氫氧根能透過反滲透膜嗎
⑴ 氫離子為什麼不能通過滲透作用進入細胞
1、溶解-擴散模型
Lonsdale等人提出解釋反滲透現象的溶解-擴散模型。反滲透脫鹽他將反滲透的活性表麵皮層看作為緻密無
孔的膜,並假設溶質和溶劑都能溶於均質的非多孔膜表面層內,各自在濃度或壓力造成的化學勢推
動下擴散通過膜。溶解度的差異及溶質和溶劑在膜相中擴散性的差異影響著他們通過膜的能量大小
。其具體過程分為:第一步,溶質和溶劑在膜的料液側表面外吸附和溶解;第二步,溶質和溶劑之
間沒有相互作用,他們在各自化學位差的推動下以分子擴散方式通過反滲透膜的活性層;第三步,
溶質和溶劑在膜的透過液側表面解吸。
在以上溶質和溶劑透過膜的過程中,反滲透脫鹽一般假設第一步、第三步進行的很快,此時透過速率取決
於第二步,即溶質和溶劑在化學位差的推動下以分子擴散方式通過膜。由於
膜的選擇性,使氣體混合物或液體混合物得以分離。而物質的滲透能力,不僅取決於擴散系數
,並且決定於其在膜中的溶解度。
2、 優先吸附—毛細孔流理論
當液體中溶有不同種類物質時反滲透脫鹽,其表面張力將發生不同的變化。例如水中溶有醇、酸、醛、脂
等有機物質,可使其表面張力減小,但溶入某些無機鹽類,反而使其表面張力稍有增加,這是因為
溶質的分散是不均勻的,即溶質在溶液表面層中的濃度和溶液內部濃度不同,這就是溶液的表面吸
附現象。當水溶液與高分子多孔膜接觸時,若膜的化學性質使膜對溶質負吸附,對水是優先的正吸
附,則在膜與溶液界面上將形成一層被膜吸附的一定厚度的純水層。它在外壓作用下,將通過膜表
面的毛細孔,從而可獲取純水。
3、 氫鍵理論
在醋酸纖維素中,由於氫鍵和范德華力的作用,反滲透脫鹽膜中存在晶相區域和非晶相區域兩部分。大分
子之間存在牢固結合並平行排列的為晶相區域,而大分子之間完全無序的為非晶相區域,水和溶質
不能進入晶相區域。在接近醋酸纖維素分子的地方,水與醋酸纖維素羰基上的氧原子會形成氫鍵並
構成所謂的結合水。當醋酸纖維素吸附了第一層水分子後,會引起水分子熵值的極大下降,形成類
似於冰的結構。在非晶相區域較大的孔空間里,結合水的佔有率很低,在孔的中央存在普通結構的
水,不能與醋酸纖維素膜形成氫鍵的離子或分子則進入結合水,並以有序擴散方式遷移,通過不斷
的改變和醋酸纖維素形成氫鍵的位置來通過膜
⑵ 去離子水是什麼 是氫離子和氫氧根被去除了嗎 如是如此 那離子積是什麼
去離子水(deionized water)是指除去了呈離子形式雜質後的純水
從自來水到去離子水專一般要經過幾步處理屬 :
1、先通過石英砂過濾顆粒較粗的雜質
2、然後高壓通過反滲透膜
3、最後一般還要經過一步紫外殺菌以去除水中的微生物
4、假如此時電阻率還沒有達到要求的話,可以再進行一次離子交換過程最高電阻率可達到18兆。
相對而言,蒸餾水只是先氣化再冷凝,其純度如電導率一般不如純度高的去離子水,半導體工業中用的大多數是高純度的去離子水。
氫離子和氫氧根沒有被去除,因為水可以不斷的電離啊。水的離子積只與溫度有關!
⑶ 水分子是怎樣透過反滲透膜的
形成氫鍵模型
膜的表面很緻密,其上有大量的活化點,鍵合一定數目的結合水,這種水已失去溶劑化能力,鹽水中的鹽不溶於其中。進料中的水分子在壓力下可與膜上的活化點形成氫鍵而締合,使該活化點上其他結合水解締下來,該解締的結合水又與下面的活化點締合,使該點原有的結合水解締下來,此過程不斷地從膜面向下層進行,就是以這種順序型擴散,水分子從膜面進入膜內,最後從底層解脫下來成為產品水。而鹽是通過高分子鏈間空穴,以空穴型擴散,從膜面逐漸到產品水中的,但該模型缺乏更多的關於傳質的定量描述。
Donnan平衡模型
膜為固定負電荷型,據電中性原理及膜和溶液中離子化學位平衡,一般認為藉助於排斥同離子的能力,荷電膜可用於脫鹽,一般只有稀溶液,在壓力下通過荷電膜時,有較明顯的脫鹽作用,隨著濃度的增加,脫鹽率迅速下降。二價同離子的脫除比單價同離子好,單價同離子的脫除比二價反離子的好。該理論以Donnan平衡為基礎來說明荷電膜的脫鹽,但Donnan平衡是平衡狀態,而對於在壓力下透過荷電膜的傳質,還不能從膜、進料及傳質過程等多方面來定量描述。
除上述模型,許多學者還提出不小另外的模型,如脫鹽中心模型,表面力-孔流模型,有機溶質脫鹽機理等
⑷ 氣體可以通過反滲透膜嗎
反滲透膜是通過分子大小來實現分離的,就看氣體的分子大小,當分子大小小於膜孔徑時肯定是可以通過反滲透膜的。
⑸ 反滲透膜能脫除氫氧化鈉嗎
增加鹼性可以增加硼酸根的水合結構直徑,相當於讓它變大了,就不容易透過反滲透膜的微孔。
⑹ 請問一下,有什麼反滲透膜可以讓氫離子通過,而不能讓鹽離子通過
RO反滲透膜復元件的脫鹽率在其制製造成形時就已確定,脫鹽率的高低取決於反滲透RO膜元件表面超薄脫鹽層的緻密度,脫鹽層越緻密脫鹽率越高,同時產水量越低。反滲透膜對不同物質的脫鹽率主要由物質的結構和分子量決定,對高價離子及復雜單價離子的脫鹽率可以超過99%,對單價離子如:鈉離子、鉀離子、氯離子的脫鹽率稍低,但也可超過了98%(反滲透膜使用時間越長,化學清洗次數越多,反滲透膜脫鹽率越低)對分子量大於100的有機物脫除率也可過到98%,但對分子量小於100的有機物脫除率較低。
反滲透膜的脫鹽率和透鹽率計算方法:
RO膜的鹽透過率=RO膜產水濃度/進水濃度×100%
RO膜的脫鹽率=(1–RO膜的產水含鹽量/進水含鹽量)×100%
RO膜的透鹽率=100%–脫鹽率
⑺ 反滲透設備能否降低進入鍋爐中HCO-、OH-、CO2-3的含量。
不能降低他們的含量,雖然能在反滲透中去除碳酸氫根和碳酸根的含量,但穿過反滲透膜的二氧化碳又可以生成碳酸氫根、碳酸根,氫氧根由於離子半徑過小,所以能透過反滲透膜。
⑻ 反滲透能去除氫氧根嗎
不能,因為只要有水 就會電離出少量的
氫氧根離子和氫離子。水是弱電解質會電離
⑼ 反滲透膜為何只讓水通過,不讓小分子通過
反滲透(Reverse Osmosis),是近40年發展起來的膜分離技術。20世紀60年代反滲透技術的崛起帶動了整個膜分離技術的發展。用一張只透過水而不透過溶質的理想半透膜把水和鹽水隔開,則出現水分子由純水一側通過半透膜向鹽水一側擴散的現象,這是人們所熟知的滲透現象。隨著滲透現象的進行,鹽水側液面不斷升高純水側水面相應下降,經過一定時間之後,兩側液面差不再變化,系統中純水的擴散滲透達到了動態平衡,這一狀態成為滲透平衡。π為鹽水溶液的滲透壓。滲透平衡時純水相與鹽水溶液相中水的化學勢差等於零。如果人為地增加鹽水側的壓力,則鹽水相中水的化學勢增加,就出現了水分子從鹽水側通過半透膜向純水側擴散滲透的現象。由於水的擴散方向恰恰與滲透現象相反,因此人們把這個過程稱為反滲透。由此可見,若用一半透膜分隔濃度不同的兩個水溶液,其滲透壓差為π,則只要在濃溶液側加以大於π的外壓,就能使這一體系發生反滲透過程,這就是反滲透膜分離的基本概念。實際的反滲透過程中所加外壓一般都達到滲透壓差的若干倍。
目前膜工業上把反滲透過程分成三類:高壓反滲透(5.6~10.5MPa,如海水淡化),低壓反滲透(1.4~4.2MPa,如苦鹹水的脫鹽),和超低壓反滲透(0.5~1.4MPa,如自來水脫鹽)。反滲透膜具有高脫鹽率(對NaCl達95~99.9%的去除)和對低分子量有機物的較高去除,有機物的去除依賴於膜聚合物的形式、結構與膜和溶質間的相互作用。
GE膜總代北京盛大維新為您介紹,希望能幫助到您
⑽ 離子交換膜與反滲透膜
反滲透又稱逆滲透,一種以壓力差為推動力,從溶液中分離出溶劑的膜版分離操作。因為它和自然權滲透的方向相反,故稱反滲透。根據各種物料的不同滲透壓,就可以使大於滲透壓的反滲透法達到分離、提取、純化和濃縮的目的。
EDI(Electrodeionization,連續電解除鹽技術),是一種將離子交換技術、離子交換膜技術和離子電遷移技術相結合的純水製造技術。它巧妙的將電滲析和離子交換技術相結合,利用兩端電極高壓使水中帶電離子移動,並配合離子交換樹脂及選擇性樹脂膜以加速離子移動去除,從而達到水純化的目的。在EDI除鹽過程中,離子在電場作用下通過離子交換膜被清除。同時,水分子在電場作用下產生氫離子和氫氧根離子,這些離子對離子交換樹脂進行連續再生,以使離子交換樹脂保持最佳狀態。