樹脂大人孔
A. 大孔樹脂有毒嗎
樹脂一般都來存在毒性的。源因樹脂是網狀結構,空隙較大,制備時需要加入一些有機溶劑,即致孔劑。致孔劑是對人體都有害的液體。生產時控制條件還是可以降低毒害的。可以認為,AMB樹脂成品應該是有毒的(大或小),只是成品的毒性應控制在安全的范圍。
B. 大孔樹脂的分類
大孔吸附樹脂按其極性大小和所選用的單體分子結構不同,可分為非極性、中回極性和極性三類。
極性大答孔吸附樹脂是指含醯胺基、氰基、酚羥基等含氮、氧、硫極性功能基的吸附樹脂,它們通過靜電相互作用吸附極性物質,如丙烯醯胺。
C. 大孔樹脂的壽命多長
作甚麼用呢?如果是但讀書之儲存的話,基本保險壽命1年。若果做成成品的話估計時間就沒准了,看你的配比
D. 凝膠型離子交換樹脂和大孔型離子交換樹脂的不同之處
大孔型樹脂是什麼?
大孔型離子交換樹脂是一種大孔結構且帶有官能團的網狀專結構的聚合物,孔屬徑不會隨著環境、溫度的變化而變化,孔徑一般在10nm左右,外觀一般為不透明乳白色。
凝膠型樹脂是什麼?
凝膠型離子交換樹脂是離子交換樹脂的一種,是由純單體混合物經縮合或聚合而成的,外觀一般為透明的球型顆粒,凝膠樹脂的結構為微孔狀,凝膠型離子交換樹脂可以分為強酸性、弱酸性、強鹼性、弱鹼性及螯合性五種。
大孔型樹脂和凝膠型樹脂有什麼區別?
大孔型離子交換樹脂是針對凝膠型離子交換樹脂的缺點而研製的,大孔型離子交換樹脂和凝膠型離子交換樹脂的主要區別就是它們的孔徑不一樣,凝膠型離子交換樹脂的孔徑一般在3nm以下,在乾的凝膠型離子交換樹脂中,這些孔徑就會消失,而大孔型離子交換樹脂的孔徑一般在10nm左右,這些孔徑的大小不會因為環境的變化而改變。
凝膠型離子交換樹脂在干態和非水系統中不能使用,而且在使用的過程中可能會發生「中毒」的現象,從而失去離子交換的能力,而大孔型離子交換樹脂能夠在在干態和非水系統中使用,而且不會發生「中毒」的現象,但是大孔型離子交換樹脂具有交換容量較低,再生時酸鹼用量大及價格較高等缺點。
E. 什麼是大孔徑離子交換樹脂
離子交換樹脂有凝膠樹脂,大孔樹脂,均孔樹脂等。凝膠樹脂沒有明顯的孔在內部,而大孔樹脂在樹脂內部骨架之間存在明顯的孔,但孔大小不一,不管是否溶脹都存在。均孔樹脂的內部孔大小相對均勻。
F. 大孔樹脂的應用領域
由於大孔樹脂其本身組成與結構特點,具有吸附性和篩選性相結合的分離,純化多種功能,已廣泛應用於環境保護、冶金工業、化學工業、制葯和醫學衛生部門,特別適用於生物化學製品、
天然產物的分離純化、葯物制備、有機化合物分離、化學反應催化劑、載體等各個領域。 大孔吸附樹脂對工業廢水,廢液的處理有著廣泛的應用。如廢水中含苯、硝基苯、氯苯、氟苯、苯酚、硝基酚、氨基苯酚、雙酚A、對甲酚、萘酚、苯胺、鄰苯二胺、對苯二胺、水楊酸、奈磺酸等有機物均具有很好的吸附、回收凈化作用。且對廢液中有害物質的濃度含量適應性強,並可作到一次性達標。可實現工業生產中有害物質回收再用、化害為利、變廢為寶的目的。
大孔吸附樹脂在微生物制葯分離純化上的應用也越來越多,某些屬於弱電解質或非離子型的化合物,過去不能用離子交換法提取,現下可試用大孔吸附樹脂,這為化合物分離純化提供了新的途徑。
大孔樹脂仍是當前反應性高分子技術領域發展最活躍的一個分支。實踐應用表明,它比其它天然吸附劑(或凝膠型樹脂)具有較大的吸附能力,洗脫容易、機械強度高,抗污染能力強等優點。特別是其孔徑和孔度大小、比表面積、極性等性能都可以人為控制調節,供任意選擇,因此逐漸取代了活性炭和AL2O3等經典吸附劑,又補充了離子交換樹脂的不足,為微生物制葯分離、提出、濃縮、純化等方面提供了極重要手段。
G. 大孔樹脂的分離原理
大孔吸附樹脂為吸附性和篩選性原理相結合的分離材料。
大孔吸附樹脂的吸附實質專為一種物體高度屬分散或表面分子受作用力不均等而產生的表面吸附現象,這種吸附性能是由於范德華引力或生成氫鍵的結果。同時由於大孔吸附樹脂的多孔結構使其對分子大小不同的物質具有篩選作用。通過上述這種吸附和篩選原理,有機化合物根據吸附力的不同及分子量的大小,在大孔吸附樹脂上經一定溶劑洗脫而達到分離、純化、除雜、濃縮等不同目的。
吸附樹脂的表面發生吸附作用後,會使樹脂表面上溶質的濃度高於溶劑內溶質的濃度,其結果引起體系內放熱和自由能的下降。一般說來,吸附分為物理吸附和化學吸附兩大類。
H. 大孔樹脂和聚醯胺樹脂有什麼區別
這是我自己總結的 希望對你有幫助
一 大孔樹脂
1.原理: 大孔吸附樹脂是以苯乙烯和丙酸酯為單體,加入乙烯苯為交聯劑,甲苯、二甲苯為致孔劑,它們相互交聯聚合形成了多孔骨架結構。
不同於以往使用的離子交換樹脂,大孔吸附樹脂為吸附性和篩選性原理相結合的分離材料。
吸附性是由於范德華力或產生氫鍵的結果。
篩選性是由於其本身多孔性結構所決定。
因此,有機化合物根據吸附力的不同及分子量的大小,在樹脂的吸附機理和篩分原理作用下實現分離。
2.類型
按其極性和所選用的單體分子結構分為:
(1)非極性大孔樹脂 苯乙烯、二乙烯苯聚合物,也稱芳香族吸附劑。(如HPD-100,D-101等)
(2)中等極性大孔樹脂 聚丙烯酸酯型聚合物,以多功能團的甲基丙烯酸酯作為交聯劑,也稱脂肪族吸附劑。
(3)極性大孔樹脂 含硫氧、醯胺基團,如丙烯醯胺。
(4)強極性大孔樹脂 含氮氧基團,如氧化氮類。
3 選擇
選擇樹脂要綜合各方面的因素(如:待分離化合物的分子大小、所含特有基團等)
適當孔徑下,應有較高的比表面積;具有適宜的極性;與被吸附物質有相似的功能基。
二 聚醯胺
1.原理:聚醯胺(polyamide,PA)是由醯胺聚合而成的一類高分子物質,又叫尼龍、錦綸
色譜中常用的聚醯胺有:尼龍-6(己內醯胺聚合而成)和尼龍-66(己二酸與己二胺聚合而成)。既親水又親脂,性能較好,水溶性物質和脂溶性物質均可分離。錦綸11,1010的親水性較差,不能使用含水量高的溶劑系統。原理暫時有2種:
①氫鍵吸附原理:酚、酸的羥基與聚醯胺中羰基形成氫鍵;
芳香硝基、醌類化合物的硝基或羥基(醌)與聚醯胺中游離氨基形成氫鍵;
脫吸附通過溶劑分子形成新氫鍵取代原有氫鍵而完成。
②雙重層析原理:
聚醯胺既有非極性的脂肪鍵,又有極性的醯胺鍵。
當用含水極性溶劑作流動相時,聚醯胺作為非極性固定相,其色譜行為類似反相分配色譜,所以苷比苷元容易洗脫。
當用非極性氯仿-甲醇作為流動相時,聚醯胺則作為極性固定相,其色譜行為類似正相分配色譜,所以苷元比其苷容易洗脫。
2.適用:
聚醯胺層析可用於黃酮、酚類、有機酸、生物鹼、萜類、甾體、苷類、糖類、氨基酸衍生物、核苷類等的化合物的分離,尤其是對黃酮類、酚類、醌類等物質的分離遠比其它方法優越。
特點:對黃酮等物質的層析是可逆的;分離效果好,可分離極性相近的類似物,其柱層析的樣品容量大,適用於制備分離。
I. 大孔樹脂的理化性質
大孔吸附樹脂是通過物理吸附從溶液中有選擇地吸附有機物質,從而專達到分離提純的目的。其理屬化性質穩定,不溶於酸、鹼及有機溶劑,對有機物選擇性好,不受無機鹽類及強離子、低分子化合物存在的影響,在水和有機溶劑中可吸附溶劑而膨脹。