當前位置:首頁 » 凈水耗材 » 樹脂鋼比強度

樹脂鋼比強度

發布時間: 2020-12-28 02:44:03

1. 復合材料細觀力學

纖維增強樹脂基復合材料常用的樹脂為環氧樹脂和不飽和聚酯樹脂。目前常用的有:熱固性樹脂、熱塑性樹脂,以及各種各樣改性或共混基體。熱塑性樹脂可以溶解在溶劑中,也可以在加熱時軟化和熔融變成粘性液體,冷卻後又變硬。熱固性樹脂只能一次加熱和成型,在加工過程中發生固化,形成不熔和不溶解的網狀交聯型高分子化合物,因此不能再生。復合材料的樹脂基體,以熱固性樹脂為主。早在40年代,在戰斗機、轟炸機上就開始採用玻璃纖維增強塑料作雷達罩。60年代美國在F—4、F—111等軍用飛機上採用了硼纖維增強環氧樹脂作方向舵、水平安定面、機翼後緣、舵門等。在導彈製造方面,50年代後期美國中程潛地導彈「北極星A—2」第二級固體火箭發動機殼體上就採用了玻璃纖維增強環氧樹脂的纏繞製件,較鋼質殼體輕27%;後來採用高性能的玻璃纖維代替普通玻璃纖維造「北極星A—3」,使殼體重量較鋼制殼體輕50%,從而使「北極星A—3」導彈的射程由2700千米增加到4500千米。70年代後採用芳香聚醯胺纖維代替玻璃纖維增強環氧樹脂,強度又大幅度提高,而重量減輕。碳纖維增強環氧樹脂復合材料在飛機、導彈、衛星等結構上得到越來越廣泛的應用。

在化學工業上的應用
編輯
環氧乙烯基酯樹脂在氯鹼工業中,有著良好的應用。
氯鹼工業是玻璃鋼作耐腐材料最早應用領域之一,目玻璃鋼已成為氯鹼工業的主要材料。玻璃鋼已用於各種管道系統、氣體鼓風機、熱交換器外殼、鹽水箱以至於泵、池、地坪、牆板、格柵、把手、欄桿等建築結構上。同時,玻璃鋼也開始進入化工行業的各個領域。在造紙工業中的應用也在發展,造紙工業以木材為原料,造紙過程中需要酸、鹽、漂白劑等,對金屬有極強的腐蝕作用,唯有玻璃鋼材料能抵抗這類惡劣環境,玻璃鋼材料已、在一些國家的紙漿生產中顯現其優異的耐蝕性。
在金屬表面處理工業中的應用,則成為環氧乙烯基酯樹脂重要應用,金屬表面處理廠所使用的酸,大多為鹽酸、基本上用玻璃鋼是沒有問題的。環氧樹脂作為纖維增強復合材料進入化工防腐領域,是以環氧乙烯基酯樹脂形態出現的。它是雙酚A環氧樹脂與甲基丙烯酸通過開環加成化學反應而製成,每噸需用環氧樹脂比例達50%,這類樹脂既保留了環氧樹脂基本性能,又有不飽和聚酯樹脂良好的工藝性能,所以大量運用在化工防腐領域。
其在化工領域的防腐主要包括:化工管道、貯罐內襯層;電解槽;地坪;電除霧器及廢氣脫硫裝置;海上井架;防腐模塑格柵;閥門、三通連接件等。為了提高環氧乙烯基酯樹脂優越的耐熱性、防腐蝕性和結構強度,樹脂還不斷進行改性,如酚醛、溴化、增韌等環氧乙烯基酯樹脂等品種,大量運用於大直徑風葉、磁懸浮軌道增強網、賽車頭盔、光纜纖維牽引桿等。
樹脂基復合材料作為一種復合材料,是由兩個或兩個以上的獨立物理相,包含基體材料(樹脂)和增強材料所組成的一種固體產物。樹脂基復合材料具有如下的特點:
(1)各向異性(短切纖維復合材料等顯各向同性);
(2)不均質(或結構組織質地的不連續性);
(3)呈粘彈性行為;
(4)纖維(或樹脂)體積含量不同,材料的物理性能差異;
(5)影響質量因素多,材料性能多呈分散性。
樹脂基復合材料的整體性能並不是其組分材料性能的簡單疊加或者平均,這其中涉及到一個復合效應問題。復合效應實質上是原相材料及其所形成的界面相互作用、相互依存、相互補充的結果。它表現為樹脂基復合材料的性能在其組分材料基礎上的線性和非線性的綜合。復合效應有正有負,性能的提高總是人們所期望的,但有進材料在復合之後某些方面的性能出現抵消甚至降低的現象是不可避免的。
復合效應的表現形式多樣,大致上可分為兩種類型:混合效應和協同效應。
混合效應也稱作平均效應,是組分材料性能取長補短共同作用的結果,它是組分材料性能比較穩定的總體反映,對局部的擾動反應並敏感。協同效應與混合效應相比,則是普遍存在的且形式多樣,反映的是組分材料的各種原位特性。所謂原位特性意味著各相組分材料在復合材料中表現出來的性能並不只是其單獨存在時的性能,單獨存在時的性能不能表徵其復合後材料的性能。
樹脂基復合材料的力學性能
力學性能是材料最重要的性能。樹脂基復合材料具有比強度高、比模量大、抗疲勞性能好等優點,用於承力結構的樹脂基復合材料利用的是它的這種優良的力學性能,而利用各種物理、化學和生物功能的功能復合材料,在製造和使用過程中,也必須考慮其力學性能,以保證產品的質量和使用壽命。
1、樹脂基復合材料的剛度
樹脂基復合材料的剛度特性由組分材料的性質、增強材料的取向和所佔的體積分數決定。樹脂基復合材料的力學研究表明,對於宏觀均勻的樹脂基復合材料,彈性特性復合是一種混合效應,表現為各種形式的混合律,它是組分材料剛性在某種意義上的平均,界面缺陷對它作用不是明顯。
由於製造工藝、隨機因素的影響,在實際復合材料中不可避免地存在各種不均勻性和不連續性,殘余應力、空隙、裂紋、界面結合不完善等都會影響到材料的彈性性能。此外,纖維(粒子)的外形、規整性、分布均勻性也會影響材料的彈性性能。但總體而言,樹脂基復合材料的剛度是相材料穩定的宏觀反映。
對於樹脂基復合材料的層合結構,基於單層的不同材質和性能及鋪層的方向可出現耦合變形,使得剛度分析變得復雜。另一方面,也可以通過對單層的彈性常數(包括彈性模量和泊松比)進行設計,進而選擇鋪層方向、層數及順序對層合結構的剛度進行設計,以適應不同場合的應用要求。
2、樹脂基復合材料的強度
材料的強度首先和破壞聯系在一起。樹脂基復合材料的破壞是一個動態的過程,且破壞模式復雜。各組分性能對破壞的作用機理、各種缺陷對強度的影響,均有街於具體深入研究。
樹脂基復合材強度的復合是一種協同效應,從組分材料的性能和樹脂基復合材料本身的細觀結構導出其強度性質。對於最簡單的情形,即單向樹脂基復合材料的強度和破壞的細觀力學研究,還不夠成熟。
單向樹脂基復合材料的軸向拉、壓強度不等,軸向壓縮問題比拉伸問題復雜。其破壞機理也與拉伸不同,它伴隨有纖維在基體中的局部屈曲。實驗得知:單向樹脂基復合材料在軸向壓縮下,碳纖維是剪切破壞的;凱芙拉(Kevlar)纖維的破壞模式是扭結;玻璃纖維一般是彎曲破壞。
單向樹脂基復合材料的橫向拉伸強度和壓縮強度也不同。實驗表明,橫向壓縮強度是橫向拉伸強度的4~7倍。橫向拉伸的破壞模式是基體和界面破壞,也可能伴隨有纖維橫向拉裂;橫向壓縮的破壞是因基體破壞所致,大體沿45°斜面剪壞,有時伴隨界面破壞和纖維壓碎。單向樹脂基復合材料的面內剪切破壞是由基體和界面剪切所致,這些強度數值的估算都需依靠實驗。
雜亂短纖維增強樹脂基復合材料盡管不具備單向樹脂基復合材料軸向上的高強度,但在橫向拉、壓性能方面要比單向樹脂基復合材料好得多,在破壞機理方面具有自己的特點:編織纖維增強樹脂基復合材料在力學處理上可近似看作兩層的層合材料,但在疲勞、損傷、破壞的微觀機理上要更加復雜。
樹脂基復合材料強度性質的協同效應還表現在層合材料的層合效應及混雜復合材料的混雜效應上。在層合結構中,單層表現出來的潛在強度與單獨受力的強度不同,如0/90/0層合拉伸所得90°層的橫向強度是其單層單獨實驗所得橫向拉伸強度的2~3倍;面內剪切強度也是如此,這一現象稱為層合效應。
樹脂基復合材料強度問題的復雜性來自可能的各向異性和不規則的分布,諸如通常的環境效應,也來自上面提及的不同的破壞模式,而且同一材料在不同的條件和不同的環境下,斷裂有可能按不同的方式進行。這些包括基體和纖維(粒子)的結構的變化,例如由於局部的薄弱點、空穴、應力集中引起的效應。除此之外,界面粘結的性質和強弱、堆積的密集性、纖維的搭接、纖維末端的應力集中、裂縫增長的干擾以及塑性與彈性響應的差別等都有一定的影響。
樹脂基復合材料的物理性能
樹脂基復合材料的物理性能主要有熱學性質、電學性質、磁學性質、光學性質、摩擦性質等(見表)。對於一般的主要利用力學性質的非功能復合材料,要考慮在特定的使用條件下材料對環境的各種物理因素的響應,以及這種響應對復合材料的力學性能和綜合使用性能的影響;而對於功能性復合材料,所注重的則是通過多種材料的復合而滿足某些物理性能的要求。
樹脂基復合材料的物理性能由組分材料的性能及其復合效應所決定。要改善樹脂基復合材料的物理性能或對某些功能進行設計時,往往更傾向於應用一種或多種填料。相對而言,可作為填料的物質種類很多,可用來調節樹脂基復合材料的各種物理性能。值得注意的是,為了某種理由而在復合體系中引入某一物質時,可能會對其它的性質產生劣化作用,需要針對實際情況對引入物質的性質、含量及其與基體的相互作用進行綜合考慮。
樹脂基復合材料的化學性能
大多數的樹脂基復合材料處在大氣環境中、浸在水或海水中或埋在地下使用,有的作為各種溶劑的貯槽,在空氣、水及化學介質、光線、射線及微生物的作用下,其化學組成和結構及各種性能會發生各種變化。在許多情況下,溫度、應力狀態對這些化學反應有著重要的影響。特別是航空航天飛行器及其發動件在更為惡劣的環境下工作,要經受高溫的作用和高熱氣流的沖刷,其化學穩定性是至關重要的。
作為樹脂基復合材料的基體的聚合物,其化學分解可以按不同的方式進行,它既可通過與腐蝕性化學物質的作用而發生,又可間接通過產生應力作用而進行,這包括熱降解、輻射降解、力學降解和生物降解。聚合物基體本身是有機物質,可能被有機溶劑侵蝕、溶脹、溶解或者引起體系的應力腐蝕。所謂的應力腐蝕,是摜材料與某些有機溶劑作用在承受應力時產生過早的破壞,這樣的應力可能是在使用過程中施加上去的,也可能是鑒於製造技術的某些局限性帶來的。根據基體種類的不同,材料對各種化學物質的敏感程度不同,常見的玻璃纖維增強塑料耐強酸、鹽、酯,但不耐鹼。一般情況下,人們更注重的是水對材料性能的影響。水一般可導致樹脂基復合材料的介電強度下降,水的作用使得材料的化學鍵斷裂時產生光散射和不透明性,對力學性能也有重要影響。不上膠的或僅只熱處理過的玻璃纖維與環氧樹脂或聚酯樹脂組成的復合材料,其拉伸強度、剪切強度和彎曲強度都很明顯地受沸水影響,使用偶聯劑可明顯地降低這種損失。水及各種化學物質的影響與溫度、接觸時間有關,也與應力的大小、基體的性質及增強材料的幾何組織、性質和預處理有關,此外還與復合材料的表面的狀態有關,纖維末端暴露的材料更易受到損害。
聚合物的熱降解有多種模式和途徑,其中可能幾種模式同時進行。如可通過"拉鏈"式的解聚機理導致完全的聚合物鏈的斷裂,同時產生揮發性的低分子物質。其它的方式包括聚合物鏈的不規則斷裂產生較高分子量的產物或支鏈脫落,還有可能形成環狀的分子鏈結構。填料的存在對聚合物的降解有影響,某些金屬填料可通過催化作用加速降解,特別是在有氧存在的地方。樹脂基復合材料的著火與降解產生的揮發性物質有關,通常加入阻燃劑減少著火的危險。某些聚合物在高溫條件下可產生一層耐熱焦炭,這些聚合物與尼龍、聚酯纖維等復合後,因這些增強物本身的分解導致揮發性物質產生可帶走熱量而冷卻燒焦的聚合物,進一步提高耐熱性,同時賦予復合材料以優良的力學性能,如良好的坑震性。
許多聚合物因受紫外線輻射或其它高能輻射的作用而受到破壞,其機理是當光和射線的能量大於原子間的共價鍵能時,分子鏈發生斷裂。鉛填充的聚合物可用來防止高能輻射。紫外線輻射則一般受到更多的關注,經常使用的添加劑包括炭黑、氧化鋅和二氧化鈦,它們的作用是吸收或者反射紫外線輻射,有些無面填料可以和可見光一樣傳輸紫外線,產生熒光。
力學降解是另一種降解機理,當應力的增加頻率超過一個鍵通過平移所產生的響應能力時,就發生鍵的斷裂,由此形成的自由基還可能對下一階段的降解模式產生影響。硬質和脆性聚合物基體應變小,可進行有或者沒有鏈斷裂的脆性斷裂,而較軟但粘性高的聚合物基體大多是力學降解的。
樹脂基復合材料的工藝特點
樹脂基復合材料的成型工藝靈活,其結構和性能具有很強的可設計性。樹脂基復合材料可用模具一次成型法來製造各種構件,從而減少了零部件的數量及接頭等緊固件,並可節省原材料和工時;更為突出的是樹脂基復合材料可以通過纖維種類和不同排布的設計,把潛在的性能集中到必要的方向上,使增強材料更為有效地發揮作用。通過調節復合材料各組分的成分、結構及排列方式,既可使構件在不同方向承受不同的作用力,還可以製成兼有剛性、韌性和塑性等矛盾性能的樹脂基復合材料和多功能製品,這些是傳統材料所不具備的優點。樹脂基復合材料在工藝方面也存在缺點,比如,相對而言,大部分樹脂基復合材料製造工序較多,生產能力較低,有些工藝(如製造大中型製品的手糊工藝和噴射工藝)還存在勞動強度大、產品性能不穩定等缺點。
樹脂基復合材料的工藝直接關繫到材料的質量,是復合效應、"復合思想"能否體現出來的關鍵。原材料質量的控制、增強物質的表面處理和鋪設的均勻性、成型的溫度和壓力、後處理及模具設計的合理性都影響最終產品的性能。在成型過程中,存在著一系列物理、化學和力學的問題,需要綜合考慮。固化時在基體內部和界面上都可能產生空隙、裂紋、缺膠區和富膠區;熱應力可使基體產生或多或少的微裂紋,在許多工藝環節中也都可造成纖維和纖維束的彎曲、扭曲和折斷;有些體系若工藝條件選擇不當可使基體與增強材料之間發生不良的化學反應;在固化後的加工過程中,還可進一步引起新的纖維斷裂、界面脫粘和基體開裂等損傷。如何防止和減少缺陷和損傷,保證纖維、基體和界面發揮正常的功能是一個非常重要的問題。
樹脂基復合材料的成型有許多不同工藝方法,連續纖維增強樹脂基復合材料的材料成型一般與製品的成型同時完成,再輔以少量的切削加工和連接即成成品;隨機分布短纖維和顆粒增強塑料可先製成各種形式的預混料,然後進行擠壓、模塑成型。
組合復合效應
復合體系具有兩種或兩種以上的優越性能,稱為組合復合效應貧下中農站這樣的情況很多,許多的力學性能優異的樹脂基復合材料同時具有其它的功能性,下面列舉幾個典型的例子。
1、光學性能與力學性能的組合復合
纖維增強塑料,如玻璃纖維增強聚酯復合材料,同時具有充分的透光性和足夠的比強度,對於需要透光的建築結構製品是很有用的。
2、電性能與力學性能的組合復合
玻璃纖維增強樹脂基復合材料具有良好的力學性能,同時又是一種優良的電絕緣材料,用於製造各種儀表、電機與電器的絕緣零件,在高頻作用下仍能保持良好的介電性能,又具有電磁波穿透性,適製作雷達天線罩。聚合物基體中引入炭黑、石墨、酞花菁絡合物或金屬粉等導電填料製成的復合材料具有導電性能,同時具有高分子材料的力學性能和其它特性。
3、熱性能與力學性能的組合復合
①耐熱性能
樹脂基復合材料在某些場合的使用除力學性能外,往往需要同時具有好的耐熱性能。
②耐燒蝕性能
航空航天飛行器的工作處於嚴酷的環境中,必須有防護材料進行保護;耐燒蝕材料靠材料本身的燒蝕帶走熱量而起到防護作用。玻璃纖維、石英纖維及碳纖維增強的酚醛樹脂是成功的燒蝕材料。酚醛樹脂遇到高溫立即碳化形成耐熱性高的碳原子骨架;玻璃纖維還可部分氣化,在表面殘留下幾乎是純的二氧化硅,它具有相當高的粘結性能。兩方面的作用,使酚醛玻璃鋼具有極高的耐燒蝕性能。

2. 林森玻璃鋼拉擠工藝的主要原材料是什麼

林森來玻璃鋼拉擠型材源採用拉擠工藝生產。以玻璃纖維無捻粗紗、連續氈、縫編氈、表面氈等增強材料,採用專門的配方工藝與不飽和聚酯樹脂、乙烯基樹脂、酚醛樹脂等基體材料經高溫加熱連續成型的等截面纖維增強塑料製品。

3. 碳纖維復合材料是塑性材料還是脆性的

碳纖維復合材料

碳纖維與樹脂、金屬、陶瓷等基體復合,製成的結構材料簡稱碳纖維復合材料。

概況

在復合材料大家族中,纖維增強材料一直是人們關注的焦點。自玻璃纖維與有機樹脂復合的玻璃鋼問世以來,碳纖維、陶瓷纖維以及硼纖維增強的復合材料相繼研製成功,性能不斷得到改進,使其復合材料領域呈現出一派勃勃生機。下面讓我們來了解一下別具特色的碳纖維復合材料。

結構

碳纖維主要是由碳元素組成的一種特種纖維,其含碳量隨種類不同而異,一般在90%以上。碳纖維具有一般碳素材料的特性,如耐高溫、耐摩擦、導電、導熱及耐腐蝕等,但與一般碳素材料不同的是,其外形有顯著的各向異性、柔軟、可加工成各種織物,沿纖維軸方向表現出很高的強度。碳纖維比重小,因此有很高的比強度。

碳纖維是由含碳量較高,在熱處理過程中不熔融的人造化學纖維,經熱穩定氧化處理、碳化處理及石墨化等工藝製成的。

碳纖維是一種力學性能優異的新材料,它的比重不到鋼的1/4,碳纖維樹脂復合材料抗拉強度一般都在3500Mpa以上,是鋼的7~9倍,抗拉彈性模量為23000~43000Mpa亦高於鋼。因此CFRP的比強度即材料的強度與其密度之比可達到2000Mpa/(g/cm3)以上,而A3鋼的比強度僅為59Mpa/(g/cm3)左右,其比模量也比鋼高。

用途

碳纖維的主要用途是與樹脂、金屬、陶瓷等基體復合,製成結構材料。碳纖維增強環氧樹脂復合材料,其比強度、比模量綜合指標,在現有結構材料中是最高的。在密度、剛度、重量、疲勞特性等有嚴格要求的領域,在要求高溫、化學穩定性高的場合,碳纖維復合材料都頗具優勢。

碳纖維是50年代初應火箭、宇航及航空等尖端科學技術的需要而產生的,現在還廣泛應用於體育器械、紡織、化工機械及醫學領域。隨著尖端技術對新材料技術性能的要求日益苛刻,促使科技工作者不斷努力提高。80年代初期,高性能及超高性能的碳纖維相繼出現,這在技術上是又一次飛躍,同時也標志著碳纖維的研究和生產已進入一個高級階段。

由碳纖維和環氧樹脂結合而成的復合材料,由於其比重小、剛性好和強度高而成為一種先進的航空航天材料。因為航天飛行器的重量每減少1公斤,就可使運載火箭減輕500公斤。所以,在航空航天工業中爭相採用先進復合材料。有一種垂直起落戰斗機,它所用的碳纖維復合材料已佔全機重量的1/4,占機翼重量的1/3。據報道,美國太空梭上3隻火箭推進器的關鍵部件以及先進的MX導彈發射管等,都是用先進的碳纖維復合材料製成的。

現在的F1(世界一級方程錦標賽)賽車,車身大部分結構都用碳纖維材料。頂級跑車的一大賣點也是周身使用碳纖維,用以提高氣動性和結構強度

碳纖維可加工成織物、氈、席、帶、紙及其他材料。傳統使用中碳纖維除用作絕熱保溫材料外,一般不單獨使用,多作為增強材料加入到樹脂、金屬、陶瓷、混凝土等材料中,構成復合材料。碳纖維增強的復合材料可用作飛機結構材料、電磁屏蔽除電材料、人工韌帶等身體代用材料以及用於製造火箭外殼、機動船、工業機器人、汽車板簧和驅動軸等。

優勢

1、高強度(是鋼鐵的5倍)

2、出色的耐熱性(可以耐受2000℃以上的高溫)

3、出色的抗熱沖擊性

4、低熱膨脹系數(變形量小)

5、熱容量小(節能)

6、比重小(鋼的1/5)

7、優秀的抗腐蝕與輻射性能

4. 不飽和樹脂是什麼

由二元酸與二元醇縮聚而成的含不飽和二元酸或二元醇的線型高分子化合物溶解於單體中而形成的黏稠液體。

5. 樹脂的主要用途是什麼該行業發展前景怎麼樣

復合材料的主要應用領域有:①航空航天領域。由於復合材料熱穩定性好,比強度、比剛度高,可用於製造飛機機翼和前機身、衛星天線及其支撐結構、太陽能電池翼和外殼、大型運載火箭的殼體、發動機殼體、太空梭結構件等。②汽車工業。由於復合材料具有特殊的振動阻尼特性,可減振和降低雜訊、抗疲勞性能好,損傷後易修理,便於整體成形,故可用於製造汽車車身、受力構件、傳動軸、發動機架及其內部構件。③化工、紡織和機械製造領域。有良好耐蝕性的碳纖維與樹脂基體復合而成的材料,可用於製造化工設備、紡織機、造紙機、復印機、高速機床、精密儀器等。④醫學領域。碳纖維復合材料具有優異的力學性能和不吸收X射線特性,可用於製造醫用X光機和矯形支架等。碳纖維復合材料還具有生物組織相容性和血液相容性,生物環境下穩定性好,也用作生物醫學材料。此外,復合材料還用於製造體育運動器件和用作建築材料等。
熱固性樹脂基復合材料
熱固性樹脂基復合材料是指以熱固性樹脂如不飽和聚酯樹脂、環氧樹脂、酚醛樹脂、乙烯基酯樹脂等為基體,以玻璃纖維、碳纖維、芳綸纖維、超高分子量聚乙烯纖維等為增強材料製成的復合材料。環氧樹脂的特點是具有優良的化學穩定性、電絕緣性、耐腐蝕性、良好的粘接性能和較高的機械強度,廣泛應用於化工、輕工、機械、電子、水利、交通、汽車、家電和宇航等各個領域。其特點是耐腐蝕性好,耐溶劑性好,機械強度高,延伸率大,與金屬、塑料、混凝土等材料的粘結性能好,耐疲勞性能好,電性能佳,耐熱老化,固化收縮率低,可常溫固化也可加熱固化。
產品主要用於建築、防腐、輕工、交通運輸、造船等工業領域。在建築方面,有內外牆板、透明瓦、冷卻塔、空調罩、風機、玻璃鋼水箱、衛生潔具、凈化槽等;在石油化工方面,主要用於管道及貯罐;在交通運輸方面,汽車上主要有車身、引擎蓋、保險杠等配件,火車上有車廂板、門窗、座椅等,船艇方面主要有氣墊船、救生艇、偵察艇、漁船等;在機械及電器領域如屋頂風機、軸流風機、電纜橋架、絕緣棒、集成電路板等產品都具有相當的規模;在航空航天及軍事領域,輕型飛機、尾翼、衛星天線、火箭噴管、防彈板、防彈衣、魚雷等都取得了重大突破。
熱塑性樹脂基復合材料
熱塑性樹脂基復合材料是20世紀80年代發展起來的,主要有長纖維增強粒料(LFP)、連續纖維增強預浸帶(MITT)和玻璃纖維氈增強型熱塑性復合材料(GMT)。根據使用要求不同,樹脂基體主要有PP、PE、PA、PBT、PEI、PC、PES、PEEK、PI、PAI等熱塑性工程塑料,纖維種類包括玻璃纖維、碳纖維、芳綸纖維和硼纖維等一切可能的纖維品種。隨著熱塑性樹脂基復合材料技術的不斷成熟以及可回收利用的優勢,該品種的復合材料發展較快,歐美發達國家熱塑性樹脂基復合材料已經佔到樹脂基復合材料總量的30%以上。
高性能熱塑性樹脂基復合材料以注射件居多,基體以PP、PA為主。產品有管件(彎頭、三通、法蘭)、閥門、葉輪、軸承、電器及汽車零件、擠出成型管道、GMT模壓製品(如吉普車座椅支架)、汽車踏板、座椅等。玻璃纖維增強聚丙烯在汽車中的應用包括通風和供暖系統、空氣過濾器外殼、變速箱蓋、座椅架、擋泥板墊片、傳動皮帶保護罩等。
滑石粉填充的PP具有高剛性、高強度、極好的耐熱老化性能及耐寒性。滑石粉增強PP在車內裝飾方面有著重要的應用,如用作通風系統零部件,儀表盤和自動剎車控制杠等。
雲母復合材料具有高剛性、高熱變形溫度、低收縮率、低撓曲性、尺寸穩定以及低密度、低價格等特點,利用雲母/聚丙烯復合材料可製作汽車儀表盤、前燈保護圈、擋板罩、車門護欄、電機風扇、百葉窗等部件,利用該材料的阻尼性可製作音響零件,利用其屏蔽性可製作蓄電池箱等。
BR-106,BR-113,BR-116,MB-2952,MB-2660,MB-3015塗膜特性:高光澤,外觀華美,超凡的耐候性,卓越的耐污染性,高硬度,優異的耐溶劑性,卓越的耐化學品性,優異的耐蒸煮性,卓越的柔韌性對基材卓越的附著性,卓越的熱分解性。
塗料特性:低VOC,卓越的顏料分散性,速乾性,超凡的塗裝性,低氣味,良好的弱溶劑可溶性。
BR-106特性:具有良好硬度及附著力,與其它樹脂相容性好,耐候性強。
丙烯酸樹脂BR-106應用:金屬漆、塑料漆、木器漆、船舶漆、集裝箱漆、交通用漆、建築等。
用途:汽車車身表面的塗層,各種塗料用,塑料塗料用(ABS,PS,PP等),聚氯乙稀鋼板底塗裝,夾層鋼板用,塑料家電,PP塑料製品,車輪,ABS共聚物用,尼龍和諾里爾用,金屬,鍍鋅鐵,鋁的塗料,木工用,罐鋅外面的表面塗層,粘著劑等。
BR-116主要用在粘合劑、汽車車身表面的塗層,各種塗料用,塑料塗料用(ABS,PS,PP等),聚氯乙稀鋼板底塗裝,夾層鋼板用,塑料家電,PP塑料製品,車輪,ABS共聚物用,尼龍和諾里爾用,金屬,鍍鋅鐵,鋁的塗料,木工用,罐鋅外面的表面塗層,粘著劑等。
三菱丙烯酸樹脂BR-116適用於混凝土封閉漆和氣溶膠、塑膠漆、船舶漆及汽車漆,等等。
BR-113適用於塑料油漆與木材塗料。
用途:汽車車身表面的塗層,各種塗料用,塑料塗料用(ABS,PS,PP等),聚氯乙稀鋼板底塗裝,夾層鋼板用,塑料家電,PP塑料製品,車輪,ABS共聚物用,尼龍和諾里爾用,金屬,鍍鋅鐵,鋁的塗料,木工用,罐鋅外面的表面塗層,粘著劑等
MB-2952為BR-113的硬度和耐酒精性改良產品推薦應用:適用於混凝土封閉漆和氣溶膠、塑膠漆、船舶漆及汽車漆,等等。
MB-9252塑膠塗料、紙品塗料、金屬塗料、油墨等
用途:汽車車身表面的塗層,各種塗料用,塑料塗料用(ABS,PS,PP等),聚氯乙稀鋼板底塗裝,夾層鋼板用,塑料家電,PP塑料製品,車輪,ABS共聚物用,尼龍和諾里爾用,金屬,鍍鋅鐵,鋁的塗料,木工用,罐鋅外面的表面塗層,粘著劑等
MB-2660具有良好硬度及附著力,與其它樹脂相容性好,耐候性強. 用於塑膠漆上的熱塑性丙烯酸樹脂,帶有強抗耐酒精性適用於PS和ABS底層上。
MB-2660適用於溶劑型油墨,包括金銀卡紙油墨、煙包墨;金屬油漆、塑料塗料、木材塗料,也適合用於海運船舶油漆、容器油漆、交通標志油漆以及建築塗料等。
MB3015主要用於塑膠漆上的熱塑性丙烯酸樹脂,抗耐酒精性,抗刮性優良,是MB2952的提升型號 適用於PS和ABS底層上。
日本三菱熱塑性丙烯酸樹脂:BR-113,BR-106,BR-116,BR-73, BR-85,MB-2952,MB-2660,MB-7143 ,BR-77

6. 塑料的特性有哪些

塑料的特性有:來

1、大多數塑料自質輕,化學性穩定,不會銹蝕;

2、耐沖擊性好;

3、具有較好的透明性和耐磨耗性;

4、絕緣性好,導熱性低;

5、一般成型性、著色性好,加工成本低;

6、大部分塑料耐熱性差,熱膨脹率大,易燃燒;

7、尺寸穩定性差,容易變形。

(6)樹脂鋼比強度擴展閱讀:

塑料的應用:

1、工業:塑料廣泛用於電工電子行業,製造絕緣材料和包裝材料;

2、機械工業中用塑料製造齒輪。軸瓦和許多零件代替金屬;

3、化工用塑料容器等防腐材料;

4、在建築行業中用作門窗、樓梯扶手、地磚、天花板、保溫板、落水管、裝飾板和衛生潔具等。

5、國防工業:塑料是常規武器、飛機、船隻、火箭、導彈、人造衛星和其他領域的重要材料。

7. 碳纖維和環氧樹脂組成的復合材料的比強度和比模量會不會優於鋼

碳纖維復合材料的強度和模量會比鋼高出很多,悍馬的碳纖維布在加固中用的比較多。回
碳纖維復合材料答優點如下:
1、本身自重輕,厚度小,因而加固後幾乎不增加質量和體積;
2、具有良好的柔韌性,適用於梁、柱、板、管道和牆體等各種形狀的構件;
3、耐酸、鹼、物理腐蝕,適用各種不同環境;
4、施工便捷,周期短。

8. 玻璃鋼製品的特點類型

歐升玻璃鋼製品是指以玻璃鋼為原料加工而成的成品。具有質輕、高強、防腐回、保溫、絕緣答、隔音等諸多優點。 由於其強度相當於鋼材,又含有玻璃成分,也具有玻璃那樣的色澤、形體、耐腐蝕、電絕緣、隔熱等性能,廣泛用於酸、鹼、鹽、溶劑等工作環境中,表現出良好的 耐腐蝕性能。
常見的玻璃鋼製品有玻璃鋼儲罐,玻璃鋼閥門,玻璃鋼水槽,玻璃鋼水箱,玻璃鋼天線罩,玻璃鋼蓋板等等,應用很廣泛的。

9. 玻璃鋼儲罐的製作流程是什麼

製作工藝如下:
1、內村的制備
內襯兼有骨架與氣密作用,是成品的一部分。設計內襯時要注意有足夠的強度與剛度。內村層的厚度大於3mm(見表1),樹脂含量大於80%,採用耐腐蝕性良好的表面氈、短切氈和布經手糊製作即可。其製作工藝流程大體如下:罐體封頭模具製作→模具→手糊玻璃纖維製品→固化後脫模→膠接管口→膠接封頭→空太試驗→打磨、修補→合格內襯.對於內襯的成型,採用兩段式即封尾與簡體一體式和封頭兩段連接。這樣比封尾、簡體、封頭三段組合式更易制出合格內襯又能提高生產率。製作合格內襯的關鍵是封頭與筒體的連接。封頭與筒體宜採用承插膠接,因為承插膠接接頭具有接頭處強度高、承受內壓性能好、不易滲漏、裝配方便等優點。只要承插結構合理,使用後一般不會滲漏。承括膠接接頭依賴於樹脂膠泥和外包玻璃鋼增強層防滲。其中膠泥塗在承口和插口之間,起著第一道防線作用。它由樹脂加填料配製而成,樹脂起著粘接與防滲作用。要求其具有良好的韌性和較高的粘接力,因此應多採用環氧樹脂作為膠泥。在第一道防線破壞後,防滲主要依靠外包玻璃鋼增強層。該層由玻璃纖維製品和樹脂組成。其中玻璃纖維製品如氈和布的纖維間有空隙,不能防滲,只能起增強作用。樹脂則充滿纖維間空隙,粘接纖維並使其成為一整體,因而防滲作用主要由樹脂承擔。為了形成能夠防滲的緻密性玻璃鋼內襯,本文採用與簡體內襯相同的樹脂作為接頭處的防滲層,增強層則採用與罐體纏繞層同樣的樹脂。在採用環氧類樹脂中加入適量的增韌劑和溶劑,以降低其粘度和提高玻璃鋼韌性。此外,在封頭與罐體接合前,應清洗干凈接頭處,包括承口、插口及包覆玻璃鋼處,擦乾後進行打磨至毛糙。在刮塗膠泥和包覆前,應先用棉紗頭沾丙酮擦洗作業表面。一方面是清除玻璃鋼內襯表面的油脂和石蠟等,另一方面可活化玻璃鋼表面,以利於提高粘接強度。打磨時要注意不可遺漏。表面處理的好壞關繫到玻璃鋼層與罐體的粘接效果。處理不善往往會產生分展開裂,從而引起滲漏,因此一定要多加研究此處的工藝。
在製作內村時,樹脂應均勻噴塗且將表面氈和短切氈浸透,並不斷趕壓氣泡,在工藝上確保內襯無纖維外露、干斑、裂紋等表面麻點。如果不慎,鋪設的氈或布易出現打皺,因此鋪設時應注意保持其平整性。
2、罐的成型
為增加罐的強度及剛度和提高罐的表面性能,必須在合格的內襯表面纏繞縱環向纖維。纏繞層的厚度以內壓設計為基準,由直徑、壓力和安全系數等計算確定。
使用計算機控制的纏繞機完成此工序必會增大中小企業對該項目的投資額,從而限制了該項目的推廣。為此,本文專門研製了纏繞此類產品的機械式纖維纏繞機,成功地解決了普通纖維纏繞機纏繞此類產品時纏不到罐口根部的問題,滿足了用戶對設備的質優價廉的要求。在纏繞時,要施加張力並予以控制,目的是控制含膠量,使紗束均勻排列,排出紗束中的空氣,以減少空隙。纏繞結束後,颳去罐體表面的多餘浮膠,進行固化。

10. 碳纖維增強樹脂基復合材料有哪些性能

碳纖維增強樹脂基復合材料rarhnn fiber reinforced resin matrix composite以碳纖維及其製品增強的樹脂基復合材 料。
這種復合材料比專強度和模量高,其,卜屬比模量是芳綸增強 復台材料的2倍,是玻璃纖維增強復合材料的4一5佑,抗蠕 變性能也優於這二者,耐疲勞性能優良,摩擦系數和磨損率 低,具有自潤滑性;耐熱性能取決於樹脂,如酚醛樹脂可耐 2}nr ,聚酞亞胺可耐31D},;導熱、導電性能良好;熱膨脹系 數小,耐化學腐蝕性能優良。缺點是層間剪切強度和沖擊強 度低,價格昂貴。主要成型工藝有接觸成型(手糊)、纏繞成 型、低壓(袋壓、熱壓罐)成型及層壓和模壓成型等。主要應用 十航空航大工業中作主、次及非承力結構材料,如機翼、副翼、 尾翼、噴管、火箭殼體等,少量用於某些醫療器械、體育用品及 自潤滑耐磨機械零件,如齒輪、軸承等。

熱點內容
丁度巴拉斯情人電影推薦 發布:2024-08-19 09:13:07 瀏覽:886
類似深水的露點電影 發布:2024-08-19 09:10:12 瀏覽:80
《消失的眼角膜》2電影 發布:2024-08-19 08:34:43 瀏覽:878
私人影院什麼電影好看 發布:2024-08-19 08:33:32 瀏覽:593
干 B 發布:2024-08-19 08:30:21 瀏覽:910
夜晚看片網站 發布:2024-08-19 08:20:59 瀏覽:440
台灣男同電影《越界》 發布:2024-08-19 08:04:35 瀏覽:290
看電影選座位追女孩 發布:2024-08-19 07:54:42 瀏覽:975
日本a級愛情 發布:2024-08-19 07:30:38 瀏覽:832
生活中的瑪麗類似電影 發布:2024-08-19 07:26:46 瀏覽:239