弱酸樹脂
① 為什麼弱型樹脂比較容易再生
一、 常規的再生處理
離子交換樹脂使用一段時間後,吸附的雜質接近飽和狀態,就要進行再生處理,用化學劑將樹脂所吸附的離子和其他雜質洗脫除去,使之恢復原來的組成和性能。在實際運用中,為降低再生費用,要適當控制再生劑用量,使樹脂的性能恢復到最經濟合理的再生水平,通常控制性能恢復程度為 70~80% 。如果要達到更高的再生水平,則再生劑量要大量增加,再生劑的利用率則下降。
樹脂的再生應當根據樹脂的種類、特性,以及運行的經濟性,選擇適當的再生劑和工作條件。
樹脂的再生特性與它的類型和結構有密切關系。強酸性和強鹼性樹脂的再生比較困難,需用再生劑量比理論值高相當多;而弱酸性或弱鹼性樹脂則較易再生,所用再生劑量只需稍多於理論值。此外,大孔型和交聯度低的樹脂較易再生,而凝膠型和交聯度高的樹脂則要較長的再生反應時間。
再生劑的種類應根據樹脂的離子類型來選用,並適當地選擇價格較低的酸、鹼或鹽。例如:鈉型強酸性陽樹脂可用 10%NaCl 溶液再生,用量為其交換容量的 2 倍 (用NaCl 量為117g/ l 樹脂 );氫型強酸性樹脂用強酸再生,用硫酸時要防止被樹脂吸附的鈣與硫酸反應生成硫酸鈣沉澱物。為此,宜先通入 1~2% 的稀硫酸再生。
氯型強鹼性樹脂,主要以 NaCl 溶液來再生,但加入少量鹼有助於將樹脂吸附的色素和有機物溶解洗出,故通常使用含10%NaCl + 0.2%NaOH 的鹼鹽液再生,常規用量為每升樹脂用150~ 200g NaCl ,及 3~4g NaOH。 OH 型強鹼陰樹脂則用 4%NaOH 溶液再生。
樹脂再生時的化學反應是樹脂原先的交換吸附的逆反應。按化學反應平衡原理,提高化學反應某一方物質的濃度,可促進反應向另一方進行,故提高再生液濃度可加速再生反應,並達到較高的再生水平。
為加速再生化學反應,通常先將再生液加熱至 70~80℃。它通過樹脂的流速一般為 1~ 2 BV/h 。也可採用先快後慢的方法,以充分發揮再生劑的效能。再生時間約為一小時。隨後用軟水順流沖洗樹脂約一小時 ( 水量約4BV) ,待洗水排清之後,再用水反洗,至洗出液無色、無混濁為止。
一些樹脂在再生和反洗之後,要調校 pH 值。因為再生液常含有鹼,樹脂再生後即使經水洗,也常帶鹼性。而一些脫色樹脂 (特別是弱鹼性樹脂) 宜在微酸性下工作。此時可通入稀鹽酸,使樹脂 pH 值下降至6左右,再用水正洗,反洗各一次。
樹脂在使用較長時間後,由於它所吸附的一部分雜質 ( 特別是大分子有機膠體物質 ) 不易被常規的再生處理所洗脫,逐漸積累而將樹脂污染,使樹脂效能降低。此時要用特殊的方法處理。例如:陽離子樹脂受含氮的兩性化合物污染,可用 4%NaOH 溶液處理,將它溶解而排掉;陰離子樹脂受有機物污染,可提高鹼鹽溶液中的 NaOH 濃度至0.5~1.0%,以溶解有機物。
二、特殊的再生處理
污染較嚴重的樹脂,可用酸或鹼性食鹽溶液反復處理,如先用 10%NaCl +1%NaOH 鹼鹽溶液溶解有機物,再用 4%HCl 或分別用 10%NaOH 及 1%HCl 溶解無機物,隨後再用 10%NaCl +1%NaOH 處理,在約 70℃下進行。
如果上述處理的效果未達要求,可用氧化法處理。即用水洗滌樹脂後,通入濃度為 0.5% 的次氯酸鈉溶液,控制流速 2~4BV/h ,通過量 10~20BV ,隨即用水洗滌,再用鹽水處理。應當注意,氧化處理可能將樹脂結構中的大分子的連接鍵氧化,造成樹脂的降解,膨脹度增大,容易碎裂,故不宜常用。通常使用 50 周期後才進行一次氧化處理。由於氯型樹脂有較強的耐氧化性,故樹脂在氧化處理前應用鹽水處理,變為氯型,這還可避免處理過程中的 pH 值變化,並使氧化作用比較穩定。
三、再生廢液的處置
糖廠用樹脂脫色,樹脂再生的廢液含有大量的色素和有機物,顏色很深。用原糖生產精糖時,每 100 噸糖的再生廢液量約為 6~9m3 。要經過處理才能排放 (或循環),這也是一個難題。
Bento 詳細研究了用化學方法處理再生液,使色素和其他有機物沉澱,除去雜質後再循環使用,減少排放,並充分利用其中的氯化鈉。由於再生液中色素的濃度比糖汁中高 10 倍以上,液體數量較小,沒有糖液的粘性,並能容許強烈的條件如強鹼性和高溫等而無需顧慮糖的分解,用化學處理比較方便。再生液加入 5~10% 容積的石灰乳 ( 濃度為含CaO100g/ l ) ,加熱到60℃並輕微攪拌,大量的有色物沉澱析出。再加入碳酸鈉或二氧化碳、磷酸鈉或磷酸並保持鹼性,都可使較多的有色物沉澱。處理後的液體添加少量食鹽可返回作樹脂的初級再生液,其後再用新的鹽水再生。
對廢液的處理還研究過多種方法:用顆粒活性炭吸附,用次氯酸鈉、次氯酸鈣、氯氣或臭氧將它氧化,用超過濾或反滲透法分離它的有機物,或用粉狀樹脂吸附等。最近 Guimaraes 等研究用微生物將它的有色物降解,取得較好效果
② 為什麼弱酸性吸附樹脂只能在弱鹼性條件下使用
酸性條件下,金屬一般呈陽離子,正價態
首先確認你使用的樹脂類型回,是否為陽離子交換樹脂或答螯合樹脂,基本上也只有這兩類樹脂才有交換吸附金屬離子的能力,若使用了陰離子交換樹脂或大孔吸附樹脂,那就根本不可能吸附金屬離子的.
其次,可調整下物料的PH值,再重新嘗試.
③ 求助:弱酸樹脂處理循環水問題
弱酸樹脂處理循環水問題
1)當聯合應用弱、強酸樹脂時,則可既增加了交換器的總工交容量,而又能控制了交換後的出水水質。
2)弱酸樹脂在交換過程中始終存在著離子泄漏,而且隨著弱酸樹脂層的失效程度的增加,離子的泄漏量會隨時不斷的加大。
3)因為弱酸樹脂極容易吸著水中的H+,所以再生時它可利用強酸樹脂的再生液中的余酸來進行再生,因而可以合理的利用和降低再生酸耗。同時又可減少再生排出液對環境的污染。
4)在聯合應用中,因為前面的弱酸樹脂已經將水中碳酸鹽硬度去除,改善了強酸樹脂的進水水質,使強酸樹脂的工交容量可以有更高的發揮。
5)強酸和弱酸樹脂聯合應用時,弱酸、強酸樹脂的裝填量的計算原則為,弱酸樹脂應按吸著進水中的碳酸鹽硬度所須的量,而強酸樹脂則按吸著進水中其他剩餘陽離子的量來計算。
④ 水溶性自干樹脂有適合弱酸性體系嗎
晚上好,純復粹水溶性自干樹脂很少,制只是弱酸性比如6-6.5這樣的PVA、PVP(大於K60以上,比如K90和K120)和小於3秒的PVB都符合要求,其他的諸如達瑪樹脂、松香甘油酯和PEG、PPG等高分子量的聚醇利用一定比例的醇+水或者酮+水也適用於弱酸性體系中。羥基丙烯酸樹脂好像沒有弱酸性的它們由於含有羥基一般需要鹼性助溶,如果不在意使用細節比如非得是傳統意義上的樹脂,CMC、HEC或者HPMC這些類似CAB的纖維素都能直接溶解於弱酸性環境並有利於增稠,以上這些均屬於水分揮發自干成膜的,請參考(PVA不能使用硼酸,其他弱酸沒有問題)。一般來說,只是單組份水溶性自干樹脂很少單獨使用,它們因不耐水,性能普遍較差只能作為輔料增加主樹脂在柔韌性方面的補強作用。
⑤ 弱酸樹脂轉鈉型時樹脂會不會破碎
弱酸樹脂轉鈉型時樹脂不會破碎。
陽離子交換樹脂,除了磺酸型的強版酸性離子交換樹脂,還有弱酸權型的離子交換樹脂。一直不停的進行金屬離子和氫離子的交換,可以交換上千次,樹脂保持完好。因此氫型轉為鈉型,不會破碎,放心使用。
⑥ 強酸強鹼弱酸弱鹼樹脂的優缺點各是什麼
撿到了,各有不同,因為他們弱酸弱鹼性的話,它的優缺點可以通過它的一種事物來改變它的影
⑦ 弱酸樹脂在離子交換中有哪些工藝特性
弱酸樹脂在進行離子交換過程中與強酸樹脂工作原理是一樣的,但弱酸樹脂優於強酸樹脂,因弱酸樹工作交換容量大,既減少了再生劑用量,又減少了排廢量…一傑華粼
⑧ 弱酸樹脂與強酸樹脂應用時有哪些交換特性
當聯合應抄用弱、強酸樹脂襲時,則可既增加了交換器的總工交容量,而又能控制了交換後的出水水質。
2)弱酸樹脂在交換過程中始終存在著離子泄漏,而且隨著弱酸樹脂層的失效程度的增加,離子的泄漏量會隨時不斷的加大。
3)因為弱酸樹脂極容易吸著水中的H+,所以再生時它可利用強酸樹脂的再生液中的余酸來進行再生,因而可以合理的利用和降低再生酸耗。同時又可減少再生排出液對環境的污染。
4)在聯合應用中,因為前面的弱酸樹脂已經將水中碳酸鹽硬度去除,改善了強酸樹脂的進水水質,使強酸樹脂的工交容量可以有更高的發揮。
5)強酸和弱酸樹脂聯合應用時,弱酸、強酸樹脂的裝填量的計算原則為,弱酸樹脂應按吸著進水中的碳酸鹽硬度所須的量,而強酸樹脂則按吸著進水中其他剩餘陽離子的量來計算。
⑨ 弱酸樹脂與強酸樹脂應用時有哪些交換特性
弱酸型陽樹脂肯定優於強酸型陽樹脂,從制水工藝上講,主要是制水量大,工況穩定等特點,同時也節約了再生劑量,更重要的是減少了排廢量