反滲透膜21排列回收率
⑴ 反滲透系統中回收率指的是什麼過高回收率會對膜分離產生哪些影響
反滲透或納濾系統回收率是指反滲透裝置在實際使用時總的回收率,回收率受給水水質、膜元件的數量及排列方式等多種因素的影響,小型反滲透裝置由於膜元件的數量少、給水流程短,因而系統回收率普遍偏低。而工業用大型反滲透裝置由於膜元件的數量多、給水流程長,所以實際系統回收率一般均在75%以上,有時甚至可以達到90%。
在某些情況下對於小型反滲透裝置也要求較高的系統回收率,以免造成水資源的浪費,此時在設計反滲透裝置時就需要釆取一些不同的對策。最常見的對策是釆用濃水部分循環,即反滲透裝置的濃水只排放一部分,其餘部分循環進入給水泵入口,此時既可保證膜元件表面維持一定的橫向流速,又可以達到用戶所需要的系統回收率。膜分離會產生降低系統造價,但是過高的回收率又會降低膜的出水水質、增加膜的濃差極化度。通過試驗確定出單支膜的最佳回收率為20%。
⑵ 反滲透系統回收率如何計算
反滲透系統的回收率主要有根據膜元件串聯的長度和是否有濃水循環以及循環內流量的大小等一些條件來容決定的.
假如系統在沒有濃水循環的情況之下,要根據膜元件所串聯的數量來確定系統最大的回收率.
針對多級反滲透設備如何進行計算回收率,根據不同的情況做了不同的規定.對於一級反滲透,第一級回收率(r1)r1=第一級產水量/第一級進水量 ×100%;第二級反滲透的回收率為r2=第二級產水量/第二級進水量×100%.而二級反滲透的回收率並不是兩個級別反滲透系統回收率的乘積得到的.第二級反滲透系統的濃水不是排放掉了,而是又重新迴流到一級反滲透的入口處.因此,多級反滲透設備的回收應當按以下標准計算:系統回收率=總的產水量/總的進水量×100%.
⑶ 超濾膜和反滲透膜的回收率各是多少
中空纖維超濾膜肯定有回收的,由於超濾膜是 純物理的過濾篩分的原理
回收率范圍是非常廣的,10%-90%
因為超濾膜功能,除了過濾,還有提純,濃縮。每個功能系統設計的回收率都不一樣
設計回收率主要是為了控制膜內的液體流動速度,減緩膜污染的時間。。
一般濁度小於5以下的,水量50T/H以上,可以設計90-95%的回收率
反滲透膜,比較標准了。一般是50——75%
⑷ 反滲透設計:一般單只反滲透膜回收率15%左右。兩只並聯又是多少呢是不是說我高壓泵+一隻膜+出水的話,
一般不採取兩只並聯,一般分兩段的話一段跟二段的比例大致在2:1,要看原水水質內及膜的總數來配比。容如果是小系統可以用小膜,比如2t的系統可以採用8支4寸的膜,根據水質採用3:1或5:3的排列。一般小系統的系統回收率按最大50%。其實回收率要看單支膜殼的膜數量,比如6芯的回收率最高
⑸ 反滲透設備如何計算回收率
反滲透系統的回收率主要有根據膜元件串聯的長度和是否有濃水循環以及循環流版量的大小等一權些條件來決定的。 假如系統在沒有濃水循環的情況之下,要根據膜元件所串聯的數量來確定系統最大的回收率。 針對多級反滲透設備如何進行計算回收率,根據不同的情況做了不同的規定。對於一級反滲透,第一級回收率(r1)r1=第一級產水量/第一級進水量 ×100%;第二級反滲透的回收率為r2=第二級產水量/第二級進水量×100%。而二級反滲透的回收率並不是兩個級別反滲透系統回收率的乘積得到的。第二級反滲透系統的濃水不是排放掉了,而是又重新迴流到一級反滲透的入口處。因此,多級反滲透設備的回收應當按以下標准計算:系統回收率=總的產水量/總的進水量×100%。
⑹ 反滲透膜排列問題
多段排列可以有效提高回收率,由於末端濃水端水質差流速慢,易導致污堵,因此設計時第一段的膜數會大於第二段的膜數,國內一般採用的反滲透裝置排列是按2:1進行的兩段排列。但這並不是說必須採用這種排列方式。具體怎麼設計是最佳方案,需要根據軟水進水的情況及採用的反滲透膜的型號加以計算。具體方法可以參考你所使用膜的技術手冊(推薦看下陶氏膜的技術手冊,網路文庫有)。另膜排列的設計,膜的廠家一般都有設計軟體可以使用,你也可以參考。
⑺ 反滲透膜的排列方式,什麼叫一級二段這種排列方式是怎麼確定的怎麼設計的
多級系統指的是一級反滲透的出水作為二級反滲透的進水。一般就設兩級系統。
一級就是只經過一次反滲透膜的過濾,二級經過了兩次過濾。
兩段,第一段的濃水出來後,作為第二段的進水繼續過濾。一般最多可設三段。
可以在網路文庫里搜索「陶氏手冊第五章」可以找到詳細的解釋。
⑻ 污水工程-反滲透翻譯(2)
c. RO unit (membrane array)
RO unit is the actuator of the whole desalting system, whose role is to remove soluble salts, colloids, organic compounds, and microorganisms in the water. The unit is equipped with three set ROs, each has 219m3/h net output, more than 75% recovery rate, and more than 97% total desalting rate (within the life-term). RO membrane adopts TML20-370 anti-contamination RO membrane element proced by Japan Toray Company [Length: 40〃; Diameter: 8〃; Membrane area: 370 square feet (34 m2); Single membrane desalting rate: 99.5%]. Each set RO adopts design of two-sections per grade (需要自己核實) and 62 seven-meter-long pressure containers lining in 41:21 matrix, each pressure container is internally equipped with seven membranes, thus each RO set needs 434 membranes and a total of 1736 membranes for 4 sets. The mean membrane flux is 14.7LMH being in accordance with super-filtration water RO design guideline and having large margins.
c. RO cleaning unit
RO pressure is generally operating at 1.3-1.8MPa. After long-term running, RO membrane array may be contaminated by some contaminations uneasy to be washed off, for example, long-term accumulation of trace salt scales and some organic compounds can result in declining of the performance of the membrane moles and higher running pressure, and therefore, RO membrane array must be cleaned with some chemicals to recover its normal desalting function. When super-filtration was used as pretreatment, it should be cleaned every 3 months, and every cleaning lasts about 2-4 hours. The unit is equipped with a set of cleaning equipment including a stainless steel safeguard filter, two cleaning pumps (1 in use & 1 for preparation) and a cleaning agent tank. The cleaning unit is operated automatically.
d. RO washing unit
RO system is equipped with automatic washing unit, which washes the membrane element surface with RO-proced water as supply to avoid contamination sediment on the membrane surface. The unit is equipped with two wash pumps (1 in use & 1 for preparation) and a washing tank.
e. Control instrument
Serials of online measuring instruments are equipped to control and monitor the normal running of RO system, including conctivity instrument, flow meter, pressure meter, sampling apparatus, and high-low voltage protecting switch, etc. RO is operated automatically, whose condensed water discharging flow is fixed according to the steady-flow-valve installed in the pipelines, and the proced water is set with high-pressure proof bursting membrane.
⑼ 請教反滲透膜的排列方式,什麼叫一級二段,這種排列方式是怎麼確定的怎麼設計的
1、一級一段連續式
經過膜的處理,透過水和濃縮液被連續引出系統。這種方式的特點是水的回收率不高。
2、一級一段循環式
將部分濃縮液返回進料液儲槽與原料液混合,再次通過反滲透膜組件進行分離。特點 透過液水質有所下降。
3、一級多段連續式
把前一段的濃縮液作為下二段的原料液,割斷的透過水連續排出。特點適合大水處理量的場合,回收率較高,濃縮液數量減少,但是濃縮液溶質所佔比例較高。
4、一級多段循環式
將下一段的透過水作為上一段的原料液,在進行分離。這樣濃縮液能獲得更高的濃縮度,適用於濃縮為主要目的的分離。
5、多段錐形排列
既是段內並聯,段間串聯,這樣既能夠滿足反滲透系統的水的回收率要求並保證在裝置內的每個組件中有大致相同的流動狀態。需藉助高壓泵防止生產效率下降。
6、反滲透膜組件的多級多段配置
反滲透膜組件的多級多段配置也有循環式將第一級的透過水作為下一級的進料水再次進行分離,如此連續,將最後一級的透過水引出系統。濃縮液從後一級向前一級的進料液驚醒混合,再進行分離。這種方式提高回收率和水質。但是泵的消耗增大和連續式之分。
⑽ 反滲透系統怎樣確定膜的排列方式
對於各種反滲透系統,往往需要不止一個
反滲透膜元件,這時候這些膜元件就存在如何排列的問題,如前面介紹,膜元件實際回收率是膜元件實際使用時的回收率。為了降低膜元件的污染速度保證膜元件的使用壽命,膜元件生產廠家對單支膜元件的實際回收率做了明確規定,要求每支1m長的膜元件實際回收率不要超過18%,但當膜元件用於第二級反滲透系統水處理時,則實際回收率不受此限制,允許超過18%。
系統回收率是指反滲透裝置在實際使用時的總回收率。系統回收率受給水水質膜元件的數量及排列方式等多種因素的影響,小型反 滲透裝置由於膜元件的數量少給水流程短,因而系統回收率普遍偏低,而工業用大型反滲透裝置由於膜元件的數量多給水流程長,所以實際回收率一般均在75%以上,有時甚至可以達到90%。
為了提高反滲透系統回收率,應該把膜元件串聯起來,但如果系統中有很多的膜元件,就不能把他們全部串聯,如果這樣做,那麼第一支膜的給水流量就會很大,系統壓力也太大,產水流量分配也不平衡。所以實際使用時,把一定數量的膜元件裝在一個壓力容器中,然後把壓力容器按照一定的排列方式來排列,按照給水/濃水側的流程,給水/濃水流人第一壓力容器為第一段,第一段的給水/濃水再流人下一個壓力容器為第二段,依次類推為其他段的名稱。