離子對。
分析酸性物質常用四丁基季銨鹽,如四丁基溴化銨、四丁基銨磷酸鹽。
離子對色譜法常用ODS柱(即C18),流動相為甲醇-水或乙腈-水,水中加入3~10 mmol/L的離子對試劑,在一定的pH值范圍內進行分離。被測組分保時間與離子對性質、濃度、流動相組成及其pH值、離子強度有關。
5.排阻色譜法 固定相是有一定孔徑的多孔性填料,流動相是可以溶解樣品的溶劑。小分子量的化合物可以進入孔中,滯留時間長;大分子量的化合物不能進入孔中,直接隨流動相流出。它利用分子篩對分子量大小不同的各組分排阻能力的差異而完成分離。常用於分離高分子化合物,如組織提取物、多肽、蛋白質、核酸等。
色譜法的基本原理
利用樣品混合物中各組分理、化性質的差異,各組分程度不同的分配到互不相溶的兩相中。當兩相相對運動時,各組分在兩相中反復多次重新分配,結果使混合物得到分離。
兩相中,固定不動的一相稱固定相;移動的一相稱流動相。
分類:
根據流動相分—以氣體作流動相—氣相色譜——固定相為液體 氣-液色譜
固定相為固體 氣-固色譜
—以液體作流動相—液相色譜——固定相為液體 液-液色譜
固定相為固體 液-固色譜
—當流動相是在接近它的臨界溫度和壓力下工作的液體時——超臨界色譜
根據固定相的附著方式
—固定相裝在圓柱管中—柱色譜
—固定相塗敷在玻璃或金屬板上—薄膜色譜(平板色譜)
—液體固定相塗在紙上—紙色譜(平板色譜)
根據分離機理
—分配色譜—樣品組分的分配系數不同
—吸附色譜— 樣品組分對固定相表面吸附力不同
—體積排阻色譜—利用固定相孔徑不同,把樣品組分按分子大小分開
—離子交換色譜—不同離子與固定相商相反電荷間的作用力大小不同
根據極性
—流動相極性>固定相極性-反相色譜
—流動相極性<固定相極性-正相色譜
氣相色譜只適合分析較易揮發、且化學性質穩定的有機化合物,而HPLC則適合於分析那些用氣相色譜難以分析的物質,如揮發性差、極性強、具有生物活性、熱穩定性差的物質。所以,HPLC的應用范圍已經遠遠超過氣相色譜。
一、吸附色譜(adsorption chromatography)
又叫液固色譜法:流動相是液體,固定相是固體。
分離原理:固定相是固體吸附劑,吸附劑是多孔性微粒物質表面有吸附中心。樣品組分與流動相競爭吸附中 心。各組分的吸附能力不同,使組分在固定相中產生保留時間不同和實現分離。
固定相: 固定相通常是強極性的硅膠、氧化鋁、活性炭、聚乙烯、聚醯胺等固體吸附劑。活性硅膠最常用。
流動相: 弱極性有機溶劑或非極性溶劑與極性溶劑的混合物,如正構烷烴(己烷、戊烷、庚烷等)、二氯甲 烷/甲醇、乙酸乙酯/乙腈等。
應用: 對於極性,結構異構體分離和族分離仍是最有效的方法,如農葯異構體分離、石油中烷、烯、芳烴的 分離。 缺點是容易產生不對稱峰和拖尾現象。
二、分配色譜
原理: 固定液機械的吸附在惰性載體上,樣品分子依據他們在流動相和固定相間的溶解度不同,分別進入兩相分配而實現分離。
固定相:將一種極性或非極性固定液吸附在惰性固相載體上。如全多孔微粒硅膠吸附劑。
根據極性不同分類:正相分配色譜—固定相載體上塗布的是極性固定液;
流動相是非極性溶劑;
可分立極性較強的水溶性樣品;
弱極性組分先洗脫出來。
反相分配色譜—固定相載體上塗布的是非極性或弱極性固定液;
流動相是極性溶劑;
強極性組分先洗脫出來。
液-液分配色譜固定相中的固定液體往往容易溶解到流動相中去,所以重現性很差,且不能進行梯度洗脫,已經不大為人們所採用。
三、鍵合相色譜
考慮分配色譜法中固定液的缺點,因此將各種不同的有機關能團通過化學反應共價結合到固定相惰性載體上,固定相就不會溶解到流動相中去了。
鍵合固定相優點:○ 對極性有機溶劑有良好的化學穩定性
○使色譜柱的柱效高、壽命長
○實驗重現性好
○幾乎適於各種類相的有機化合物的分離,尤其是k』寬范圍的樣品
○可以梯度洗脫
根據極性不同分類:正相鍵合相色譜—固定相極性>流動相極性
固定相:二醇基、醚基、氰基、氨基等極性基團的有機分子。
適於分離脂榮、水溶性的極性、強極性化合物
反相鍵合相色譜—固定相極性<流動相極性
固定相:烷基、苯基等非極性有機分子。如最常用的ODS柱或C18柱就 是最典型的代表,其極性很小。
適於分離非機性、弱極性離子型樣品,
是當今液相色譜的最主要分離模式。
正相HPLC(normal phase HPLC):
是由極性固定相和非極性(或弱極性)流動相所組成的HPLC體系。其代表性的固定相是改性硅膠、氰基柱等,代表性的流動相是正己烷。吸附色譜也屬正相HPLC。
反相HPLC(reversed phase HPLC):
由非極性固定相和極性流動相所組成的液相色譜體系,與正相HPLC體系正好相反。其代表性的固定相是十八烷基鍵合硅膠(ODS柱,Octa Decyltrichloro Silane),代表性的流動相是甲醇和乙腈。
四、體積排阻色譜(SEC,size exclusion chromatograghy)
(又稱凝膠色譜和分子篩色譜)
原理: 以多孔凝膠(如葡萄糖,瓊脂糖,硅膠,聚丙烯醯胺等)作固定相,依據樣品分子量大小達到分離目 的。大分子不進入凝膠孔洞,沿多孔凝膠膠粒間隙流出,先被洗脫;小分子進入大部分凝膠孔洞, 在柱中被強滯留,後被洗脫。
根據樣品性質分類:凝膠過濾(GFC)—用於分析水溶性樣品,如多肽、蛋白、生物酶、寡聚核苷酸、多聚核 苷酸、多糖。
凝膠滲透(GPC)—用於分析脂溶性樣品,如測定高聚物的分子量。
SEC主要依據分子量大小進行分離,因此與樣品、流動相間的相互作用無關。因此不採用改變流動相的組成來改善分離度。
五、離子交換色譜
(ion exchange chromatography, IEC)
分離原理:使用表面有離子交換基團的離子交換劑作為固定相。帶負電荷的交換基團(如磺酸基和羧酸基)可以用於陽離子的分離;帶正電荷的交換基團(如季胺鹽)可以用於陰離子的分離。不同離子與交換基的作用力大小不同,在樹脂中的保留時間長短不同,從而被相互分離。
Ⅳ 樹脂裝填方法是什麼
A 實驗室
量取:將一定量的樹脂與去離子水在燒杯中進行混合,然後將混合的樹脂水溶
液倒入量筒中,使樹脂充分沉降,通過補加和移取,使樹脂床層與相應刻度持平,即完成樹脂的量取。
裝填:關閉離子交換柱下端的出口閥門,用水將量筒中的樹脂全部導入離子交換柱中,然後打開交換柱出口閥門,使樹脂在柱內沉降壓實,然後關閉交換柱出口閥門,待用。(注意:須保留液面高於樹脂床層1~2cm,避免干柱。)
B 工業化
新樹脂裝柱前,應該使用清水和鹼液對樹脂交換柱相關管道進行清洗,清理出焊渣等固體廢料和附著在柱壁和管壁上的塵土與其他雜質。然後,向柱內注入 1/3 體積的水,取少量樹脂,將樹脂從交換柱頂部人孔處裝入柱內。關閉人孔,向柱內注水,同時打開交換柱下部排水閥門,用≥80 目篩網在排水口攔截,觀察是否有樹脂泄露,如果有個別小顆粒,屬於正常現象;如果有大顆粒樹脂出現,且量比較多,說明交換柱下濾板有問題,應把樹脂和水放出,檢查下濾板焊縫和水帽,查找原因,進行檢修。檢修完畢後,再按照上面的方法檢測,直至確定符合要求,然後再將剩餘的樹脂加入交換柱內。
樹脂裝柱完成後,先用去離子水對樹脂進行反向清洗,清洗流速控制在2~4BV/h,清洗約1h,停止水洗,讓樹脂自然沉降完全;然後用去離子水對樹脂柱床進行正向清洗,清洗流速控制在4~6BV/h,清洗約1h後停止。
更多使用方法
Ⅵ abs樹脂單體結構式
解析:由ABS的結構特點判斷為加聚產物,根據以下兩步 第一步:去內掉[ ]和n 第二步:半鍵反向容,與半鍵碳相鄰碳斷開一鍵。依次相連即得單體 答案:CH 2 =CH—CN CH 2 =CH—CH=CH 2
Ⅶ 什麼是反向滲透水系統
滲透:自然的滲透,水通過一個低濃度的溶劑經過滲透膜進入高濃度的鹽水中知道薄膜兩邊的濃度達到平衡。
反滲透: 反滲透需要外部的壓力去產生反向的滲透,當壓力加在鹽水一側時,水流通過高濃度的鹽水流過滲透膜。
反滲透膜 : 他有一個細小的毛孔表面可以防止污漬,單可以通過水膜排除細菌、熱原質及85%-95%無機物,多價離子比單價離子易阻隔,所有可溶性氣體通過反滲透有限的減少,水的純度依據進入的純度而不同,但比進水更純。
漂洗水:50%-90%的進水不流過滲透膜但經過其表面,不停的將表面的有機、無機物帶走,這種水叫「reject」水。
Barnstead 膜: 以下三種材料的反滲透膜:
乙酸纖維素;
醯胺;
薄膜
進水影響膜的使用及壽命, 有以下因素:
壓力:進水水壓影響品質及純度,低水壓產生低水流及低純度,高水壓產生高水流及高純度.
PH值:當進水普通酸性或不可知時,Barnstead建議使用寬PH范圍的薄膜.
LSI(Langlier Sataration Index): 指示膜表面的強度,測試水的溫度,無機物含量,鈣質及PH 如讀數為正,Barnstead建議安裝一個軟水器.
氯離子及細菌: 乙酸纖維素需要氯離子殺菌及保護膜,相反,醯胺及薄膜會被氯離子破壞,所以當選擇醯胺及薄膜時先要加一級活性炭.
溫度: 膜進水溫度是25°C,再降低1°C,產量少3%.如溫度低於25°C,Barnstead建議使用熱、冷混合閥增加溫度到25°C,進水高幹35°C會損壞大多數的膜.
Silt Density Index. 測量微米級物質
六 去離子
離子有兩種,陽離子和陰離子,陽離子帶正電荷。陰離子帶負電荷。
離子可通過一系列化學反應從水中置換出來, 當水通過離子交換樹脂床時,這些反應就發生了。陽離子樹脂表面吸附有H+,陰離子樹脂表面吸附有OH-,置換出陰陽離子後結合生成水。
獨立床反應:當陰陽離子樹脂分開後,獨立的反應產生但不完全,這樣只有中等的離子交換完成。
混合床反應:當陰陽離子樹脂混合,反應就會完全且近於整個離子交換。
如何進行離子測量: 電導或電阻由兩個在線電極測量。離子越少,電導越小,電阻越大。水溫同樣會有影響。Barnstead電極及其表自動進行溫度補償,確保精度。
去離子之前進行預處理:
大量的去離子,反滲透或蒸餾會延長去離子柱子的壽命,大多數包含無離子進水成分,會集聚在去離子樹脂上,包含顆粒,有機物,有機氣體,必須要有一個Barnstead預處理柱子在去離子系統前面。
Step by step Barnstead 去離子系統技術:
吸收
Barnstead預處理柱子使用活性碳及一個獨特大網路樹脂,以去除有機物,氯,膠體,一些細菌及內毒素.活性碳及大網路樹脂延長去離子樹脂的壽命且只可用於Barnstead預處理柱子.
雙去離子床
陰陽離子床各佔一半,去除大部分但不是所有的離子.
去離子混合床
當進水被蒸餾或去離子且抗大於50000歐姆,且如果進水鹼性+CO2+二氧化硅.大於50%總物質,雙床體柱子就不起作用.我們使用半導體級別混合去離子樹脂床,完成最大的阻抗及低TOC.
紫外氧化
Barnstead NaNo pure UV及Easypare UV包括一個雙波長紫外燈,氧化有機物且殺死微生物,這些系統內生產的水,總的有機碳(TOC)為3PPB或更少.
混合床去離子及吸收
我們使用混合半導體級混合去離子床及吸收柱完成最大電阻及低總有機碳量(TOC),可選的紫外燈,我們達到3PPB或更低TOC,如果無可選用紫外燈我們可達少於10PPB.
過濾
超過濾用於去除熱原質及病毒,當產品水需要用於組織培養,細胞培養,及媒質准備,Barnstead超純水過濾器,生產無熱原質水可達到小於0.005eu/ml.
薄膜過濾
0.2um膜過濾用於所有的系統輸出去除細菌或微粒,它們可能通過柱
子,Barnstead微型傳送頭包括一個獨特的自我清晰裝置可通過0.2um絕對過濾器.
Barnstead高品質純水介質及樹脂
活性碳:去除有機物幾氯,保護去離子床,延長去離子樹脂壽命.
網狀樹脂:去除顆粒及有機物,吸收或離子交換,用去離子柱保護去離子樹脂.
陰離子樹脂:用OH-去置換
陽離子樹脂:用H+去置換
高容量樹脂.陰陽離子混合比超純樹脂純度低.
超純樹脂:半導體級別,陰陽離子樹脂混合床,ASTM TYPE1級水生產,18.3m歐姆.
除氧樹脂:除氧,防腐蝕,進水要求少於10PPM離子
去有機物樹脂:碳及超純樹脂混合,去離子之後使用,顆粒預處理,可去除有機物達到10PPB TOC
大純樹脂:大網狀樹脂與碳混合結構,在去有機物之前預處理.
Ⅷ 怎麼在反向柱中分離極性小、化學結構相似的化合物
環氧樹脂酚醛樹脂單體別環氧乙烷及苯酚甲醛 酚醛樹脂通苯酚甲醛通加聚反應環氧樹脂通環氧乙烷自身加聚反應 聚合反應由單體合聚合物反應程聚合能力低原料稱單體
Ⅸ 離子交換樹脂的一搬使用方法是什麼
離子交換樹脂的使用方法
1.裝柱(採用濕法裝柱)
A 實驗室
量取:將一定量的樹脂與去離子水在燒杯中進行混合,然後將混合的樹脂水溶液倒入量筒中,使樹脂充分沉降,通過補加和移取,使樹脂床層與相應刻度持平,即完成樹脂的量取。
裝填:關閉離子交換柱下端的出口閥門,用水將量筒中的樹脂全部導入離子交換柱中,然後打開交換柱出口閥門,使樹脂在柱內沉降壓實,然後關閉交換柱出口閥門,待用。(注意:須保留液面高於樹脂床層1-2cm,避免干柱。)
B 工業化
新樹脂裝柱前,應該使用清水和鹼液對樹脂交換柱相關管道進行清洗,清理出焊渣等固體廢料和附著在柱壁和管壁上的塵土與其他雜質。然後,向柱內注入 1/3 體積的水,取少量樹脂,將樹脂從交換柱頂部人孔處裝入柱內。關閉人孔,向柱內注水,同時打開交換柱下部排水閥門,用≥80 目篩網在排水口攔截,觀察是否有樹脂泄露,如果有個別小顆粒,屬於正常現象;如果有大顆粒樹脂出現,且量比較多,說明交換柱下濾板有問題,應把樹脂和水放出,檢查下濾板焊縫和水帽,查找原因,進行檢修。檢修完畢後,再按照上面的方法檢測,直至確定符合要求,然後再將剩餘的樹脂加入交換柱內。
樹脂裝柱完成後,先用去離子水對樹脂進行反向清洗,清洗流速控制在2-4BV/h,清洗約1h,停止水洗,讓樹脂自然沉降完全;然後用去離子水對樹脂柱床進行正向清洗,清洗流速控制在4-6BV/h,清洗約1h後停止。
2.Seplite樹脂預處理
首先用4%的鹽酸溶液進行過柱處理,處理流速控制在1-2BV/h,處理量3-4BV;處理完畢後,用去離子水過柱清洗掉柱床及樹脂孔道內殘留的酸,至出口液pH≥4,停止水洗,樹脂床層上至少保留20-30cm的液面層,防止干柱。
然後用4%的氫氧化鈉溶液進行過柱處理,處理流速控制在1-2BV/h,處理量3-4BV;處理完畢後,用去離子水過柱清洗掉柱床及樹脂孔道內殘留的鹼,至出口液pH≤10,停止水洗,樹脂床層上至少保留20-30cm的液面層,防止干柱。
再用4%的鹽酸溶液進行過柱處理,處理流速控制在1-2BV/h,處理量3-4BV;處理完畢後,用去離子水過柱清洗掉柱床及樹脂孔道內殘留的酸,至出口液pH≥4,停止水洗,樹脂床層上至少保留20-30cm的液面層,防止干柱。
最後再用95%以上的乙醇或甲醇溶液以1BV/h的流速進行樹脂過柱處理,至進出口醇濃度一致,停止進醇,浸泡2-4h,然後繼續過柱處理,至流出液澄清無渾濁時停止,再用去離子水以1~2BV/h的流速過柱清洗樹脂,至出口液中無明顯的醇味,待用。
3.樹脂吸附
料液上柱吸附前須經必要的過濾預處理,以去除料液中的固形物雜質,防止堵塞樹脂孔道,影響樹脂吸附效果。吸附過程一般採取正向過柱的方式,吸附流速一般建議控制在1-2BV/h,通過檢測出口液中目的物(或雜質)的含量,以確定樹脂的吸附狀態。
1. 吸附後水洗
樹脂吸附完成後,用去離子水正向過柱清洗樹脂柱床,清洗流速一般控制在1-2BV/h,清洗1-2h,以清除柱床內殘留的料液以及部分水溶性雜質。
2. 樹脂解析
水洗完成後,可採用4-6%的鹽酸溶液或硫酸溶液對樹脂進行過柱解析再生,過柱流速一般控制在1-2BV/h,處理量控制在3BV以內。也可採用8-10%的氯化鈉溶液進行解析再生,處理流速一般控制在1-2BV/h,處理量控制在3BV以內。
3. 解析後水洗
樹脂解析再生完成後,用去離子水正向過柱清洗樹脂柱床,清洗流速一般控制在1-2BV/h,清洗1-2h,以清除柱床內殘留的解析劑(酸、鹽溶液)。
4. 樹脂深度再生處理
樹脂運行一段時間後,如出現交換容量下降,可用下面的方法對樹脂進行深度再生處理。
1.鹼再生
用4%的氫氧化鈉溶液正向過柱,對樹脂進行鹼再生處理,處理流速控制在1-2BV/h,處理約1.5h。熱鹼再生處理完畢後,用去離子水正向過柱清洗,清洗流速2-3BV/h,至出口液pH≤10。
1.酸再生
鹼再生並水洗完成後,用4%的鹽酸溶液進行正向過柱處理,處理流速控制在1-2BV/h,處理約1.5h。酸再生處理完畢後,用去離子水正向過柱清洗,清洗流速2-3BV/h,至出口液pH≥5。
註:樹脂的具體使用方法與具體使用工況、工藝方案等有關,因此,樹脂的具體使用方法及細則也可向藍曉科技應用技術服務人員咨詢。
離子交換樹脂注意事項:
(1)使用中應盡量避免反復對樹脂進行裝卸,防止樹脂床層不均勻導致偏流。
(2)短時間停運,應將樹脂再生、清洗干凈後置於清水中浸泡。
(3)長期停運或冬季室溫低於5℃,則應將樹脂浸泡於15%的NaCL或10%的氫氧化鈉水溶液中,防止滋生
細菌與樹脂凍結。
離子交換樹脂儲存方法:
(4)料液上柱前須經必要的過濾處理,以除去固形物雜質,防止堵塞樹脂孔道,影響樹脂吸附效果。
(1)樹脂儲運溫度5℃—40℃,嚴禁雨淋、暴曬。
(2)保持樹脂的內、外包裝完整,防止樹脂受污與失水。
(3)防止樹脂受凍與受熱,樹脂一般要求室溫避光保存。
(4)避免與有異味、有毒、氧化性物質混雜堆放。