樹脂固化機制
1. 不飽和樹脂的固化機理
從游離基聚合的化學動力學角度分析 ,UPR的固化屬於自由基共聚合反應。固化內反應具有容鏈引發、鏈增長、鏈終止、鏈轉移四個游離基反應的特點。
鏈引發——從過氧化物引發劑分解形成游離基到這種游離基加到不飽和基團上的過程。
鏈增長——單體不斷地加合到新產生的游離基上的過程。與鏈引發相比,鏈增長所需的活化能要低得多。
鏈終止——兩個游離基結合,終止了增長著的聚合鏈。
鏈轉移——一個增長著的大的游離基能與其他分子,如溶劑分子或抑制劑發生作用,使原來的活性鏈消失成為穩定的大分子,同時原來不活潑的分子變為游離基。
2. 什麼是樹脂固化
樹脂固化主要是指從二維的線性結構在光、熱或其他條件下變成三維的不溶不熔的網狀結構。
希望我的回答對您有幫助,滿意請採納,謝謝。
3. 三聚氰胺樹脂的固化機理是什麼
應該就是化學課
4. 不飽和聚酯樹脂的固化機理
常用的復不飽和聚酯樹脂主要制由線型不飽和樹脂和活性單體(一般是苯乙烯)兩部分組成。兩者都含有不飽和鍵,在一定的條件下(例如加入過氧化物引發劑、加熱、受紫外線照射等),就能進行自由基共聚和反應。這種反應實在按照鏈引發、鍵增長和鏈終止的歷程進行的。
在這一過程中伴隨著熱量的放出,液體樹脂的粘度迅速增大,硬度提高,最終變成了既不溶解也不熔融的固體。
根據需要在成型過程中可以加入增強材料如玻璃纖維,也可以不加增強材料,只加(或不加)不同的填料,前者即得到我們通常所說的玻璃鋼,後者可以製成人造大理石,人造瑪瑙等製品或作為表面塗層使用。
(4)樹脂固化機制擴展閱讀
使用配比:100份樹脂,加固化劑2~3份,促進劑1~2.5份。當溫度低需用加速劑時,加量為0.2~0.5%份。添加順序為:加速劑®促進劑®固化劑,並且每加一種時,都必須充分與樹脂混合均勻後,才可加入第二種。
注意事項:過氧化甲乙酮是潛在性爆炸物必須遠離火源、碰撞及避免陽光直射。儲藏在陰涼、通風處。但決不可與促進劑放在一起,二者相互混合會引起燃燒及爆炸。
5. 樹脂的固化
估計問題是出在攪拌不均勻上。加蘭水和固化劑時一定要攪拌均勻,特別是蘭水。
至於你說的「不飽和樹脂固化時最佳的溫度范圍」這個沒什麼,不同的室溫在蘭,白水比例相同的情況下只會影響固化時間,不會影響硬度
6. UV固化樹脂固化原理是什麼
UV固化樹脂的固化原理與其它樹脂的熱固化不同,它必須要經過UV爐/UV燈進行固化,通過版UV爐時,照射權紫外光,使其「加熱」固化。UV是指紫外線ultraviolet
的英文縮寫,從高分子微觀角度來說,一些高分子材料的末端官能團有很強的紫外感光性,只有在紫外光的照射下,官能團才能有足夠的活性進行再次反應,進行交聯,表現為固化。
7. 不飽和聚酯樹脂固化機理
市售的常用促進劑
1、環烷酸鈷,一般為1%的苯乙烯溶液,稱為1#促進劑。常與1#固化劑過氧化環己酮配合使用。幾十年來,人們一直認為鈷鹽保進劑固化性能好,在不飽和聚酯樹脂室溫固化中廣泛採用。由於受鈷鹽色澤的影響,近年來人們普遍認識到:其凝膠固化效果和顏色已不能滿足需要。
2、N,N-二甲基苯胺,通常為10%的苯乙烯溶液,稱為2#促進劑。常與2#固化劑(過氧化二苯甲醯)配合使用。在樹脂中含有大量游離酚或聚酯分子鏈中含有大分子支鏈的分子結構的場合,是很有效的固化系統。(如對於乙烯基酯樹脂固化、雙酚A類聚酯樹脂的固化、氯橋酸酐類聚酯樹脂等。)
3、異辛酸鈷,常用在預促進型樹脂中,尤其是用較濃的異辛酸鈷預促進,能得到較好的催干效果。通常情況下異辛酸估的促進效果要比環烷酸鈷好,這是因為環烷酸是一個分子量不固定(分子量范圍180-350)的環烷烴的羧基衍生物,所以其鈷含量難於做得十分精確,並且由於它是石油精製時的副產物,通常顏色較深,所以目前市場上異辛酸鈷有取代環烷酸鈷的趨勢。
冷固化體系中常用的固化劑類型
1、 過氧化環己酮(是多種氫過氧化物的混合物)
其中以第(Ⅰ)種結構為主。
過氧化環己酮溶解在二丁酯中,成為50%的糊狀物,稱為1#固化劑
2、過氧化二苯甲醯(是一種過氧化物,簡稱BPO)
過氧化二苯甲醯溶解在二丁酯中,成為50%的糊狀物,稱為2#固化劑
3、 過氧化甲乙酮(簡稱MEKP)
這是一種液態固化劑,一般配成有效成份為50%的二甲酯溶液,就是市售的5#固化劑。在有效成份中,同樣,不是單一化合物,而是由多種分子結構的氫過氧化物的混合物.這些化合物具有不同的活性,氫過氧基(-OOH)使活性增大,羥基(-OH)使活性減小。
目前國內最常用的固化劑就是5#固化劑。值得注意的是,目前國產5#固化劑的質量有所下降,存在著固化劑中低分子物含量過高、含水量過高等缺點。
不飽和聚酯樹脂固化過程中分子結構的變化
UPR的固化過程是UPR分子鏈中的不飽和雙鍵與交聯單體(通常為苯乙烯)的雙鍵發生交聯聚合反應,由線型長鏈分子形成三維立體網路結構的過程。在這一固化過程中,存在三種可能發生的化學反應,即
1、 苯乙烯與聚酯分子之間的反應;
2、 苯乙烯與苯乙烯之間的反應;
3、 聚酯分子與聚酯分子之間的反應。
對於這三種反應的發生,已為各種實驗所證實。
值得注意的是,在聚酯分子結構中有反式雙鍵存在時,易發生第三種反應,也就是聚酯分子與聚酯分子之間的反應,這種反應可以使分子之間結合的更緊密,因而可以提高樹脂的各項性能。
5.3 不飽和樹脂固化過程的表觀特徵變化
不飽和聚酯樹脂的固化過程可分為三個階段,分別是:
1、凝膠階段(A階段):從加入固化劑、促進劑以後算起,直到樹脂凝結成膠凍狀而失去流動性的階段。該結段中,樹脂能熔融,並可溶於某些溶劑(如乙醇、丙酮等)中。這一階段大約需要幾分鍾至幾十分鍾。
2、硬化階段(B階段):從樹脂凝膠以後算起,直到變成具有足夠硬度,達到基本不粘手狀態的階段。該階段中,樹脂與某些溶劑(如乙醇、丙酮等)接觸時能溶脹但不能溶解,加熱時可以軟化但不能完全熔化。這一階段大約需要幾十分鍾至幾小時。
3、熟化階段(C階段):在室溫下放置,從硬化以後算起,達到製品要求硬度,具有穩定的物理與化學性能可供使用的階段。該階段中,樹脂既不溶解也不熔融。我們通常所指的後期固化就是指這個階段。這個結段通常是一個很漫長的過程。通常需要幾天或幾星期甚至更長的時間。
8. 不飽和聚酯樹脂的固化原理
具有粘性的可流動的不飽和聚酯樹脂,在引發劑存在下發生自由基共聚合反應,而生成性能穩定的體型結構的過程稱為不飽和聚酯的固化。
發生在線型聚酯樹脂分子和交聯劑分子之間的自由基共聚合反應,其反應機理同前述自由基共聚反應的機理基本相同,所不同的它是在具有多個雙鍵的聚酯大分子(即具有多個官能團)和交聯劑苯乙烯的雙鍵之間發生的共聚,其最終結果,必然形成體型結構。
固化的階段性
不飽和聚酯樹脂的整個固化過程包括三個階段:
凝膠——從粘流態樹脂到失去流動性生成半固體狀有彈性的凝膠;
定型——從凝膠到具有一定硬度和固定形狀,可以從模具上將固化物取下而不發生變形;
熟化——具有穩定的化學、物理性能,達到較高的固化度。
一切具有活性的線型低聚物的固化過程,都可分為三個階段,但由於反應的機理和條件不同,其三個階段所表現的特點也不同。不飽和聚酯樹脂的固化是自由基共聚反應,因此具有鏈鎖反應的性質,表現在三個階段上,其時間間隔具有較短的特點,一般凝膠到定型有時數個小時就可完成,再加上不飽和聚酯在固化時系統內無多餘的小分子逸出,結構較為緊密,因此不飽和聚酯樹脂和其他熱固性樹脂相比具有最佳的室溫接觸成型的工藝性能。
引發劑
用於不飽和聚酯樹脂固化的引發劑與自由基聚合用引發劑一樣,一般為有機過氧化合物。各類有機過氧化合物的特性,通常用活性氧含量,臨界溫度和半衰期等表示。
活性氧含量
活性氧含量又稱為有效氧含量。對於純粹的過氧化物,活性氧含量是代表有機過氧化物純度的指標。實際上,由於純粹有機過氧化物貯存的不安定性,通常與惰性稀釋劑如鄰苯二甲酸二丁酯等混合配製,以利於貯存和運輸。
臨界溫度
過氧化物受熱分解形成自由基時所需的最低溫度稱為臨界溫度。一般在臨界溫度以上才發生引發反應,這可從固化放熱效應反映出來。臨界溫度是不飽和聚酯樹脂固化時應用的工藝指標。
半衰期
半衰期是指在給定溫度條件下,有機過氧化物分解一半所需要的時間。實際應用上,可用下面兩種方法表示半衰期,一種是給定溫度下的時間,另一種是給定時間下的溫度,它們都是引發劑活性的標志。顯然,有機過氧化物的半衰期愈短,其活性也就愈大。
引發劑的種類雖然很多,但不飽和聚酯樹脂固化最常用的主要是兩種,即國產1 號引發劑和2號引發劑。
1號引發劑是50%過氧化環已酮糊。過氧化環已酮是幾種化合物的混合物,外觀是白色粉沫或硬塊,易溶於苯乙烯中得到透明的溶液。由1:1的過氧化環已酮和鄰苯二甲酸二丁酯組成的1號引發劑,呈糊狀,久置後分層,上層為透明溶液,下層是白色沉澱物,使用時必須攪拌均勻成糊狀。
過氧化甲乙酮具有與過氧化環已酮類似的特性,一般配成鄰苯二甲酸二甲酯的50%溶液使用,該溶液無色透明,不含懸浮物,使用時不需要攪拌。
9. 環氧樹脂的固化原理
原理:環氧樹脂固化劑是與環氧樹脂發生化學反應,形成網狀立體聚合物,把復合材料骨材包絡在網狀體之中。 使線型樹脂變成堅韌的體型固體的添加劑。
一般認為它通過四種途徑的反應而成為熱固性產物。
(1)環氧基之間開環連接;
(2)環氧基與帶有活性氫官能團的硬化劑反應而交聯;
(3)環氧基與硬化劑中芳香的或脂肪的羥基的反應而交聯;
(4)環氧基或羥基與硬化劑所帶基團發生反應而交聯。
(9)樹脂固化機制擴展閱讀:
對環氧樹脂膠黏劑的分類在行業中還有以下幾種分法:
1、按其主要組成 分為純環氧樹脂膠黏劑和改性環氧樹脂膠黏劑;
2、按其專業用途 分為機械用環氧樹脂膠黏劑、建築用環氧樹脂膠黏劑、電子環氧樹脂膠黏劑、修補用環氧樹脂膠黏劑以及交通用膠、船舶用膠等;
3、按其施工條件 分為常溫固化型膠、低溫固化型膠和其他固化型膠;
4、按其包裝形態 可分為單組分型膠、雙組分膠和多組分型膠等;
還有其他的分法,如無溶劑型膠、有溶劑型膠及水基型膠等。但以組分分類應用較多。
其它類型
(1)縮水甘油酯類環氧樹脂 縮水甘油酯類環氧樹脂和二酚基丙烷環氧化樹脂比較,它具有粘度低,使用工藝性好;反應活性高;粘合力比通用環氧樹脂高,固化物力學性能好;電絕緣性好;耐氣候性好,並且具有良好的耐超低溫性。
在超低溫條件下,仍具有比其它類型環氧樹脂高的粘結強度。有較好的表面光澤度,透光性、耐氣候性好。
(2)縮水甘油胺類環氧樹脂 國內外已利用縮水甘油胺環氧樹脂優越的粘接性和耐熱性,來製造碳纖維增強的復合材料(CFRP)用於飛機二次結構材料。
(3)脂環族環氧樹脂 這類環氧樹脂是由脂環族烯烴的雙鍵經環氧化而製得的,前者環氧基都直接連接在脂環上,而後者的環氧基都是以環氧丙基醚連接在苯核或脂肪烴上。脂環族環氧樹脂的固化物具有以下特點:
①較高的壓縮與拉伸強度;
②長期暴置在高溫條件下仍能保持良好的力學性能;
③耐電弧性、耐紫外光老化性能及耐氣候性較好。
(4)脂肪族環氧樹脂
10. 環氧樹脂固化劑及其固化機理
環氧樹脂是一種無定形黏稠液體,加熱呈塑性,沒有明顯的熔點,受熱變軟,逐漸熔化而發黏回,不溶於水,本身不會硬答化,因此它幾乎沒有單獨的使用價值,只有和固化劑反應生成三維網狀結構的不溶不熔聚合物才有應用價值。當加入一定量固化劑後,就逐漸固化,形成性能各異的化學物質,因此,必須加入固化劑,組成配方樹脂,並且在一定條件下進行固化反應,生成立體網狀結構的產物,才會顯現出各種優良的性能,成為具有真正使用價值的環氧材料。工程中常用胺類固化劑:乙二胺、二乙烯多胺、多乙烯多胺等。