當前位置:首頁 » 凈水耗材 » 樹脂的三態

樹脂的三態

發布時間: 2021-03-17 03:16:06

⑴ 丙烯酸樹脂!急!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

這個問題還比較多啊!哈哈
1.水乳性高彈性丙烯酸樹脂這在市場上還是有的,價格貴點而已;
2水乳性 跟 高彈性 是兩種特性么?
高分子材料與我們常說的氣態 液態 固態不同,它只有三態,分別為玻璃態 高彈態 和黏流態,而我們常見的玻璃態,如塑料產品膠盆,手機外殼等;高彈態的如汽車輪胎;黏流態主要集中在高分子中分子量相對小一些,如油漆油墨等,當然注塑溶膠後也是黏流態。
簡單的說高彈性就是像有點彈簧的反推力,從微觀上說就是高分子鏈受到外力後,有一個反彈的力;
水乳性是指高分子中一類材料,在投入水中後,通過攪拌等外力,將材料以顆粒的形式溶於水中,這個叫法的由來是由高分子四大合成方式中的乳化反應得來,這個不詳說了
3.水乳性丙烯酸樹脂 跟 水溶性丙烯酸樹脂有什麼關系,哪種比較好?
這個好壞的方面比較太寬了吧!
水乳性丙烯酸樹脂性能與水溶性丙烯酸樹脂差不多,關鍵看牌子(這個沒得解析)
水乳性丙烯酸樹脂相對沒那麼環保,價格相對便宜點
水溶性丙烯酸樹脂環保,國家都提倡用,建議使用還是環保好

4.這個我就不能回答你了,個人理解不同,答案也不同,不過像山東的東營等地還是做的比較好的

祝你愉快

⑵ 物質為什麼會有三種狀態*&*

其實物質有 10 種狀態,在這里我說說你問的3種,固態、液態、氣態

================
詳細解釋:
在自然界中,我們看到物質以各種各樣的形態存在著:花蟲鳥獸、山河湖海、不同膚色的人種、各種美麗的建築……大到星球宇宙,小到分子、原子、電子等極微小的粒子,真是千姿百態斗奇爭艷。大自然自身的發展,造就了物質世界這種絢麗多彩的宏偉場面。物質具體的存在形態有多少,這的確是難以說清的。但是,經過物理學的研究,千姿百態的物質都可以初步歸納為兩種基本的存在形態:「實物」和「場」。
「實物」具有的共同特點是:質量集中在某一空間,一般有比較確定的界面(氣體的界面雖然模糊,但它又是由一個個實物粒子構成)。本文開頭所舉的各例都屬於實物。
「場」則是看不見摸不著的物質,它可以充滿全部空間,它具有「可入性」。例如大家熟知的電磁波,它可以將電台天線發射的信號通過空間傳送到千家萬戶的收音機或電視機。可以概括地說,「場」是實物之間進行相互作用的物質形態。
什麼是「物態」呢?日常所知的固態、液態和氣態就是三種「物態」。為什麼要有「物態」的概念?因為實物的具體形態太多了,將它們歸納一下能否分成較少的幾類?這就產生了「物態」的概念。「物態」是按屬性劃分的實物存在的基本形態,它都表現為大量微小物質粒子作為一個大的整體而存在的集合狀態。以往人們只知道有固態、液態和氣態三種物態,隨著科學的發展,在大自然中又發現了多種「物態」。入類迄今知道的「物態」已達10餘種之多。
日常生活中最常見的物質形態是固態、液態和氣態,從構成來說這類狀態都是由分子或原子的集合形式決定的。由於分子或原子在這三種物態中運動狀況不同,而使我們看到了不同的特徵。

1.固態
嚴格地說,物理上的固態應當指「結晶態」,也就是各種各樣晶體所具有的狀態。最常見的晶體是食鹽(化學成份是氯化鈉,化學符號是NaCl)。你拿一粒食鹽觀察(最好是粗製鹽),可以看到它由許多立方形晶體構成。如果你到地質博物館還可以看到許多顏色、形狀各異的規則晶體,十分漂亮。物質在固態時的突出特徵是有一定的體積和幾何形狀,在不同方向上物理性質可以不同(稱為「各向異性」);有一定的熔點,就是熔化時溫度不變。
在固體中,分子或原子有規則地周期性排列著,就像我們全體做操時,人與人之間都等距離地排列一樣。每個人在一定位置上運動,就像每個分子或原子在各自固定的位置上作振動一樣。我們將晶體的這種結構稱為「空間點陣」結構。

2.液態
液體有流動性,把它放在什麼形狀的容器中它就有什麼形狀。此外與固體不同,液體還有「各向同性」特點(不同方向上物理性質相同),這是因為,物體由固態變成液態的時候,由於溫度的升高使得分子或原子運動劇烈,而不可能再 保持原來的固定位置,於是就產生了流動。但這時分子或原子間的吸引力還比較大,使它們不會分散遠離,於是液體仍有一定的體積。實際上,在液體內部許多小的區域仍存在類似晶體的結構——「類晶區」。流動性是「類晶區」彼此間可以移動形成的。我們打個比喻,在柏油路上送行的「車流」,每輛汽車內的人是有固定位置的一個「類晶區」,而車與車之間可以相對運動,這就造成了車隊整體的流動。

3.氣態
液體加熱會變成氣態。這時分子或原子運動更劇烈,「類晶區」也不存在了。由於分子或原子間的距離增大,它們之間的引力可以忽略,因此氣態時主要表現為分子或原子各自的無規則運動,這導致了我們所知的氣體特性:有流動性,沒有固定的形狀和體積,能自動地充滿任何容器;容易壓縮;物理性質「各向同性」。
顯然,液態是處於固態和氣態之間的形態。

⑶ 物體除了常見的三態外,還有什麼態

等離子體,英文名Plasma,
等離子狀態使指物質原子內的電子在高溫下脫離原子核的吸引,使物質呈為正負帶電粒子狀態存在。
在日常生活中,我們會遇到各種各樣的物質.根據它們的狀態,可以分為三大類,即固體、液體和氣體.例如鋼鐵是固體,水是液體,而氧氣是氣體.任何一種物質,在一定條件下都能在這三種狀態之間轉變.以水為例,在一個標准大氣壓下,當溫度降到0℃以下時,水開始變成冰.而當溫度升到100℃時,水就會沸騰而變成水蒸汽.
如果溫度不斷升高,氣體又會怎樣變化呢?科學家告訴我們,這時構成分子的原子發生分裂,形成為獨立的原子,如氮分子(N2)會分裂成兩個氮原子(N),我們稱這種過程為氣體分子的離解.如果再進一步升高溫度,原子中的電子就會從原子中剝離出來,成為帶正電荷的原子核(稱為離子)和帶負電荷的電子,這個過程稱為原子的電離.當這種電離過程頻繁發生,使電子和離子的濃度達到一定的數值時,物質的狀態也就起了根本的變化,它的性質也變得與氣體完全不同.為區別於固體、液體和氣體這三種狀態,我們稱物質的這種狀態為物質的第四態,又起名叫等離子體.

⑷ 高分子化合物是指什麼

高分子化合物的定義:高分子化合物簡稱高分子,又叫大分子,一般指相對分子質量高達幾千到幾百萬的化合物,絕大多數高分子化合物是許多相對分子質量不同的同系物的混合物,因此高分子化合物的相對分子質量是平均相對分子量。高分子化合物是由千百個原子以共價鍵相互連接而成的,雖然它們的相對分子質量很大,但都是以簡單的結構單元和重復的方式連接的。
高分子化合物的分類:
1、按來源分類:按來源可把高分子分成天然高分子和合成高分子兩大類。

2、按性能分類:可把高分子分成塑料、橡膠和纖維三大類。
塑料按其熱熔性能又可分為熱塑性塑料(如聚乙烯、聚氯乙烯等)和熱固性塑料(如酚醛樹脂、環氧樹脂、不飽和聚酯樹脂等)兩大類。前者為線型結構的高分子,受熱時可以軟化和流動,可以反復多次塑化成型,次品和廢品可以回收利用,再加工成產品。後者為體型結構的高分子,一經成型便發生固化,不能再加熱軟化,不能反復加工成型,因此,次品和廢品沒有回收利用的價值。塑料的共同特點是有較好的機械強度(尤其是體形結構的高分子),作結構材料使用。
纖維又可分為天然纖維和化學纖維。後者又可分為人造纖維(如粘膠纖維、醋酸纖維等)和合成纖維(如尼龍、滌綸等)。人造纖維是用天然高分子(如短棉絨、竹、木、毛發等)經化學加工處理、抽絲而成的。合成纖維是用低分子原料合成的。纖維的特點是能抽絲成型,有較好的強度和撓曲性能,作紡織材料使用。
橡膠包括天然膠和合成橡膠。橡膠的特點是具有良好的高彈性能,作彈性材料使用。

3、按用途分類:可分為通用高分子,工程材料高分子,功能高分子,仿生高分子,醫用高分子,高分子葯物,高分子試劑,高分子催化劑和生物高分子等。
塑料中的「四烯」(聚乙烯、聚丙烯、聚氯乙烯和聚苯乙烯),纖維中的「四綸」(錦綸、滌綸、腈綸和維綸),橡膠中的「四膠」(丁苯橡膠、順丁橡膠、異戊橡膠和乙丙橡膠)都是用途很廣的高分子材料,為通用高分子。
工程塑料是指具有特種性能(如耐高溫、耐輻射等)的高分子材料。如聚甲醛、聚碳酸酯、聚硯、聚醯亞胺、聚芳醚、聚芳醯胺和含氟高分子、含硼高分子等都是較成熟的品種,已廣泛用作工程材料。
離子交換樹脂、感光性高分子、高分子試劑和高分子催化劑等都屬功能高分子。
醫用高分子、葯用高分子在醫葯上和生理衛生上都有特殊要求,也可以看作是功能高分子。

4、按主鏈結構分類:可分為碳鏈高分子、雜鏈高分子、元素有機高分子和無機高分子四大類。
碳鏈高分子的主鏈是由碳原子聯結而成的。
雜鏈高分子的主鏈除碳原子外,還含有氧、氮、硫等其他元素,如:如聚酯、聚醯胺、纖維素等。易水解。
元素有機高分子主鏈由碳和氧、氮、硫等以外其他元素的原子組成,如硅、氧、鋁、鈦、硼等元素,但側基是有機基團,如聚硅氧烷等。
無機高分子是主鏈和側鏈基團均由無機元素或基團構成的。天然無機高分子如雲母,水晶等,合成無機高分子如玻璃。
高分子化合物的系統命名比較復雜,實際上很少使用,習慣上天然高分子常用俗名。合成高分子則通常按制備方法及原料名稱來命名,如用加聚反應製得的高聚物,往往是在原料名稱前面加個「聚」字來命名。例如,氯乙烯的聚合物稱為聚氯乙烯,苯乙烯的聚合物稱為聚苯乙烯等。如用縮聚反應製得的高聚物,則大多數是在簡化後的原料名稱後面加上「樹脂」二字來命名。例如,酚醛樹脂、環氧樹脂等。加聚物在未製成製品前也常有「樹脂」來稱呼。例如,聚氯乙烯樹脂,聚乙烯樹脂等。此外,在商業上常給高分子物質以商品名稱。例如,聚己內醯胺纖維稱為尼龍—6,聚對苯二甲酸乙二酯纖維稱為滌綸,聚丙烯腈纖維稱為腈綸等。
高分子化合物的特點:高分子同低分子比較,具有如下幾個特點。
1、從相對分子質量和組成上看,高分子的相對分子質量很大,具有「多分散性」。大多數高分子都是由一種或幾種單體聚合而成。
2、從分子結構上看,高分子的分子結構基本上只有兩種,一種是線型結構,另一種是體型結構。線型結構的特徵是分子中的原子以共價鍵互相連接成一條很長的捲曲狀態的「鏈」(叫分子鏈)。體型結構的特徵是分子鏈與分子鏈之間還有許多共價鍵交聯起來,形成三度空間的網路結構。這兩種不同的結構,性能上有很大的差異。
3、從性能上看,高分子由於其相對分子質量很大,通常都處於固體或凝膠狀態,有較好的機械強度;又由於其分子是由共價鍵結合而成的,故有較好的絕緣性和耐腐蝕性能;由於其分子鏈很長,分子的長度與直徑之比大於一千,故有較好的可塑性和高彈性。高彈性是高聚物獨有的性能。此外,溶解性、熔融性、溶液的行為和結晶性等方面和低分子也有很大的差別。
高分子化合物的結構:
高分子的分子結構可以分為兩種基本類型:第一種是線型結構,具有這種結構的高分子化合物稱為線型高分子化合物。第二種是體型結構,具有這種結構的高分子化合物稱為體型高分子化合物。此外,有些高分子是帶有支鏈的,稱為支鏈高分子,也屬於線型結構范疇。有些高分子雖然分子鏈間有交聯,但交聯較少,這種結構稱為網狀結構,屬體型結構范疇。
在線型結構(包括帶有支鏈的)高分子物質中有獨立的大分子存在,這類高聚物的溶劑中或在加熱熔融狀態下,大分子可以彼此分離開來。而在體形結構(分子鏈間大量交聯的)的高分子物質中則沒有獨立的大分子存在,因而也沒有相對分子質量的意義,只有交聯度的意義。交聯很少的網狀結構高分子物質也可能被分離的大分子存在 。
兩種不同的結構,表現出相反的性能。線型結構(包括支鏈結構)高聚物由於有獨立的分子存在,故具有彈性、可塑性,在溶劑中能溶解,加熱能熔融,硬度和脆性較小的特點。體型結構高聚物由於沒有獨立大分子存在,故沒有彈性和可塑性,不能溶解和熔融,只能溶脹,硬度和脆性較大。因此從結構上看,橡膠只能是線型結構或交聯很少的網狀結構的高分子,纖維也只能是線型的高分子,而塑料則兩種結構的高分子都有。
高分子化合物的結構簡式的書寫:
1、加聚物結構簡式的書寫方法:書寫加聚物結構簡式時,將鏈節寫在方括弧內,將聚合度寫在方括弧的右下角,用橫線「—」表示端基。
2、縮聚物結構簡式的書寫方法:書寫縮聚物結構簡式時,將鏈節寫在方括弧內,聚合度寫在方括弧的右下角,並在方括弧外側寫出鏈節餘下的端基原子或原子團。
高分子化合物的合成:
合成高分子化合物最基本的反應有兩類:一類叫縮合聚合反應(簡稱縮聚反應),另一類叫加成聚合反應(簡稱加聚反應)。這兩類合成反應的單體結構、聚合機理和具體實施方法都不同。

縮聚反應
縮聚反應指具有兩個或兩個以上官能團的單體,相互縮合並產生小分子副產物(水、醇、氨、鹵化氫等)而生成高分子化合物的聚合反應。如:
單體中對苯二甲酸和乙二醇各有兩個官能團,生成大分子時,向兩個方向延伸,得到的是線型高分子。
苯酚和甲醛雖然是單官能團化合物,但它們反應的初步產物是多官能團的,這些多官能團分子縮聚成線型或體型的高聚物,即酚醛樹酯。

加聚反應
加聚反應是指由一種或兩種以上單體化合成高聚物的反應,在反應過程中沒有低分子物質生成,生成的高聚物與原料物質具有相同的化學組成,其相對分子質量為原料相對分子質量的整改數倍,僅由一種單體發生的加聚反應稱為均聚反應。例如,氯乙烯合成聚氯乙烯:
由兩種以上單體共同聚合稱為共聚反應。例如,苯乙烯與甲基丙烯酸甲酯共聚:
共聚產物稱為共聚物,其性能往往優於均聚物。因此,通過共聚方法可以改善產品性能。
加聚反應具有如下兩個特點:
(1)加聚反應所用的單體是帶有雙鍵或叄鍵的不飽和鍵和化合物。例如,乙烯、丙烯、氯乙烯、苯乙烯、丙烯腈、甲基丙烯酸甲酯等,者是常用的重要單體,加聚反應發生在不飽和鍵上。
(2)加聚反應是通過一連串的單體分子間的互相加成反應來完成的:
而且反應一旦發生,便以連鎖反應方式很快進行下去得到高分子化合物(通常稱為加聚物)。相對分子質量增長幾乎與時間無關,但單體轉化率則隨同時間而增大。
上述兩個特點就是加聚反應和縮聚反應最基本的區別。
加聚反應根據反應活性中心的不同可以分為自由基加聚反應和離子型加聚反應兩大類。

高分子化合物的命名:
高分子化合物的系統命名方法,比較復雜,在實際中使用不多,常用的是習慣命名法。

天然高分子化合物
天然高分子化合物,常用俗名,如,澱粉、蛋白質、橡膠、纖維素,等等。

合成高分子化合物
合成高分子化合物,通常按照制備方法和原料名稱來命名。
1、加聚反應製得的高分子化合物
加聚反應製得的高分子化合物,其命名習慣上是在原料名稱之前,加一個「聚」字。如,氯乙烯的聚合物,稱為聚氯乙烯;四氟乙烯的聚合物,稱為聚四氟乙烯;有機玻璃,是由甲基丙烯酸甲酯通過加聚反應製得的,故學名為聚甲基丙烯酸甲酯。
2、縮聚反應製得的高分子化合物
縮聚反應製得的高分子化合物,其命名習慣上是在原料名稱之後,加「樹脂」二字。如,酚醛樹脂、環氧樹脂、脲醛樹脂等。事實上,加聚產物在未製成成品之前也常以「樹脂」稱之。如,聚乙烯樹脂、聚丙烯樹脂等。
3、聚醯胺類高分子化合物
聚醯胺類高分子化合物,其命名是在聚醯胺後面加上數字,該數字表示單體中碳原子的個數。例如,由己二胺和己二酸縮聚而成的高分子化合物,稱為聚醯胺66;由癸二胺和癸二酸縮聚而成的高分子化合物,稱為聚醯胺1010。
4、合成橡膠類高分子化合物
合成橡膠類高分子化合物,其命名是在橡膠二字的前面加上能代表單體名稱的幾個字。如1,3-丁二烯與苯乙烯的聚合物稱為丁苯橡膠;2-氯-1,3-丁二烯的聚合物稱為氯丁橡膠;1,3-丁二烯與丙烯腈的聚合物稱為丁腈橡膠;異戊二烯的聚合物稱為異戊橡膠,依此類推。
5、商品名稱
商業上為了方便,常給某些合成纖維以商品名稱,稱為「某綸」。
(1)錦綸(或尼龍)聚醯胺類合成纖維,它的商品名稱叫「錦綸」或「尼龍」,如,錦綸-6、錦綸-66,尼龍-610等。
凡是後面有兩個或兩個以上數字的,表示這種聚醯胺纖維是由二元胺和二元酸兩種單體縮聚而成的。前面的數字是二元胺的碳原子數,後面的數字是二元酸的碳原子數。如,尼龍-610是由己二胺和癸二酸縮聚而成的。
凡是後面只有一個數字的,表示這種聚醯胺纖維是由某碳原子個數的內醯胺聚合而成的。如,錦綸-6是由己內醯胺聚合而成的。
(2)滌綸
聚酯纖維是指纖維分子中各個鏈節,都是以酯基相連接形成的高分子化合物,商品名稱叫「滌綸」。目前,工業生產中產量最大的滌綸是聚對苯二甲酸乙二酯,俗稱「的確良」。
另外,還有一些常見的高分子化合物的商品名稱,如,「腈綸」、「丙綸」、「氯綸」、「維尼綸」,等等。
「腈綸」——聚丙烯腈纖維;
「丙綸」——聚丙烯纖維;
「氯綸」——聚氯乙烯纖維;
「維尼綸」 ——聚乙烯醇縮甲醛纖維。
高分子化合物的集聚狀態:
高聚物的性能不僅與高分子的相對分子質量和分子結構有關,也和分子間的互相關系,即聚集狀態有關。同屬線型結構的高聚物,有的具有高彈性(如天然橡膠),有的則表現出很堅硬(如聚苯乙烯),就是由於它們的聚集狀態不同的緣故。即使是同一種高聚物由於聚集狀態不同,性能也會有很大的差別,例如,化學纖維在製造過程中必須經過拉伸,就是為了改變聚物內部分子的聚集狀態,使其分子鏈排列得整齊一些,從而提高分子間的吸引力,使製品強度更好。
晶相高聚物和非晶相高聚物
從結晶狀態來看,線型結構的高聚物有晶相的和非晶相的。晶相高聚物由於其內部分子排列很有規律,分子間的作用力較大,故其耐熱性和機械強度都比非晶相的高,熔限較窄。非晶相高聚物沒有一定的熔點,耐熱性能和機械強度都比晶相的低,由於高分子的分子鏈很長,要使分子鏈間的每一部分都作有序排列是很困難的,因此,高聚物都屬於非晶相或部分結晶的。部分結晶高聚物的結晶性區域稱為微晶;微晶的多少稱為結晶度。例如,常見的聚氯乙烯、天然橡膠、聚酯纖維等高聚物都是屬於線型非晶相的高聚物。只有少數是定向聚合得到的,如聚乙烯、聚苯乙烯等是部分晶相的。部分晶相的高聚物是由晶相的微晶部分鑲嵌於無定形部分中而成的。
體型結構的高聚物,例如,酚醛塑料、環氧樹脂等,由於分子鏈間有大量的交聯,分子鏈不可能產生有序排列,因而都是非晶相的,對於少量交聯的網狀高聚物,因其交聯少,鏈段間也可能產生局部的有序排列,但這種局部的有序排列,其分子間的吸引力不足以保持在這種狀態,而容易恢復到原來的無序狀態。
線型非晶相高聚物的聚集狀態
線型非晶相高聚物具有三種不同的物理狀態:玻璃態、高彈態和粘流態。猶如低分子物質具有三態(固態、液態和氣態)一樣,但是高聚物的三態和低分子的三態本質是不同的。橡膠和聚氯乙烯等塑料都是線型非晶相高聚物,但橡膠具有很好的彈性,而塑料則表現出良好的硬度,其原因就是由於它們在室溫下所處的狀態不同的緣故。塑料所處的狀態是玻璃態,橡膠所處的狀態是高彈態,把高聚物加熱到熔融時所處的狀態就是粘流態。
玻璃態的特徵是形變很困難,硬度大;高彈態的特徵是形變很容易,具有高彈性;粘流態的特徵是形變能任意發生,具有流動性。這三種物理狀態,隨著溫度的變化可互相轉化。
高分子化合物的應用:
高分子的應用極 為廣泛,遍及人們的 衣、食、住、行,國民經 濟各部門和尖端技術。 功能高分子的問世, 使合成高分子的應用 發展到更精細、更高 級的水平,不僅對促 進工農業生產和尖端 技術,而且對探索生 命的奧秘、攻克癌症 和治療遺傳性疾病都 起著重要推動作用。 據推算,21世紀地 球上人口將超過100 億,屆時糧食、能源、 環境、資源等將成為 使人類社會更感困擾 的問題。對此,高分 子科學將發揮重要作用。如利用高分子調整水 分的蒸發和散失以改良土壤、綠化沙漠、擴大耕 地、控制生態體系,促進糧食增產; 製取高轉化 率的光電池,用以分解水制氫和氧,用作燃料電 池和化工原料; 開發新型高分子催化劑,利用 空氣中氮在常溫常壓下合成氨等。治理現代社 會的環境污染同樣離不開高分子的應用。
但高分子易燃、易老化,不能降解,不被細 菌腐蝕,不為土壤吸收。大量使用後丟棄,已造 成嚴重公害。迫切需要研製能在自然環境中降 解、分解而不造成污染的新型高分子。這是高 分子科學今後發展的重要新課題、新方向之一。

⑸ 物質不都有3態嗎

呵呵,物質有3態是老概念了,現在都不知道有多少態了...各種分類不同的。
大學物理會涉及固態,液態,氣態,液晶態,等離子態,玻色-愛因斯坦凝聚態,費米子凝聚態
火是等離子態

可以隨便找本大學普通物理的緒論一章看看,如果有興趣

下邊是貼的
具體來說吧:
1.固態
嚴格地說,物理上的固態應當指「結晶態」,也就是各種各樣晶體所具有的狀態。最常見的晶體是食鹽(化學成份是氯化鈉,化學符號是NaCl)。你拿一粒食鹽觀察(最好是粗製鹽),可以看到它由許多立方形晶體構成。如果你到地質博物館還可以看到許多顏色、形狀各異的規則晶體,十分漂亮。物質在固態時的突出特徵是有一定的體積和幾何形狀,在不同方向上物理性質可以不同(稱為「各向異性」);有一定的熔點,就是熔化時溫度不變。
在固體中,分子或原子有規則地周期性排列著,就像我們全體做操時,人與人之間都等距離地排列一樣。每個人在一定位置上運動,就像每個分子或原子在各自固定的位置上作振動一樣。我們將晶體的這種結構稱為「空間點陣」結構。

2.液態
液體有流動性,把它放在什麼形狀的容器中它就有什麼形狀。此外與固體不同,液體還有「各向同性」特點(不同方向上物理性質相同),這是因為,物體由固態變成液態的時候,由於溫度的升高使得分子或原子運動劇烈,而不可能再 保持原來的固定位置,於是就產生了流動。但這時分子或原子間的吸引力還比較大,使它們不會分散遠離,於是液體仍有一定的體積。實際上,在液體內部許多小的區域仍存在類似晶體的結構——「類晶區」。流動性是「類晶區」彼此間可以移動形成的。我們打個比喻,在柏油路上送行的「車流」,每輛汽車內的人是有固定位置的一個「類晶區」,而車與車之間可以相對運動,這就造成了車隊整體的流動。

3.氣態
液體加熱會變成氣態。這時分子或原子運動更劇烈,「類晶區」也不存在了。由於分子或原子間的距離增大,它們之間的引力可以忽略,因此氣態時主要表現為分子或原子各自的無規則運動,這導致了我們所知的氣體特性:有流動性,沒有固定的形狀和體積,能自動地充滿任何容器;容易壓縮;物理性質「各向同性」。
顯然,液態是處於固態和氣態之間的形態。

4.非晶態——特殊的固態
普通玻璃是固體嗎?你一定會說,當然是固體。其實,它不是處於固態(結晶態)。對這一點,你一定會奇怪。
這是因為玻璃與晶體有不同的性質和內部結構。
你可以做一個實驗,將玻璃放在火中加熱,隨溫度逐漸升高,它先變軟,然後逐步地熔化。也就是說玻璃沒有一個固定的熔點。此外,它的物理性質也「各向同性」。這些都與晶體不同。
經過研究,玻璃內部結構沒有「空間點陣」特點,而與液態的結構類似。只不過「類晶區」彼此不能移動,造成玻璃沒有流動性。我們將這種狀態稱為「非晶態」。
嚴格地說,「非晶態固體」不屬於固體,因為固體專指晶體;它可以看作一種極粘稠的液體。因此,「非晶態」可以作為另一種物態提出來。
除普通玻璃外,「非晶態」固體還很多,常見的有橡膠、石蠟、天然樹脂、瀝青和高分子塑料等。

5.液晶態——結晶態和液態之間的一種形態
「液晶」現在對我們已不陌生,它在電子表、計算器、手機、傳呼機、微型電腦和電視機等的文字和圖形顯示上得到了廣泛的應用。
「液晶」這種材料屬於有機化合物,迄今人工合成的液晶已達5000多種。
這種材料在一定溫度范圍內可以處於「液晶態」,就是既具有液體的流動性,又具有晶體在光學性質上的「各向異性」。它對外界因素(如熱、電、光、壓力等)的微小變化很敏感。我們正是利用這些特性,使它在許多方面得到應用。
上述幾種「物態」,在日常條件下我們都可以觀察到。但是隨著物理學實驗技術的進步,在超高溫、超低溫、超高壓等條件下,又發現了一些新「物態」。

6.超高溫下的等離子態
這是氣體在約幾百萬度的極高溫或在其它粒子強烈碰撞下所呈現出的物態,這時,電子從原子中游離出來而成為自由電子。等離子體就是一種被高度電離的氣體,但是它又處於與「氣態」不同的「物態」——「等離子態」。
太陽及其它許多恆星是極熾熱的星球,它們就是等離子體。宇宙內大部分物質都是等離子體。地球上也有等離子體:高空的電離層、閃電、極光等等。日光燈、水銀燈里的電離氣體則是人造的等離子體。

7.超高壓下的超固態
在140萬大氣壓下,物質的原子就可能被「壓碎」。電子全部被「擠出」原子,形成電子氣體,裸露的原子核緊密地排列,物質密度極大,這就是超固態。一塊乒乓球大小的超固態物質,其質量至少在1000噸以上。
已有充分的根據說明,質量較小的恆星發展到後期階段的白矮星就處於這種超固態。它的平均密度是水的幾萬到一億倍。

8.超高壓下的中子態
在更高的溫度和壓力下,原子核也能被「壓碎」。我們知道,原子核由中子和質子組成,在更高的溫度和壓力下質子吸收電子轉化為中子,物質呈現出中子緊密排列的狀態,稱為「中子態」。
已經確認,中等質量(1.44~2倍太陽質量)的恆星發展到後期階段的「中子星」,是一種密度比白矮星還大的星球,它的物態就是「中子態」。
更大質量恆星的後期,理論預言它們將演化為比中子星密度更大的「黑洞」,目前還沒有直接的觀測證實它的存在。至於 「黑洞」中的超高壓作用下物質又呈現什麼物態,目前一無所知,有待於今後的觀測和研究。
物質在高溫、高壓下出現了反常的物態,那麼在低溫、超低溫下物質會不會也出現一些特殊的形態呢?下面講到的兩種物態就是這類情況。

9.超導態
超導態是一些物質在超低溫下出現的特殊物態。最先發現超導現象的,是荷蘭物理學家卡麥林·昂納斯(1853~1926年)。1911年夏天,他用水銀做實驗,發現溫度降到4.173K的時候(約-269℃),水銀開始失去電阻。接著他又發現許多材料都又有這種特性:在一定的臨界溫度(低溫)下失去電阻(請閱讀「低溫和超導研究的進展」專題)。卡麥林·昂納斯把某些物質在低溫條件下表現出電阻等於零的現象稱為「超導」。超導體所處的物態就是「超導態」,超導態在高效率輸電、磁懸浮高速列車、高精度探測儀器等方面將會給人類帶來極大的益處。
超導態的發現,尤其是它奇特的性質,引起全世界的關注,人們紛紛投入了極大的力量研究超導,至今它仍是十分熱門的科研課題。目前發現的超導材料主要是一些金屬、合金和化合物,已不下幾千種,它們各自對應有不同的「臨界溫度」,目前最高的「臨界溫度」已達到130K(約零下143攝氏度),各國科學家正在拚命努力向室溫(300K或27℃)的臨界溫度沖刺。
超導態物質的結構如何?目前理論研究還不成熟,有待繼續探索。

10.超流態
超流態是一種非常奇特的物理狀態,目前所知,這種狀態只發生在超低溫下的個別物質上。
1937年,前蘇聯物理學家彼得·列奧尼多維奇·卡皮察(1894~1984年)驚奇地發現,當液態氦的溫度降到2.17K的時候,它就由原來液體的一般流動性突然變化為「超流動性」:它可以無任何阻礙地通過連氣體都無法通過的極微小的孔或狹縫(線度約10萬分之一厘米),還可以沿著杯壁「爬」出杯口外。我們將具有超流動性的物態稱為「超流態」。但是目前只發現低於2.17K的液態氦有這種物態。超流態下的物質結構,理論也在探索之中。

⑹ 什麼是非晶態線型高聚物熱力學三態

線型非晶態高分子有多重運動單元。這是因為高分子鏈很長,除了高分子鏈是一個運動單元外,由若干個鏈節組成的鏈段也是一個個運動單元,這與小分子只有一個運動單元不同。由於這些鏈段的轉動使線型非晶態高分子化合物具有柔性和彈性。線型非晶態高分子化合物在不同溫度下處於不同的力學狀態(參見圖3-9-3)。這是因為在不同溫度下在應力作用時高分子化合物發生的形變特點不同。當溫度不高時,在受到一定的應力作用時,高分子的鏈段只發生微小的伸縮和轉動,去掉應力後鏈段將恢復原形。這種形變是「普彈形變」,像玻璃受力發生形變一樣。這種力學狀態叫玻璃態。

升高溫度,當溫度超過一定值(Tg玻璃化溫度)時,高分子化合物的鏈段可以作較大程度旋轉。這時,高分子化合物在應力作用下,形變率很大。若應力取消後,分子鏈中鏈段恢復原位。這種形變叫「高彈形變」,相應的力學狀態即稱為高彈態。

再升高溫度,當溫度超過Tf
(粘流化溫度)後,不僅高分子鏈中鏈段開始旋轉,而且整個高分子鏈也開始發生位移,這時高分子化合物變成粘性流體。若把應力去掉,高分二f鏈發生的形變不可逆轉。這種力學狀態即稱為粘流態。粘流態是一般高分子材料加工成型時使用的狀態。高分子化合物的玻璃態溫度區間是Tc—→Tg。Tc叫脆化溫度,此時溫度較低,高分子化合物很脆,在較大應力作用下無承受能力。高分子化合物的高彈態溫度區間是T。一Tf。高分子化合物的粘流態溫度區間是Tf→Td。Td是分解溫度。高分子化合物的分子量很大,並且分子間相互纏繞,因此分子間作用力很大,與化學鍵在同一數量級上,因此當溫度升高到一定程度下,高分子化合物尚未氣化前,它的共價鍵已經斷裂,發生分解反應。

常溫下處在玻璃態的高分子化合物可以做塑料、纖維。Tc,越低,Tg越高,塑料、纖維的使用溫度范圍越大。常溫下處在高彈態的高分子化合物可做橡膠。Tg越低、Tf越高橡膠的使用溫度范圍越大。常溫下處於粘流態的高分子化合物稱為流動性樹脂。結晶型、體型高分子化合物的力學狀態與線型非晶態高分子化合物不同,它們一般無高彈態,而體型高分子化合物無粘流態。

⑺ 還有哪些東西是超出「三態」的范圍的,請列舉

非晶態、液晶態、等離子態、超固態、中子態、超導態、超流態
4.非晶態——特殊的固態
普通玻璃是固體嗎?你一定會說,當然是固體。其實,它不是處於固態(結晶態)。對這一點,你一定會奇怪。

這是因為玻璃與晶體有不同的性質和內部結構。

你可以做一個實驗,將玻璃放在火中加熱,隨溫度逐漸升高,它先變軟,然後逐步地熔化。也就是說玻璃沒有一個固定的熔點。此外,它的物理性質也「各向同性」。這些都與晶體不同。

經過研究,玻璃內部結構沒有「空間點陣」特點,而與液態的結構類似。只不過「類晶區」彼此不能移動,造成玻璃沒有流動性。我們將這種狀態稱為「非晶態」。

嚴格地說,「非晶態固體」不屬於固體,因為固體專指晶體;它可以看作一種極粘稠的液體。因此,「非晶態」可以作為另一種物態提出來。

除普通玻璃外,「非晶態」固體還很多,常見的有橡膠、石蠟、天然樹脂、瀝青和高分子塑料等。

——————
5.液晶態——結晶態和液態之間的一種形態
「液晶」現在對我們已不陌生,它在電子表、計算器、手機、傳呼機、微型電腦和電視機等的文字和圖形顯示上得到了廣泛的應用。

「液晶」這種材料屬於有機化合物,迄今人工合成的液晶已達5000多種。

這種材料在一定溫度范圍內可以處於「液晶態」,就是既具有液體的流動性,又具有晶體在光學性質上的「各向異性」。它對外界因素(如熱、電、光、壓力等)的微小變化很敏感。我們正是利用這些特性,使它在許多方面得到應用。

上述幾種「物態」,在日常條件下我們都可以觀察到。但是隨著物理學實驗技術的進步,在超高溫、超低溫、超高壓等條件下,又發現了一些新「物態」。

————————
6.等離子態
這是氣體在約幾百萬度的極高溫或在其它粒子強烈碰撞下所呈現出的物態,這時,電子從原子中游離出來而成為自由電子。等離子體就是一種被高度電離的氣體,但是它又處於與「氣態」不同的「物態」——「等離子態」。

太陽及其它許多恆星是極熾熱的星球,它們就是等離子體。宇宙內大部分物質都是等離子體。地球上也有等離子體:高空的電離層、閃電、極光等等。日光燈、水銀燈里的電離氣體則是人造的等離子體。

————————
7。超固態
在140萬大氣壓下,物質的原子就可能被「壓碎」。電子全部被「擠出」原子,形成電子氣體,裸露的原子核緊密地排列,物質密度極大,這就是超固態。一塊乒乓球大小的超固態物質,其質量至少在1000噸以上。

已有充分的根據說明,質量較小的恆星發展到後期階段的白矮星就處於這種超固態。它的平均密度是水的幾萬到一億倍。

————————
8。中子態
在更高的溫度和壓力下,原子核也能被「壓碎」。我們知道,原子核由中子和質子組成,在更高的溫度和壓力下質子吸收電子轉化為中子,物質呈現出中子緊密排列的狀態,稱為「中子態」。

已經確認,中等質量(1.44~2倍太陽質量)的恆星發展到後期階段的「中子星」,是一種密度比白矮星還大的星球,它的物態就是「中子態」。

更大質量恆星的後期,理論預言它們將演化為比中子星密度更大的「黑洞」,目前還沒有直接的觀測證實它的存在。至於 「黑洞」中的超高壓作用下物質又呈現什麼物態,目前一無所知,有待於今後的觀測和研究。
物質在高溫、高壓下出現了反常的物態,那麼在低溫、超低溫下物質會不會也出現一些特殊的形態呢?下面講到的兩種物態就是這類情況。

——————————————————
9。超導態
超導態是一些物質在超低溫下出現的特殊物態。最先發現超導現象的,是荷蘭物理學家卡麥林·昂納斯(1853~1926年)。1911年夏天,他用水銀做實驗,發現溫度降到4.173K的時候(約-269℃),水銀開始失去電阻。接著他又發現許多材料都又有這種特性:在一定的臨界溫度(低溫)下失去電阻(請閱讀「低溫和超導研究的進展」專題)。卡麥林·昂納斯把某些物質在低溫條件下表現出電阻等於零的現象稱為「超導」。超導體所處的物態就是「超導態」,超導態在高效率輸電、磁懸浮高速列車、高精度探測儀器等方面將會給人類帶來極大的益處。

超導態的發現,尤其是它奇特的性質,引起全世界的關注,人們紛紛投入了極大的力量研究超導,至今它仍是十分熱門的科研課題。目前發現的超導材料主要是一些金屬、合金和化合物,已不下幾千種,它們各自對應有不同的「臨界溫度」,目前最高的「臨界溫度」已達到130K(約零下143攝氏度),各國科學家正在拚命努力向室溫(300K或27℃)的臨界溫度沖刺。

超導態物質的結構如何?目前理論研究還不成熟,有待繼續探索。

——————————————————————
10.超流態
超流態是一種非常奇特的物理狀態,目前所知,這種狀態只發生在超低溫下的個別物質上。

1937年,前蘇聯物理學家彼得·列奧尼多維奇·卡皮察(1894~1984年)驚奇地發現,當液態氦的溫度降到2.17K的時候,它就由原來液體的一般流動性突然變化為「超流動性」:它可以無任何阻礙地通過連氣體都無法通過的極微小的孔或狹縫(線度約10萬分之一厘米),還可以沿著杯壁「爬」出杯口外。我們將具有超流動性的物態稱為「超流態」。但是目前只發現低於2.17K的液態氦有這種物態。超流態下的物質結構,理論也在探索之中。

上面介紹的只是迄今發現的10 種物態,有文獻歸納說還存在著更多種類的物態,例如:超離子態、輻射場態、量子場態,限於篇幅,這里就不一一列舉了。我們相信,隨著科學的發展,我們一定會認識更多的物態,解開更多的謎,並利用它們奇特的性質造福於人類。
參考資料:http://www.zznet.com.cn/hdz05/news/wzjg.asp

⑻ 熱固性塑料和熱塑性塑料的不同

從成型加工性能上可分為熱塑性塑料和熱固性塑料.
1、熱塑性塑料:這類塑料的特點是可以隨著溫度的升高而變軟,被塑製成型,冷卻後變的堅硬,這個過程可以反復多次進行。其典型的品種有聚氯乙烯,聚乙烯,聚丙烯,聚苯乙烯,ABS,尼龍,聚碳酸脂,有機玻璃等。
2、熱固性塑料:這類塑料的特點是在一定溫度下,經過一定的時間加熱或加入固化劑後,即可固化。固化後的塑料,質地堅硬而不能溶於溶劑中,也不能用加熱的方法使之再軟化,如果溫度過高就會分解。其典型品種有酚醛樹脂,環氧樹脂,不飽和聚酯等。
我認為你所說的檢驗部分的描述是錯誤的,塑料可以分為三態:粘流態、高彈態、玻璃態。在較低溫度下塑料一般呈玻璃態至高彈態,塑料在這一范圍內才有使用價值。隨著溫度的升高,塑料由高彈態變為粘流態,也就是呈流動狀態,這時就可以用不同的塑料成型方法將塑料加工成不同形狀的塑料製品了。不同種類的塑料其粘流態、高彈態、玻璃態的溫度范圍是不同的。

⑼ 熱固性塑料和熱塑性塑料的不同

根據塑料受熱後的性質不同分為熱塑性塑料和熱固性塑料
熱塑性塑料分子結構都是線型結構,在受熱時發生軟化或熔化,可塑製成一定的形狀,冷卻後又變硬。在受熱到一定程度又重新軟化,冷卻後又變硬,這種過程能夠反復進行多次。如聚氯乙烯、聚乙烯、聚苯乙烯等。熱塑性塑料成型過程比較簡單,能夠連續化生產,並且具有相當高的機械強度,因此發展很快。
熱固性塑料的分子結構是體型結構,在受熱時也發生軟化,可以塑製成一定的形狀,但受熱到一定的程度或加入少量固化劑後,就硬化定型,再加熱也不會變軟和改變形狀了。熱固性塑料加工成型後,受熱不再軟化,因此不能回收再用,如酚醛塑料、氨基塑料、環氧樹脂等都屬於此類塑料。熱固性塑料成型工藝過程比較復雜,所以連續化生產有一定的困難,但其耐熱性好、不容易變形,而且價格比較低廉.

⑽ 熱塑性塑料和熱固性塑料有什麼區別

一、熱塑性塑料
加熱時變軟以至流動,冷卻變硬,這種過程是可逆的,可以版反復進行。權聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯、聚甲醛,聚碳酸酪,聚醯胺、丙烯酸類塑料、其它聚烯侵及其共聚物、聚諷、聚苯醚,氯化聚醚等都是熱塑性塑料。熱塑性塑料中樹脂分子鏈都是線型或帶支鏈的結構,分子鏈之間無化學鍵產生,加熱時軟化流動.冷卻變硬的過程是物理變化。
二、熱固性塑料
第一次加熱時可以軟化流動,加熱到一定溫度,產生化學反應一交鏈固化而變硬,這種變化是不可逆的,此後,再次加熱時,已不能再變軟流動了。正是藉助這種特性進行成型加工,利用第一次加熱時的塑化流動,在壓力下充滿型腔,進而固化成為確定形狀和尺寸的製品。這種材料稱為熱固性塑料。
熱固性塑料的樹脂固化前是線型或帶支鏈的,固化後分子鏈之間形成化學鍵,成為三度的網狀結構,不僅不能再熔觸,在溶劑中也不能溶解。酚醛、服醛、三聚氰胺甲醛、環氧、不飽和聚酯、有 機硅等塑料,都是熱固性塑料。

熱點內容
丁度巴拉斯情人電影推薦 發布:2024-08-19 09:13:07 瀏覽:886
類似深水的露點電影 發布:2024-08-19 09:10:12 瀏覽:80
《消失的眼角膜》2電影 發布:2024-08-19 08:34:43 瀏覽:878
私人影院什麼電影好看 發布:2024-08-19 08:33:32 瀏覽:593
干 B 發布:2024-08-19 08:30:21 瀏覽:910
夜晚看片網站 發布:2024-08-19 08:20:59 瀏覽:440
台灣男同電影《越界》 發布:2024-08-19 08:04:35 瀏覽:290
看電影選座位追女孩 發布:2024-08-19 07:54:42 瀏覽:975
日本a級愛情 發布:2024-08-19 07:30:38 瀏覽:832
生活中的瑪麗類似電影 發布:2024-08-19 07:26:46 瀏覽:239