陰樹脂轉型
❶ 在離子交換樹脂的轉型中,如果假如酸的量不夠,樹脂沒有完全轉變成氫型,會對實驗
會導致後期的naoh的用量增多,對實驗造成影響。
離子交換樹脂的全名稱內由分類名稱、骨架(或基因)名稱、基容本名稱組成。孔隙結構分凝膠型和大孔型兩種,凡具有物理孔結構的稱大孔型樹脂,在全名稱前加「大孔」。分類屬酸性的應在名稱前加「陽」,分類屬鹼性的,在名稱前加「陰」。如:大孔強酸性苯乙烯系陽離子交換樹脂。
離子交換樹脂還可以根據其基體的種類分為苯乙烯系樹脂和丙烯酸系樹脂。樹脂中化學活性基團的種類決定了樹脂的主要性質和類別。首先區分為陽離子樹脂和陰離子樹脂兩大類,它們可分別與溶液中的陽離子和陰離子進行離子交換。陽離子樹脂又分為強酸性和弱酸性兩類,陰離子樹脂又分為強鹼性和弱鹼性兩類(或再分出中強酸和中強鹼性類)。
❷ 什麼是離子交換樹脂的轉型
離子交換樹脂轉型有什麼好處?
1、方便運輸,有效的減少運輸時樹脂被污染回的可能。
2、可以避免答PH值下降,不會出現副作用,且可用鹽水再生。
3、能夠更好、更快的對水中的離子進行吸附,使效率加快。
4、不會釋放出強酸性的離子,不需要使用其他物質將強酸性的離子進行置換。
離子交換樹脂能夠轉為哪些類型?
1、陽離子樹脂可以使用氯化鈉,進行轉化成為鈉型樹脂,可以更好的對水中的鈣鎂等離子進行吸附,且樹脂反應時不會釋放出氫離子,再生時不需要使用強酸,而是使用食鹽水進行再生,更加的安全。
2、陰離子交換樹脂可以轉化為氯型樹脂,也可以轉變為碳酸氫型,在工作時可以更好的將陰離子吸附,而且不再具有強鹼性,但是卻仍然具有離解性強和工作的pH范圍寬廣等能力。
3、樹脂還可以使用氯化氫(HCl)轉化,將樹脂轉化成為氫型樹脂,其官能團中含有大量的氫離子,氫型樹脂的大小一般在0.3-1.2mm之間,主要的作用就是將硬水軟化,硬水中含有大量的鈣、鎂等離子,氫型樹脂中的氫離子能夠有效的將這些離子吸附、替換,將硬水軟化成為軟水,氫型樹脂能夠和納型樹脂相互轉換。
❸ 陰離子樹脂預處理的問題
新樹脂一般要處理,裡面含有金屬雜質和有機物
新樹脂使用前的處理
新樹脂中專往往殘存有單體﹑各種屬添加劑及低聚物等,還含有Fe﹑Cu﹑Pb﹑等無機雜質,在使用之前要用鹽﹑酸﹑鹼溶液進行預處理,除去樹脂中的可溶性雜質,以免影響水質。具體處理方法如下。
(1)食鹽水處理
將樹脂裝入容器中,用約2倍樹脂體積的10%(質量分數)NaCl溶液浸泡18~20h以上,然後放掉食鹽水,用清水漂洗,直至洗水不呈黃色為止。
(2)稀鹽酸處理
用約2倍於樹脂體積5%(質量分數)HCl溶液浸泡2~4h(或以小流量清洗),放盡酸液後,沖去樹脂至排出水接近中性為止,可去除鐵﹑鋁﹑鈣鎂的鹽類等無機雜質。
(3)稀氫氧化納溶液處理
用約2倍於樹脂體積2%~4%(質量分數)的NaOH溶液浸泡2~4h(或以小流量清洗),放盡鹼液後,用清水沖洗樹脂至排出水接近中性為止,可去除有機物和硅等。
對於陰離子型樹脂,經上述處理已變成OH型,再用10%(質量分數)NaCl溶液浸泡18~20h以上,就轉氯型,就可用了。建議你看看原理,裡面會給你答案
❹ 陰樹脂怎麼樣變成氯型
陰樹脂一般都是採用濃度為4%的NaOH溶液再生,通過氫氧根交換料液中的陰離子(強、弱鹼陰樹脂能交換如硫酸根,氯根,硝酸根等強酸陰離子,但弱鹼陰樹脂因為沒有中性鹽分解能力,所以不具備交換碳酸氫根、硅酸根等弱酸陰離子),但在一些特殊應用工況中,陰樹脂需要以氯型進行交換反應,比如去除水溶液中的硫酸根、提取生物發酵液中的一些酸性物質等(比如對玉米浸泡水提取植酸成分)。這時候,陰樹脂一般是採用4-5%的HCl溶液作為再生劑(嚴格意義上應該稱為解析劑)對陰樹脂進行再生解析處理。也有一些生產環節採用4%的NaOH溶液先再生處理,然後再使用HCl溶液轉為氯型投用運行。
陰樹脂在使用工況中如果直接採用HCl溶液作為解析劑時,由於樹脂在實際使用過程中,容易被溶液中的有機物污染,而鹽酸溶液作為再生解析劑,不具備對樹脂有機物污染起到正常去除能力,所以一般使用後每隔20個周期(視實際使用情況而定),建議採用鹽鹼混合液(10%NaCl溶液+1.5~4%NaOH溶液)對樹脂進行復甦再生,混合液適當加溫至35~40度並伴有壓縮空氣攪拌擦洗,並浸泡後效果更佳!
目前國內很多離子交換樹脂生產企業,一味的採用一個所謂的新工藝,通過套用回收一些化工原料,從而達到降低生產成本的目的,來滿足國內用戶招投標低價競爭的需求,這類產品抗有機物污染,抗氧化性能大大降低,不能滿足一些應用工況之需求,所以一定程度上,低價競爭是不可持續,對於終端用戶而言,也是得不償失的。而國內大多數的生產工藝並沒有達到高標准生產工藝階段,在眾多生產工藝環節,存在更大的優化改進空間,尤其是一些特殊應用環節和細節性優化工藝環節,需要的是離子交換樹脂應用工藝的研究和提升,而不是盲目的進行低價比拼采購。希望國內用戶能理智面對現狀,採用多措施,去合理突破現行低級的低價比拼招標制度。
以上這一段非回答問題之內容,只是借題呼籲一下而已,希望用戶理智,更望國內離子交換樹脂生產企業明白其中之道理,莫將那些高端市場拱手讓與國外同行,自己卻陷入萬劫不復之深淵,謝謝理解,望諒!
❺ 混床樹脂如何轉型
混床樹脂的再生就是轉型
混床樹脂一般出廠的都是鈉型和氯型的
要用鹽酸和氫氧化鈉轉型(再生),分別轉成氫型和氫氧型
這樣就可以交換來水中的陰陽離子,實現深度除鹽的作用
❻ 為什麼市銷的離子交換樹脂需要轉型
什麼是離子交換樹脂的轉型?
離子交換樹脂的轉型其實就是使用溶液將樹脂內的離子置換,成為另外一種類型的樹脂,比如將強酸性陽離子樹脂與NaCl作用,就會轉為鈉型樹脂,鈉型樹脂能夠更好的去除水中的鈣、鎂離子,並且不會釋放出H+,不會因此產生副作用。
離子交換樹脂轉型有什麼好處?
1.方便運輸,有效的減少運輸時樹脂被污染的可能。
2.可以避免PH值下降,不會出現副作用,且可用鹽水再生。
3.能夠更好、更快的對水中的離子進行吸附,使效率加快。
4.不會釋放出強酸性的離子,不需要使用其他物質將強酸性的離子進行置換。
離子交換樹脂能夠轉為哪些類型?
1、陽離子樹脂可以使用氯化鈉,進行轉化成為鈉型樹脂,可以更好的對水中的鈣鎂等離子進行吸附,且樹脂反應時不會釋放出氫離子,再生時不需要使用強酸,而是使用食鹽水進行再生,更加的安全。
2、陰離子交換樹脂可以轉化為氯型樹脂,也可以轉變為碳酸氫型,在工作時可以更好的將陰離子吸附,而且不再具有強鹼性,但是卻仍然具有離解性強和工作的pH范圍寬廣等能力。
3、樹脂還可以使用氯化氫(HCl)轉化,將樹脂轉化成為氫型樹脂,其官能團中含有大量的氫離子,氫型樹脂的大小一般在0.3-1.2mm之間,主要的作用就是將硬水軟化,硬水中含有大量的鈣、鎂等離子,氫型樹脂中的氫離子能夠有效的將這些離子吸附、替換,將硬水軟化成為軟水,氫型樹脂能夠和納型樹脂相互轉換。
❼ 陰離子交換樹脂如何轉型
以最常用的鍋爐水處理強酸型陽離子交換樹脂732為例 為便於運輸和儲存 出廠形式有專氫型的,也有鈉型的。屬在實際使用上,常轉變為其他離子型式運行,以適應各種需要。例如常將強酸性陽離子樹脂與NaCl作用,轉變為鈉型樹脂再使用。工作時鈉型樹脂放出Na+與溶液中的Ca2+、Mg2+等陽離子交換吸附,除去這些離子。反應時沒有放出H+,可避免溶液pH下降和由此產生的副作用(如蔗糖轉化和設備腐蝕等)。這種樹脂以鈉型運行使用後,可用鹽水再生(不用強酸)。強酸性樹脂在轉變為鈉型後,就不再具有強酸性及強鹼性,但它們仍然有這些樹脂的其他典型性能,如離解性強和工作的pH范圍寬廣等。
❽ 氯型717陰離子交換樹脂轉換為氫氧根型,詳述步驟。
先通入兩倍抄樹脂體積的約4%HCl的浸泡4-8h,用清水洗到pH為3-5左右,再用兩倍樹脂體積的約4%NaOH的浸泡4-8h,用清水洗到pH為9-10左右,之後就可再生使用。
樹脂在預處理後,第一次再生都要加倍再生,即所用的再生液為平時再生液的兩倍。即用4倍樹脂體積的約4%NaOH溶液,通過後將最後一倍樹脂體積的再生溶液浸泡樹脂4-8h,用清水洗到pH呈中性即可使用。
❾ d307陰樹脂的合成過程
(陰樹脂白球+氯甲醚+付式催化劑)——進行氯甲基化反應——加入有機胺類——醛類溶內脹容劑——進行胺化反應——轉型、水洗——製作成陰樹脂。
不過你這個D307在市場上很少聽說,應該是一款大孔型苯乙烯系弱鹼陰樹脂,估計是河北滄州廊坊那一帶的叫法。大孔弱鹼陰樹脂的生產工藝及應用研究,國內幾十年來屬爭光最有發言權,也是爭光的王牌產品之一。如有應用疑問可以來函來電交流,合作製作過程,呵呵,不是一朝一夕能學會的,目前國內能生產大孔弱鹼樹脂的企業本來就少,能做好認真在做的就更少了。現在行業內的生產企業,都在為了一味滿足市場的低價競爭需求,而採用那種所謂的新工藝,套用母液等,樹脂使用壽命越來越短,在一些高有機物原水處理中,樹脂強度扛不過8個月就全部粉碎,如此下去的話,印度產的樹脂質量,都要超過國產了,且行且珍惜,在南開大學何炳林老教授的帶領下,國內離子交換樹脂行業50多年的發展才有了現在的這點成果,如此糟蹋,難不成是要自宮啊!
❿ 陰樹脂有什麼特性
一般不對陰、陽離子交換樹脂的特性分開說明,而是一個全面的說明,說明時一般分物理性質和化學性質分開來說明
一、物理性質
離子交換樹脂的物理性質很多,下面只介紹常見的幾種。
1.粒度。樹脂顆粒的大小,對樹脂的交換速度、樹脂層中水流分布的均勻程度、水通過樹脂層的壓力降和反洗時樹脂的流失等,都有很大影響。樹脂顆粒大,離子交換速度小;顆粒小,水流阻力大,而且反洗時容易發生樹脂流失。因此,顆粒的大小應適當,常用的樹脂顆粒為20~40目,國產離子交換樹脂的顆粒為16~50目(粒徑為1.2~0.3毫米)。
2.比重。樹脂的比重對樹脂的用量計算和混合床使用樹脂的選擇很重要。樹脂比重的表示有以下幾種:
(1) 干真比重。干真比重就是樹脂在乾燥狀態下其本身的比重。
此處所指的干樹脂的體積,既不包括顆粒與顆粒之間的空隙,也不包括樹脂本身的網架孔隙。測干樹脂體積時是將一定重量的干樹脂,浸入某種不使樹脂膨脹的液體(如甲苯)中,測量其排出液體的體積,此體積即為該一定重量干樹脂的體積。干真比重一般為1.6左右。
(2) 濕真比重。濕真比重是樹脂在水中經過充分膨脹後,樹脂顆粒的比重。
這里的濕樹脂體積是指顆粒在濕狀態下的體積,包括顆粒中的網孔,但不包括顆粒與顆粒之間的空隙。濕真比重決定了樹脂在水中的沉降速度。因此,樹脂的濕真比重對樹脂的反洗強度和混床再生前樹脂的分層有很大影響。濕真比重一般為1.04~1.3左右。
(3) 濕視比重。濕視比重是指樹脂在水中充分膨脹時的堆積比重。
濕視比重用來計算交換器內裝入一定體積樹脂時,所需濕樹脂的重量。濕視比重一般為0.6~0.85。
3.溶脹性。樹脂的溶脹性是指樹脂由干態變為濕態,或者由一種離子型轉換成為另一種離子型時,所發生的體積變化。前者稱為絕對溶脹,後者稱為體積溶脹。
4.樹脂絕對溶脹度的大小與合成樹脂用的二乙烯苯的數量有關。同一種樹脂如果浸入不同濃度的電解質溶液中,其溶脹度也不同;溶液濃度小,其溶脹度大;溶液濃度大,其溶脹度就小。
因此,當把干樹脂開始濕潤時,不宜用純水浸泡,一般飽和和食鹽水浸泡,以防止樹脂因溶脹過大而碎裂。
樹脂體積溶脹度的大小與可交換離子的水合離子半徑大小有關,樹脂內可交換離子的水合離子半徑越大,其溶脹度越大。
由於樹脂轉型時其體積發生變化,所以轉型前後兩種樹脂的濕真比重也隨之發生變化。當轉型後的樹脂體積增大時,其濕直比重減小;當轉型後的樹脂體積縮小時,其濕真比重增大。這一性質在混床樹脂分層時作用很大。
由於樹脂轉型時發生體積變化,也能使樹脂在交換和再生過程中發生多次脹、縮,致使樹脂顆粒破碎。從這種情況來看,應盡量減少樹脂的再生次數,延長使用時間。
5.機械強度。樹脂的機械強度是指樹脂經過球磨或溶脹後,裂球增加的百分數。
機械強度好的樹脂,應呈均勻的球形,沒有內部裂紋,有良好的抗機械壓縮性以及很低的脆性,在失效和再生時具有足夠的抗裂能力。
6.耐熱性。各種樹脂所能承受的溫度有一定的最高極限,超過這個限度樹脂就會發生迅速降解,交換容量降低,使用壽命減少。
一般陽樹脂可耐100℃左右,陰樹脂中強鹼性樹脂可耐60℃左右,弱鹼性樹脂可耐80℃左右。此外,鹽型樹脂比氫型或氫氧型樹脂耐熱性好些。
二、 化學性質
離子交換樹脂的化學性質有:離子交換、催化、絡鹽形成等。其中用於電廠水處理的,主要是利用它的離子交換性質。所以,這里僅介紹離子交換反應的可逆性、選擇性和表示交換能力大小的交換容量。
1.離子交換反應的可逆性。當離子交換樹脂遇到水中的離子時,能發生離子交換反應。反應結果,樹脂的骨架不變,只是樹脂中交換基團上能解離的離子與水中帶同種電荷的離子發生交換。例如,用8%左右的食鹽水,通過RH樹脂後,出水中的H+濃度增加,Na+濃度減小。這說明食鹽水通過RH樹脂時,樹脂中的H+進入水中,食鹽水中的Na+交換到樹脂上。這一反應為:
RH+NaCl→RNa+HCl
或 RH+Na+→RNa+H+
如果用4%左右的鹽酸通過已經變成RNa的樹脂後,出水中的Na+濃度增加,H+濃度減小。說明樹脂中的Na+進入水中,而鹽酸中的H+交換到樹脂上。這一反應為:
RNa+HCl→RH+NaCl
或 RNa+H+→RH+Na+
對照兩個反應我們知道:離子交換反應是可逆的。這種可逆反應,可用可逆反應式表示:
RH+NaCl RNa+HCl
或 RH+Na+ RNa+H+
2.離子交換反應的選擇性。這種選擇性是指樹脂對水中某種離子所顯示的優先交換或吸著的性能。
同種交換劑對水中不同離子選擇性的大小,與水中離子的水合半徑以及水中離子所帶電荷大小有關;不同種的交換劑由於交換換團不同,對同種離子選擇性大小也不一樣。下面介紹四種交換劑對離子選擇性的順序:
(1) 強酸性陽離子交換劑,對水中陽離子選擇順序:
Fe3+>Al3+>Ca2+>Mg2+>K+> ≈Na+>H+>Li+
(2) 弱酸性陽離子交換劑,對水中陽離子的選擇順序:
H+>Fe3+>Al3+>Ca2+>Mg2+>K+> ≈Na+>Li+
從上述選擇順序來看,強酸性陽離子交換劑對H+的吸著力不強;而弱酸性陽離子交換劑則容易吸著H+。所以,實際應用中,用酸再生弱酸性陽離子交換劑比再生強酸性陽離子交換劑要容易得多。
(3) 強鹼性陰離子交換劑,對水中陰離子的選擇順序:
> >Cl>OH->F-> >
(4) 弱鹼性陰離子交換劑,對水中陰離子的選擇順序:
OH-> > >Cl->
從陰離子交換劑的選擇性來看,用鹼再生弱鹼性陰離子交換劑比再生強鹼性陰離子交換劑容易。但是弱鹼性陰離子交換劑吸著 很弱,不吸著 。因此,弱鹼性陰離子交換劑用於除掉水中強酸根離子。
3.交換劑的交換容量。交換容量是離子交換劑的一項重要技術指標。它定量地表示出一種樹脂能交換離子的多少。交換容量分為全交換容量和工作交換容量。
(1) 全交換容量。全交換容量是指離子交換劑能交換離子的總數量。這一指標表示交換劑所有交換基團上可交換離子的總量。同一種離子交換劑,它的全交換容量是一個常數,常用毫克當量/克來表示。
(2) 工作交換容量。工作交換容量就是在實際運行條件下,可利用的交換容量。在實際離子交換過程中,可能利用的交換容量比全交換容量小得多,大約只有全交換容量的60~70%。某種樹脂的工作交換容量大小和樹脂的具體工作條件有關,如水的pH值、水中離子濃度、交換終點的控制標准、樹脂層的高度和水的流速等條件,都影響樹脂的工作交換容量。工作交換容量常用毫克當量/毫升來表示。