模擬印染廢水
『壹』 印染污水處理最佳處理方法
由於印染廢水的多變性,生物法處理效果有時還不能達到十分滿意的效果。
因此,開發適應能力強的菌種,提高生物法的處理效果,並使廢水經過處理後達到回用的要求,將是今後生物法研究的主要目標。
新型的生物制劑有以下幾種:
(1)酶制劑:利用生物酶制劑處理廢水、凈化環境比其他生物法效率高、速度快、出水好,不產生二次污染。用於處理印染廢水的酶有漆酶、木質素過氧化物酶、嗜鹼酶等。
在木質素等過氧化物酶存在的條件下,漆酶的色度去除率可提高到75%。
(2)廢水脫色微生物制劑:將污水處理廠活性污泥中的微生物進行分離純化,來提取對染料脫色效果好的微生物,並進行培養。活性污泥中微生物種類較豐富,包含有細菌、真菌、微型動物等不同門類的生物物種,活性污泥中的微生物形成一個生態系統,在這個系統中以自養型微生物為主。
細菌吸食環境十的有機物,而細菌又會成為某些原士動物或後兒動物的食餌,原生動物之叫還有互相捕食,不同的後生動物也可能處在不同的營養層次上多種類的微牛物形成一個復雜的食物網。
中同科學院微生物研究所分離出的5種高效細菌對酸性紅B2GL、酸性媒介棕RH、酸性媒介藍B和酸性媒介黃GG等染料具有脫色降解能力,在細菌隔膜接種厭氧菌或好氧菌種系統中,處理模擬染色廢水,脫色率能達到85%以上。
中國科學院微生物所和中國紡織工業設計院等單位分離出數百株脫色菌,將脫色鹵和PVA降解菌投加到廢水處理池中,脫色率達80%,PVA去除率達75%一90%,遠高於普通。
(3)士物絮凝劑:與無機和有機合成高分子絮凝劑相比,生物絮凝劑具有許多獨特的性質和優點:
①易於固液分離,形成沉澱物少;
②易被土物降解,無毒無害,安全性高;
③無二次污染;
④適應范圍廣;
⑤具有除濁和脫色性能等;
⑥有的生物絮凝劑還具有不受pH值條件影響,熱穩定性強,用量少等特點。
人們預見生物絮凝劑絮凝活性的廣性將使徹底消除污染成為現實,它大部分或全部取代合成高分子絮凝劑址大勢所趨。
現在用於處理印染廢水的生物絮凝劑有PFIOI(用於處理含羧甲基纖維素的退漿廢水)、MF一3和NA7(用於染液脫色)和NOC一1(可消除污泥膨脹。恢復活性污泥的沉降性能)。
『貳』 染料廢水處理設計方案
染料品種數以萬計,印染加工過程中約有10%~20%的染料隨廢水排出,每排放1t染料廢水,就會污染水體。廢水中的染料能吸收光線,降低水體透明度,造成視覺上的污染。染料廢水是難處理的工業廢水之一,具有色度深、鹼性大、有機污染物含量高和水質變化大的特點。大多數染料為有毒難降解有機物,化學穩定性強,具有致癌、致畸、致突變作用;直接危害人類健康,還嚴重破壞水體、土壤及生態環境,造成難以想像的後果。有效解決染料廢水治理問題是消除印染行業發展瓶頸的關鍵所在。
1 、染料廢水及其污染
染料工業污染中尤以染料廢水的污染問題最為突出。近些年來,我國每年污水排放量達390多億噸,其中工業污水佔51%,而染料廢水又占總工業廢水排放量的35%,而且還以1%的速度在逐年增加。每排放1t染料廢水,就能造成20t水體的污染。各行業中,印染紡織業的COD排放量排在第4位,而且排放比重還在逐年增加。「三河三湖」中,染料廢水對太湖、淮河流域造成的污染狀況尤其嚴重。
染料廢水主要來自於染料及染料中間體的生產企業,由染整過程中排放出的染料、漿料、助劑等組成。隨著印染工業的迅猛發展,染料廢水已成為水體中幾種最主要的污染源之一。目前世界染料年產量約為(8~9)x105t。我國是紡織品生產和加工大國,紡織品出口額已多年來列居世界首位,每年的染料生產量達1.5×105 t,其中大約10%~15%的染料會直接隨廢水排入水體中。
染料廢水色度高、水量大、鹼性大、組成成分復雜,屬於比較難處理的工業廢水之。染料是染料廢水中的主要污染物,帶有各類顯色基團(如-N=N-,-N=O等)和部分極性基團(-SO3Na,-OH,-NH2),成分復雜,大多數是以芳烴和雜環為母體,屬較難降解的有機污染物,也是我國各大水域的重要污染源。
大多數有機染料化學穩定性強,具有三致(致癌、致畸、致突變)作用,是典型有毒難降解有機污染物。此外,廢水中的染料能吸收光線,降低水體的透明度,對水生生物、微生物的生長不利,並且降低了水體的自凈能力,同時導致視覺污染,嚴重破壞水體、土壤及生態環境,直接和間接地危害人類身體健康。
2、 染料廢水的處理方法
對染料行之有效的降解和處理技術是治理染料廢水的重要前提。針對大多數染料化學性質穩定、難以降解的特點,各國科學家都高度重視染料及染料廢水的降解和處理方法的研究。隨著科技進步以及污染治理技術的不斷發展,人類也找到了很多行之有效的處理染料廢水的方法,概括起來不外乎物化法、生物法、物化一生物聯合法。
2.1 物化法
2.1.1 混凝沉降法
混凝沉降法是目前處理染料廢水效果比較穩定、工藝較為成熟的方法。普遍接受的機理有橋聯作用、壓縮雙層、網捕和電中和作用。混凝劑自身特性決定了其沉降性能的好壞,很多環境因素包括溫度、pH和Eh等則可能對沉降功能起促進或抑製作用。近年來,IPF(無機高分子絮凝劑)成為研究混凝絮凝行為和機理的熱點。與普通的混凝劑相比,IPF能形成更多的有效絮凝的形態A13+。混凝法的主要研究方向是開發有效混凝劑,尤其是有機一無機復合混凝劑。
張凱松等人副研製的無機一有機復合混凝劑,對染料廢水的處理效果比聚合氯化鋁(PAC)更為明顯。吳敦虎等人¨列對利用硼泥復合混凝劑處理染料污水的研究結果表明:當劑量為0.3~0.6 g/L,pH值為4.0~11.5時,脫色率達到92%以上,優於PAC。
2.1.2膜分離法
膜分離技術具有工藝簡單、低能耗、不對環境產生污染的優勢。通過自行研製醋酸纖維素(CA)納米濾膜,郭明遠等人指出:CA納濾膜對活性染料廢水的處理和回收染料效果明顯。摻入活性炭填充共混的改性殼聚糖超濾膜,適當交聯後對酸性紅染料廢水的最大脫色截留率達98.8%。馮冰凌等人採用殼聚糖超濾膜處理染料廢水,脫色率超過95%,COD去除率達80%左右。吳開芬u引利用超濾法對靛藍染料的廢水進行處理,可實現染料的高濃度溶液的直接回用,透過液則可作為中性水被再循環利用。Soma等人mo利用氧化鋁微濾膜,對不溶性染料廢水進行過濾時的截留率高達98%。
由於膜污染、濃差極化和過快的更換頻率,加之膜的價格較貴,使得膜分離技術處理染料廢水的成本過高,大大限制了膜分離技術在染料廢水治理行業的應用和推廣。
2.1.3催化氧化法
催化氧化法是通過催化作用加快體系中氧化劑的分解,並使之與水中有機物迅速反應,在較短的時間內致使有機污染物氧化降解。針對採用高級化學氧化法和好氧生物處理法處理分散染料廢水時效果不太理想這一問題,周建等人採用催化氧化法對內電解處理後不能達標的染料廢水進行處理,不僅日處理蒽醌系列分散染料達2500t,還降低了內電解處理後未達標染料廢水的色度和COD值,大大減少了運行費用。ArslanLt引採用Fe2+催化臭氧氧化法對分散染料廢水進行處理,研究結論指出,單獨採用臭氧(應用劑量為2300 mg/L)氧化法時,只在pH=3的條件下有一定的降解效果,脫色率也只有77%,COD的去除率僅為ll%;但採用Fe2+絮凝、臭氧氧化和Fe2+催化臭氧氧化相結合的方法處理時,Fe「使用劑量為0.09~18 mmol/L、染料廢水pH值為3—13的范圍內,脫色率達到了97%,對COD的去除率也提高到54%。
2.1.4 Fenton試劑法
以Fe3+或Fe2+為催化劑,在H202存在時產生的強氧化性,能使許多有機分子氧化,而且反應體系不需要高溫高壓,反應條件不苛刻,反應設備也比較簡單,適用范圍較廣。陳文松等人利用低劑量Fenton氧化一混凝法處理模擬和實際染料廢水的研究結論指出,該方法對處理同時含有親水性和疏水性染料、成分復雜的染料廢水特別適合,而且操作方便、運行成本不高。近年來一些學者把紫外光(uV)、草酸鹽等也引入Fenton法中,使得Fenton法的氧化能力大大提高,處理效果也更加顯著。K.Swaminathan等人心川就光助Fenton體系對偶氮染料活性橙-4進行了脫色研究,其研究結論指出,光助Fenton體系降解能力遠強於一般Fenton體系。
Fenton法的不足之處在於:氧化能力相對較弱,出水因含大量鐵離子而顯色。近年來,鐵離子的固定化技術,成為Fenton氧化法的重要方向。
2.1.5 光氧化法
光氧化法是利用光化學反應降解污染物,包括無催化劑和有催化劑參與2種,前者也稱光化學氧化,後者又稱光催化氧化。光降解通常是指有機物在光的作用下,逐步氧化成低分子中間產物,最終生成CO2、H20和其他一些離子,如PO43-、NO3-、Cl-等。有機物的光降解過程可分為直接光降解和間接光降解。直接光降解是指有機物分子吸收光能後進一步發生化學反應。間接光降解則是周圍環境存在的某些物質吸收光能形成激發態後,再誘導有機污染物產生一系列的氧化降解反應,它在處理環境中難生物降解的有機污染物時更為有效。
2.1.6臭氧氧化法
臭氧的氧化能力極強,除分散染料外,它能夠破壞有機染料的發色或助色基團而具有一定的脫色作用。H.Y.Shu等人對8種偶氮染料在單獨O3,氧化和UV/O3氧化作用下的降解進行了比較,研究結果表明,可能是因為染料廢水色度過深,吸收了大部分紫外光,引入UV後有機染料的降解速度並沒有明顯加快。史惠祥等人口刮利用臭氧降解偶氮染料陽離子紅x-GRL的研究結論中指出,臭氧對染料的脫色以直接氧化為主。
由於臭氧在水中的溶解度較低,如何更有效地提高臭氧在水溶液中的溶解量,已成為研究臭氧氧化技術的熱點和關鍵。此外,臭氧的使用會產生一些副產品,尤其要重視的是羰基化合物中的甲醛、乙醛等醛類,因這類物質具有急性和慢性毒性和一定的致癌、致畸、致突變性,容易導致二次污染,另外,臭氧發生器的成本相對較高,因此單獨使用不夠經濟。
2.1.7 超聲氧化法
隨著超聲化學的研究深入,超聲氧化法被認為是一種清潔且具良好應用前景的方法,成為處理水污染的一項有效技術。超聲波作用下產生的聲空化效應形成的高溫高壓促使空化氣泡內部的水蒸汽與其他氣體發生離解產生自由基,引發超聲化學反應的進行。N.Ince等人對pH和染料分子結構對超聲降解效率的影響研究表明:pH對染料的降解有重要影響,降解程度隨pH的減小而增加;分子質量越小,結構越簡單,且具有偶氮基臨位羥基取代基的染料分子越易被降解。G.Tezcanli—Gtiyer等人剛發現羥基自由基首先進攻染料的發色基團,染料的脫色過程快於芳香環的破壞過程。J.Ge等人研究也指出,引入超聲能有效加快染料的降解,並提高礦化速率。
2.1.8 電化學法
電化學處理技術近年來進展很快,原基礎上增加了氧化、光催化氧化或催化氧化的協同作用,微電解技術的局限性問題得到了較好地解決。周光元等人處理含鹽染料廢水的研究表明,處理過程中余氯的產生對脫色和去除COD起關鍵作用,電解l h後,脫色率可達85%,COD的去除率也達到99.8%。章婷曦等人採用內電解-催化氧化-氧化塘法處理染料廢水時COD的去除率和脫色率都超過95%。祁夢蘭等人採用微電解一催化氧化一飛灰吸附的組合工藝處理活性染料廢水脫色率達99.9%,COD去除率在95%以上。
目前,電化學方法主要應用在去除具有生物毒性的有機污染化合物方面,這種方法最具吸引性的一大特點是能發揮電化學方法所特有的電催化性能,可以有選擇性地將有機污染物降解到某一特定程度。此外,電化學方法與其他處理方法有較好的協同性,可實現聯用,達到理想的處理效果。但是,利用電化學法徹底降解水中的有機污染物設備投入過高,而且需要消耗大量能源。
2.2 生物法
生物處理法是通過生物菌體的絮凝、吸附功能和生物降解作用,對染料進行分離和氧化降解。生物絮凝和生物吸附並不使染料發生化學變化。而生物降解過程則是利用微生物酶等的作用對染料分子進行氧化或還原,破壞染料的發色基團和不飽和鍵,並通過一系列氧化、還原、水解、化合等過程,將染料分子最終降解成為簡單的無機物,或轉化成各種微生物自身需要的營養物或原生質。生物處理法有好氧處理、厭氧處理和厭氧-好氧聯合處理3種。
針對傳統的生物處理法對紡織、染料廢水中的有機染料不能起到有效的處理作用這一實際情況,一些學者近些年來著力研究開發厭氧一好氧聯用技術,並取得了意想不到的效果。一些研究表明,同時應用好氧法和厭氧法,通過實現優勢互補,很多好氧生物法不能氧化降解或降解程度有限的有機染料,通過厭氧法都能實現不同程度的降解。
作為實用的水污染處理技術之一,微生物處理染料廢水的開發和研究已有多年的歷史。微生物脫色降解機理非常復雜多樣,很多降解過程和反應機制還很不清楚,有待不斷探討。
由於對各種有毒有害的、難以降解的、在環境中宿存的異生物質具有低耗、高效、廣譜、適用性強的生物降解作用,以黃孢原毛平革菌為代表的白腐真菌成為治理多種污染物的有效武器,近些年來發展起來的真菌技術被很多學者稱之為創新環境生物技術。可能是由於其在次生代謝階段產生的木質素過氧化酶和錳過氧化酶的作用,許多白腐真菌對染料有廣譜的脫色和降解能力。培養條件對白腐真菌脫色及降解活性有較大的影響。Conneely等人認為,白腐真菌對一些染料廢水,如Rem.azol綠藍G133、酞菁染料、Everzol綠藍和Heli.gon藍等生物吸附作用較強,並通過胞外酶的代謝作用使染料脫色降解。
利用微生物對染料廢水進行處理的發展方向之一是選育和培養高效降解工程菌。微生物對有機染料的脫色、降解,以前多集中在兼性厭氧菌,如芽孢桿菌、假單胞菌和一些光合細菌,近年來逐漸篩選到了不少新品種。一些學者採用假單胞菌屬對多種印染工業廢水進行處理,研究結果表明,食油假單胞菌對其中的甲基橙、B15染料的脫色率都能達到80%以上,並且在高濃度染料環境中,食油假單胞菌表現出很強的耐受性。
20世紀80年代初,固定化微生物技術成為國內外有機工業廢水處理的研究熱點。這種技術是將可降解染料的微生物固定在特定載體的表面,提高微生物降解效率。用於固定化的微生物有單一和混合等多種方式。相關研究指出,混合菌脫色降解作用更好。隨著固定化脫色菌載體技術的發展,脫色降解反應時問也在大大縮短。
生物強化技術是在生物處理體系中投加具有特定功能的微生物來改善原有處理體系的處理性能,用於對難降解有機物的去除。實施生物強化技術的途徑主要有:投加高效降解的微生物;投加遺傳工程菌(GEM);對現有處理體系的營養供給進行優化,通過添加基質或底物類似物質,來刺激微生物的生長或提高其活力。
膜生物反應器也是近些年來發展起來的一種新型污水處理技術。最早應用於發酵工業,20世紀80年代,膜生物反應器技術引起了學術界高度重視。膜技術能截流生物體,減少出水中所含的生物。通過無泡鼓氣、膜生物反應器使氧的利用最大化。近年來,膜生物反應器已成功地應用於處理水道污水、糞便污水和垃圾滲濾液,並開始應用於處理染料廢水。很多學者認為,含酶膜生物反應器將是未來處理染料廢水的重要方向。由於膜製造費用高且易堵塞,膜生物反應器技術在水處理領域全面推廣還受到了一定限制。
盡管生物法得到了很大發展,但隨著染料廢水的可生化度降低,受到微生物對營養物質、pH值、溫度等條件有苛刻要求的限制,在實際應用處理染料廢水時,生物法很難適應染料廢水水質波動大、染料種類多、毒性高的實際狀況。如微生物的高效化及固定化等生物強化技術。許多專家和學者都致力於高效降解菌的篩選和基因工程菌的構建等研究工作,實現利用大自然現有的豐富資源來為人類服務,但是實踐表明,新開發的高效菌應用於染料廢水的處理時,並不一定能夠完全達到預期的強化作用。此外,微生物本身還存在著安全性問題,高效菌與基因工程菌流落到自然環境中,可能對自然環境和生態平衡造成威脅,因而,這些生物方法的應用必須事先經過嚴格的環境安全性檢查和評估。同時,微生物對染料的降解機理以及微生物的代謝機制還需要進一步研究和探討。
『叄』 關於模擬廢水的問題
文獻上有兩種配置方法:
1簡單的方法:苯酚加喹啉
微量金屬對AF處理模擬焦化回廢水運行的影響,李亞答新楊建剛《中國沼氣》2001年第3期
2復雜但可靠的方法:下圖
用軟填料厭氧生物法處理模擬焦化廢水的探索試驗,趙建夫《環境工程》1992年第2期
『肆』 臭氧氧化對苯二酚模擬廢水,為什麼去除率還沒有芬頓好,而且PH影響也不大,求解釋。
臭氧氧化對苯二酚模擬廢水,為什麼去除率還沒有芬頓好,而且PH影響也不大,求版解釋。
頓氧化法處理印染模權擬廢水(亞甲藍水溶液)的機理,對其實驗方法進行了研究,結果表明,芬頓氧化過程中生成的羥基自由基對污染物的氧化包括脫氫、加成
『伍』 印染廢水處理的印染廢水處理技術
國內外對一般印染廢水多數採用傳統的生化法處理,以除去廢水中有機物,有些工廠在生化處理前或處理後還增加一級物化處理,少數工廠採用多級的處理。在美國,印染廢水多數採用二級處理,即生化與物化結合,個別用三級,增加活性炭。日本與美國相似,但應用臭氧的報導也較多。英國是羊毛加工的傳統國家,一般用不完全流程,僅將洗毛水用物化初步處理與其他染色廢水合並排入城市污水處理廠。國內投入運行的生化處理設施,大部分是採用完全混合活性污泥法。接觸氧化等生物膜法,近年來也逐步增加。印染廢水處理,應盡量採用重復使用和綜合利用措施,與工藝改革和回收染料、漿料、節約用水、用鹼等結合起來考慮。在國內印染廢水處理中採用的完全混合式系統有加速曝氣法和延時曝氣法兩種形式。廢水量較大的採用延時曝氣法較多,廢水量較小的則以加速曝氣法為主。印染廢水處理中常以曝氣時間作為曝氣池的控制指標。由於印染廢水的水質是多變的,因此曝氣時間必須與有機負荷(POD含量)結合起來考慮。常用的治理印染廢水有如下方法:
1.改革工藝、減少或消除印染廢水對於合成纖維及含合成纖維75%以上的織物採用干法印花工藝,可以消除印染廢水。對於棉織物,一直用澱粉漿料上漿和作為印花漿料中的粘合劑,使退漿、煮煉廢水中,含大量澱粉。現在,印染工業用化學漿代替澱粉漿,如聚乙烯醇和纖維素衍生物作漿料,;可使退漿、煮煉廢水的BOD降低33%,若用作印花漿粘結劑,則還可降低5~20%。此外,在酸性媒染染料染色中,用硝酸鈉或雙氧水代替重鉻酸鉀作氧化劑,能消除廢水中有毒的鉻污染。
2.廢水和物料的回收利用
(1)印染廢水要按水質特點,分別回收利用一般印染廠中,廢水可分為三類,即澱粉漿料廢水,廢鹼液和其他染整廢水。據統計,它們占的百分率約為;澱粉漿料類廢水為65%,廢鹼液為19%,其他染整廢水為65%。按上述水質分開處理,有利於回收利用。
(2)鹼回收利用絲光工序的淡鹼液可循環利用,還可將淡鹼液用於煮煉,煮煉廢鹼液,用於退漿,多次重復使用。如鹼液量大可用三效蒸發器回收鹼,如鹼液量小,可用薄膜蒸發器回收鹼。
(3)染料回收如含硫化染料的廢水,可以在反應鍋內加酸,放出硫化氫,經沉澱過濾後回用。對還原染料和分散染料可採用超過濾技術回收。廢水回收染料後,可使色度減少85%,硫化物減少90%。
3.印染廢水的無害化處理
廢水和物料的回收利用,雖然是減少印染廢水污染的根本出路,然而;目前國內外還遠未達到應有水平,印染廢水仍以無害化處理為主,印染廢水的水質特點,主要是COD和BOD高,以及由此引起的色度等指標遠遠超過排放標准;國外紡織工業廢水尤其是印染廢水的處理,應用最廣的是生化處理法,國內一般印染廢水,多數也是採用生化法去除水中的有機物。投入運行的生化處理設施,大部分是採用完全混合活性污泥法,即廢水和迴流污泥進入曝氣池後,與池內原有混合液得到充分混合。這一方法,較好適應印染廢水COD高而且水質多變的特點,得到比較好的處理效果。所採用的完全混合式系統,有加速曝氣法和延時曝氣法兩種,廢水量大的用延時曝氣法較多,廢水量較小的,則以加速曝氣法為主。
實踐證明,用生物處理印染廢水,BOD去除率一般為85~90%,並能使可溶性的BOD變成不溶性污泥而分離去除。同時還能去除部分色澤和懸浮物,降低pH值。為了解決生化處理後脫色問題i採用活性炭吸附法,可去除廢水中很多種類染料和可溶性有機物。對非水溶性染料廢水的色度,如硫化染料,還原染料和分散染料,可採用臭氧氧化法和混凝法加以去除。
綜上所述,印染廢水能達到排放和回用水的各項指標,需要採用聯合處理方法,如用沉澱(或過濾)—生化—活性炭吸附—生物接觸氧化—煤粉灰過濾,活性污泥—臭氧氧化(或混凝)等。現在多級的處理方法,如反滲透、離子交換、電滲析等已開始在印染廢水中應用。據報道,日本紡織印染工業處理水回用率,巳達到8096。表2-4-2為各種不同染織物廢水主要處理方法和優缺點比較。
1、混凝法的機理
混凝法是通過向污水中投加混凝劑,使細小懸浮顆粒和膠體顆粒聚集成較粗大的顆粒而沉澱,得以與水分離,使污水得到凈化的方法。混凝法的機理主要是壓縮雙電層,吸附表面中和,吸附架橋和沉澱網捕四種機理。以上幾種作用可能同時產生,在不同的條件下某種作用可能是主導因素。
混凝劑可降低印染廢水中的濁度、色度,去除多種高分子物質、有機物。以及某些重金屬有毒物質。
2、實驗室研究
混凝沉澱是水處理過程中的重要單元,而混凝法最關鍵的是要選擇合適的混凝劑。目前,主要有無機混凝劑、有機混凝劑、復合混凝劑及生物混凝劑四大類。近幾年,許多研究者主要對高分子混凝劑和高效復合脫色混凝劑開展了較深入的研究,並在處理印染廢水方面取得了進展。
陳文松和韋朝海研究了低劑量Fenton氧化一混凝法對三種不同模擬水樣和實際印染廢水的處理效果,結果表明,Fenton氧化一混凝法特別適合於處理成分復雜(同時含有親水性和疏水性染料)的染料廢水。實際印染廢水的處理結果令人滿意,CODcr和色度的去除率分別達到84%和95%。Fenton氧化一混凝法處理印染廢水效果好,成本低,操作簡單,便於推廣。混凝劑的改性和復配能優化混凝劑性能,提高混凝效果。姚曉亮採用鎂鹽與亞鐵鹽混合復配對活性染料印染廢水進行脫色處理,並與單一組分混凝劑的脫色效果作比較。結果表明:復合混凝劑MgSO4-FeSO4·7H2O的脫色效果明顯優於單一組分,表現出顯著的協同效應。祝社民和陳英文等將若干廉價的天然和廢棄無機粉料(如粉煤灰,黏土等礦物,其中主要含硅、鎂、鈣和鐵等)按一定比例配伍,再進行簡單活化和極少量的高分子絮凝劑復配而成新型的混凝劑,其對印染廢水具有良好的處理效果,COD去除率為74%,最終出水濁度低於5度。印染廢水經過混凝處理後可達到國家污水排放的三級標准,可重復利用。余瑩在實驗中發現,將聚硅鋁鐵硼應用於處理印染廢水,其脫色效果佳,透光率可達98%;且具有制備工藝簡單、高效、礬花大、沉降速度快、污泥體積小、脫色及去除COD效果良好等優點。戴亞英和邱慧琴研究的是聚合硫酸鐵硅混凝劑(PFSS),它是一類新型無機高分子混凝劑,是在聚硅酸和鐵鹽的基礎上發展起來的復合產物。實驗說明此類混凝劑混凝效果好,易儲備,價格便宜,因此受到了水處理界的極大關注。
利用廢熔鹽研製了一種新型復合混凝劑PMFC(聚合氯化鎂鐵),應用該復合混凝劑對印染模擬廢水以及實際廢水進行了處理。實驗結果表明,該復合混凝劑在合適的條件下對印染廢水具有良好的處理能力,其脫水效果明顯優於PAC。此外,該復合無機混凝劑具有成本低,脫水率高,沉降速度快等優點。
3、現場應用研究
研究者也從水處理工藝方面進行了研究,並應用到實踐中,取得了好的成效。江陰市某印染廠採用物化+三級生化+物化法處理印染廢水,設計處理能力360m/s,廢水進水CODcr, BOD5,SS和色度分別為: 200—300mg/L,600—700mg/L,350—500mg/L和500~1000倍,經處理後,出水穩定並達到污水排放一級標准,此外,該工藝具有處理負荷高,耐沖擊,出水穩定等特點,並於2002年年底完工驗收運行至今,處理效果良好,出水穩定達標。王振川等採用混凝沉澱一酸化水解一懸掛鏈曝氣一生物碳組合工藝對該類廢水進行了大量的實驗研究,優化了各項工藝參數,並在河北麗友印染有限公司建立了一套3000平米/d的廢水處理設施。經2年實際運行表明,該設施具有投資少,運行費用低,水凈化率高的特點,處理後出水CODcr,去除率高達93%以上,各項水質指標均達到了(GB4287—92)紡織染整工業水污染物排放一級標准。黃瑞敏等提出了採用混凝脫色一曝氣生物濾池,再深度處理的回用處理工藝進行現場試驗研究。研究結果表明,該工藝可以將印染廢水色度去除至10倍以下,CODcr處理至20mg/L以下,SS達到2mg/L以下,濁度低於3NTU,高效脫色混凝劑色度去除率達到98%,曝氣生物濾池的出水CODcr質量濃度為20mg/L。
4、結束語
研究表明,混凝法對印染廢水具有工藝流程簡單、操作管理方便、設備投資省、佔地面積少、對疏水性染料脫色效率很高等優點,混凝法已經成為污水處理的常用方法。針對特定的印染廢水,混凝劑的選擇就成為影響混凝效果的關鍵因素,所以混凝劑的開發和研究是一個熱點。目前較新型的無機高分子復合型混凝劑主要有聚合硅酸硫酸鋁(PASS)、聚合硅酸氯化鋁鐵(PSAFC)、聚合硅酸硫酸鋁鐵(PSAFS)和聚合硅酸硫酸鋁硼(PSBA)。無機混凝劑具有無毒或微毒,原料易得等方面的優點,在混凝技術中佔有重要地位,一直得到廣泛應用。離子型高分子混凝劑可以明顯提高絮凝效果,增大捕捉范圍,活性基團也得到充分暴露,有利於更好地發揮架橋作用,因此,離子型高分子混凝劑是今後的發展重點。近年來,混凝劑的發展由低分子到高分子,由單一型到復合多功能型。研製成本低、廣譜、高效、無毒的混凝劑成為混凝研究的一個熱點。總之,當前混凝劑的發展總的方向是「高分子化、復合化、多功能化」,今後需進一步開展的工作為:
(1) 復合型高分子混凝劑的研製。
(2) 天然高分子物質及其改性產品的應用。
(3) 混凝劑的多功能化。
(4) 微生物絮凝劑的研究和開發。
值得說明的是,除了混凝劑種類和水處理工藝和條件以外,如PH值,混凝劑的加入量,投加順序,污染物的濃度及水力條件都是影響混凝效果的重要因素。混凝劑的加入量,投加順序需要事先通過實驗確定。
『陸』 升流式厭氧好氧生化濾格處理造紙廢水出水水質發白,正常時是清澈的
停留時間短,曝氣量不夠,沉降差,最好的解決辦法就是增加一套「微生物一體化廢水處理強化處理設備,即可解決問題。
微生物一體化污水強化處理設備簡稱微生物強化設備(Microbial enhanced equipment.)用MIE表示。該設備能將廢水中的污染物有效去除,處理後的水質經環保機構與衛生防疫部門檢測及全國近百家用戶使用證明,該設備設計合理、技術先進、性能穩定、使用安全,各項技術性能居國內首位,特別適合各種廢(污)水處理和微污染治理。具有以下特點:
一、自動化程度高,污水處理效果好
該設備通過程序控制、空氣凈化、富氧曝氣、環境模擬、營養配對,使微生物在設備中進行強化、改性、馴化後,發生迅速增殖、對數增長,進而使密度達到1.8×1020 CFU/ml,這些高密度微生物通過釋放進入曝氣池,池中生物迅速提高到2.0×104MIE/L,將污水中的污水中的污染物分解成CO2和H2O,實現污水凈化、達標排放或中水回用的目的。
二、適應范圍
該設備為比較理想的廢(污)水生物強化處理設備,可根據不同種類、不同性質、不同環境的污水處理需要,生成不同種群、不同菌屬、不同溫度的微生物,特別適合醫院、城鎮、小城鎮、農村、工業、生活小區、石油化工、制葯、造紙、食品、印染、畜禽養殖、高鹽、高氨氮、有毒有害水、重金屬、垃圾滲濾液等廢(污)水處理。
該設備還可直接與接觸氧化法、AB法、A/O法、氧化溝、SBR、曝氣生物濾
池、導流曝氣生物濾池等各種舊廢(污)水處理工程配套,在不改變污水處理工藝或土建工程的條件下,實現污水處理的升級、改造、擴建、污泥減量、脫氮除磷、中水回用等多種用途。
該設備還可用於景觀、河道、湖面、河流、鹹水湖、海灣、土地等領域去除微污染,保護公共環境。
三、經濟效益突出
該設備產生的是高密度優勢微生物菌群,能快速噬掉污水中的污染物和淤泥,且不產生臭味,不用污泥脫水機、污泥傳輸機、泥餅外運車、廢氣處理設備和大功率的鼓風曝氣設備,與傳統方法比較,能耗是活性污泥法的1/8,設備投資可節省近70%,還可在淺層水池上運轉,從而使污水處理池深度減淺、體積縮小,大大降低了一次投資費用和長期運行、管理費用。
四、管理方便,安全可靠
該設備產生的高密度微生物菌群通過自動釋放進入廢(污)水曝氣池後,能迅速減少污水中的生物耗氧量(BOD)、化學需氧量(COD)和固體懸浮物(TSS),並有極強的脫氮除磷功能,還能在極短的時間內使5類水轉變成3類以上,7天內消除污水中的臭味,10天內吃掉污水中50%左右的淤泥,每天降解近20%的BOD,10-15天內實現達標排放或中水回用。
採用該設備處理廢(污)水無污泥膨脹之憂,也不受操作員學歷、年齡等限制,管理方便、安全可靠。
五、沒有二次污染,營造綠色環境
隨著高密度微生物菌群數量的不斷增加,污水中的生物耗氧量(BOD)也越來越少,大量的微生物因缺少BOD而失去存活能源自滅,變成二氧化碳和水,未自滅微生物還可成為魚類和浮游生物的餌料,進而形成良性的生態處理凈化過程,沒有臭味、不產生污泥、無二次污染,營造綠色環境。
六、不受氣候影響,完成生化處理
傳統的生化法處理污水,受氣候及水溫變化影響較大,當溫度每降低10度,微生物的酶促反應速度就降低1-2倍。氣候導致微生物的活性不足,造成污水處
理效果不好,不僅威脅著北方的污水處理廠,對於南方的污水處理廠,冬天也是嚴峻的考驗,貴州長城環保科技有限公司生產的微生物強化設備徹底解決了這一難題,該設備產生的高濃度微生物菌群釋放進入曝氣池後,其微生物量訊速達到2.0×104MIE/L以上,使曝氣池中微生物濃度較活性污泥高出10倍,彌補了因水溫低而導致微生物量不足,污水處理效果差的技術難題。
七、解決活性不足,確保水質達標
採用傳統的生化方式處理高濃度、高氨氮、高鹽量、有毒性、重金屬廢水,由於微生物在這些污水中的成活率低、數量小,致使處理後的污水出水水質差、效果不穩定、難以達標排放。微生物強化設備以獨特的方式徹底解決了這一難題,該設備能將生產出的濃度高於1.8×1020CFU/ml的微生物菌群源源不斷地送入曝氣池,微生物量較其他污水處理高出10倍以上,強大的微生物菌群加速了對污水中污染物的降解和消化,同時,曝氣供氧又顯著加速了污染物被分解成CO2和H2O,硝酸鹽、硫酸鹽成為微生物生長的養分,使微生物又得到進一步的衍生,即使在天冷、低溫、沖擊負荷的條件下,或受高濃度、高氨氮、高鹽量、有毒性、重金屬的抑制,也無法阻止群雄逐鹿、前仆後繼的微生物大軍,形成對污水處理的強大陣容,進而降解和消化污水中的污染物,最終實現廢水達標排放或中水回用。
八、改變微污染治理方式
傳統河道治理離不開閘壩、斷水、清淤等處理過程,工程投資大、工期長、淤泥量大。微生物強化設備直接安裝在景觀、河道、湖面、河流、鹹水湖、海灣、土地等微污染源上游,從源頭切斷和堵住污染,並通過微生物降解污染、吃掉污泥、去除臭味、除磷脫氮等作用實現徹底治理,為微污染治理提供了可靠的設備。
九、主要 技術優勢
1、快速降解BOD5、CODcr、TSS,使污水得到凈化;
2、提高總氮(TN)和總磷(TP)的脫除效果和去除能力;
3、處理效率可提高達50%左右,進水負荷提高40%左右;
4、 快速應對曝氣池可能發生的緊急故障情況;
5、 提高難分解污染物的生化效率;
6、有效解決污水量增加或負荷增大,而無場地改擴建的難題;
7、 有效解決絲狀菌異常增殖導致污泥膨脹的問題;
8、在處理污水的同時減量污泥,達到不用清淤除泥的效果;
9、僅需幾天就能消解污水中的味道,去除污水中的惡臭;
10、採用自然界或國內外選育出來的優勢無害菌種,無二次污染的後顧之憂;
11、污染凈化完畢後,微生物因失去存活能源而自滅,變成CO2和H2O;
12、未滅的微生物還可成為魚類和浮游生物的餌料;
13、升級改造舊污水處理工程,較其它污水處理方法節省投資70%;
14、較其它生化處理方法,節省電能80%左右;
微生物濃度高達1.8×1020CFU/ml以上,高濃度微生物大大提高了處理效率,
1、減少了曝氣池容積,節省工程投資40%;
2、解決了因氣候變化、水溫降低而導致微生物數量減少,進而影響污水處理效果的技術難題;
3、微生物大軍前仆後繼、協同作戰,有效解決了高鹽、高濃度、有毒、有害、化工、重金屬、垃圾滲透液等抑制微生物生長、微生物難以存活的技術難題;
4、在不改動土建的條件下實現舊污水處理工程的升級改造或工程擴容;
5、在不改動污水處理工藝的前提下,有效脫除污水中的磷和氮,並提高處理後的污水出水水質,實現達標排放或中水回用效果;
6、直接用於江河、湖泊等微污染源上游,直接堵住污染源頭,在有效解決微污染的同時,實現無泥排放,徹底地革新了傳統河道治理離不開閘壩、斷水、清淤方式,為微污染治理提供了的理想設備;
7、安裝方便、應用靈活、操作簡單,只用一人兼管,就能完成任務;
布局靈活、佔地面積小、自動化程度高、操作管理簡單、運行費用低。
十、應用領域和方式
1、新建項目
⑴、城鎮、村鎮、農村、住宅小區及開發區生活污水處理,賓館、飯店、學校、商場及辦公樓污水處理,車站、航空港、碼頭等污水處理;
⑵、醫院、療養院、醫院院校、農村衛生院、醫療診所等含菌污水處理;
⑶、化工、制葯、印染、腌制、畜禽養殖、製糖、釀酒、白酒、石化、焦化、農葯、味精、紙漿、毛紡、橡膠、餐飲廢水處理;
2、升級、改造
⑴、升級、改造或擴建城市舊污水處理廠;
⑵、升級、改造或擴建各種大、中、小型工業廢水處理廠;
⑶、升級、改造或擴建各種大、中、小型公寓、小區污水/廢水處理站;
⑷、作為新建污水廠的配套,可減少佔地面積,提高系統效率,特別適用於石油化工、制葯、造紙、食品、印染等行業中廢水處理廠的升級、改造或擴建;
⑸、升級、改造或擴建各種大、中、小型醫院污水處理工程。
3、其它處理
⑴、有脫氮除磷需求的廢水處理;
⑵、江河、湖泊等河道、景觀治理;
⑶、濕地公園生態修復;
⑷、污水處理廠污泥減量,實現無泥外排。
『柒』 用超聲波預處理焦化廢水,過程中暴氣,氬氣有用過的嗎,有沒有合適的條件
最好你自己看PDF,哪有清楚
超聲波技術及其在水處理中的應用
龔安華羅亞田李端林
(武漢理工大學資源與環境工程學院,武漢,430070)
摘 要
本文綜合了近幾年的國外文獻,討論了超聲波處理廢水的機理、影響因素及應用領域,提出了
超聲波在廢水處理領域存在的一些問題。
關鍵詞:超聲波氣穴自由基水處理應用
1 前言
由於生物處理對有些物質不能適用,這一傳統
的水處理方法已經難以滿足人們對於環境質量的嚴
格要求。於是一些新的水處理方法逐漸興起,這些
方法有些是徹底地處理廢水,有些是降低廢水的毒
性以便進一步地生物處理。氣穴技術就是其中之
一,它能夠用來有效地破壞或者改變復雜化合物及
難以生物降解材料的結構。
超聲波由於能產生氣穴,從而能氧化分解傳統方
法所不能處理的廢水。這一特性使其在廢水處理領域
有著廣泛的應用前景。一般來說,產生氣穴的方式有
四種:超聲波、水力、粒子及光子。其中,利用超聲波產
生氣穴和基於這一原理的聲化學反應器引起了人們的
廣泛興趣。自上個世紀60 年代聲化學發展以來,用超
聲波能量處理工業和生活污水得到了大量地應用。而
事實上,由於人們對降低有毒污染物的需求越來越來
高,超聲波在水處理領域得到了不斷地發展。許多研
究人員在實驗室里利用超聲波反應器完成了對用傳統
的方法難以處理的物質[1] 。
2 超聲波反應機理及影響因素
211 超聲波反應機理
表1 不同化合物的降解[2 ]
反應物超聲波化條件主要中間產物主要機理
苯酚20 、487kHz 、30W、空氣、01 5mm 對苯二酚、萘酚、苯醌等自由基
22氯苯20kHz 、50W、空氣、01 05mm 萘酚、32氯萘酚、氯化物自由基
32氯苯酚20kHz 、50W、空氣、01 05mm 氯化對苯二酚、32氯萘酚、42氯萘酚自由基
42氯苯酚20kHz 、50W、空氣、01 05mm 對苯二酚、氯化物自由基
2 ,42二氯苯酚氬氣22氯苯酚、42氯苯酚、2 ,4 二氯苯酚自由基
硝基苯酚011mm 亞硝酸鹽、硝酸鹽、蟻酸等自由基和熱解
氯苯20 、487kHz 、30W、空氣、氬氣,氧氣、01 5mm 42氯苯、對苯二酚、乙炔自由基和熱解
四氯化碳20 、500kHz、30W、空氣、01 035mm 四氯乙烯、六氯甲烷熱解
氯仿200kHz 、空氣、氬氣熱解
超聲波是指頻率在2000Hz 以上的聲波,它具
有聲波的普遍特性。但是由於其頻率高於一般聲
波,因而就有一些特殊的性能。雖然超聲波化學轉
化的有關機理還不是很清楚,研究人員[2 ] 提出了以
下幾種反應機理:熱分解、羥基自由基氧化、等離子
化學和超臨界氧化。熱分解發生在氣穴內部,主要
表現在當溶劑或待分解物滲透進入氣泡後被分解。
事實上,往往在氣泡里的能量不足以打斷化學鍵,而
在水溶液中,主要的熱分解反應是對水的分解。這
一熱解反應導致了在氣泡中產生了活性相對較高的
48 四川化工 第9 卷 2006 年第1 期
&; 1994-2006 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net
自由基,這些自由基會在氣泡里或者氣泡周圍重新
結合。否則,在這些自由基進入溶液以後可能與一
些大分子接觸從而氧化它們。羥基自由基氧化與熱
解之間的比率取決於溶質的位置,要看是在氣泡里
或者是界面層,還是在溶液里。但是,歸根到底取決
於物質的物理化學性質。表1[2 ] 是一些物質的情況
反映。
當然,仍然有一些參數還不是很清楚。研究人
員[2 ] 提出決定化合物進入氣泡的性質不是其蒸汽壓
而是其疏水性。因此,親水的化合物如苯酚和氯酚
可能會在溶液中或者界面處受到羥基的攻擊。其它
的一些疏水性化合物如四氯化碳、苯和氯苯可能主
要是在氣泡中熱解。但是,其它的情況也有可能影
響降解的位置,也有些情況是一些機理的互相競爭。
總之,疏水性化合物和揮發性化合物易於被超聲波
降解,而不揮發和親水性化合物超聲波是難以降解
的。
另一種反應的機理是等離子化學。這與超聲波
發光與光致發光之間的關系和光化學與聲化學之間
的關系相似。這種等離子的效應是由於對超聲波能
量的吸收,從而在氣泡中形成為等離子體。
以上提到的假設可以歸結為超臨界水的聲化學
反應。事實上許多的研究人員都發現[ 2 ] ,在氣泡和
溶液的界面層存在著超過臨界條件的高溫高壓
(647 K、2211MPa) ,這使得媒介有流體的物理性質。
這些條件可通過改變溶質的溶解度和分散度來改善
反應。但是,超臨界水的界面自由基只有幾毫秒的
壽命和幾毫米的范圍。
212 反應的影響因素
超聲波反應中,分解化合物的性質是決定反應
進程的主要因素。而其它反應條件對反應進程也有
不同程度的影響,其主要體現在對反應常數的影響。
研究人員[3 ] 在分解芳香族化合物時發現底物的起始
濃度和超聲波的能量強度對反應速率有著不同程度
的影響。隨著底物濃度的增加反應速率降低。這是
因為由於濃度的升高,導致比熱容的降低,而比熱容
降低導致了降解速率的降低。而當底物主要是在氣
泡中分解時,降解速率取決於氣泡的數量。而隨著
超聲波密度的增加,氣泡的數量也會增加,從而提高
了反應的速率。
在反應體系中加入媒介氣體對反應的進程也有
不同程度的影響。研究人員[2 ] 在用超聲波分解二硫
化碳時發現,在不同的氣體媒介中,其反應的速率為
He > 空氣> N2O > Ar 。其在He 的反應體系中
的速率是在Ar 中的3 倍。氣體的影響因素主要是
體現在對聲化氣泡間撞擊上。氣體的許多性質都可
以影響聲化反應,如比熱容、熱導率和溶解性。比熱
容影響反應的效果表現在高比熱容的單原子比低熱
容的多原子能產生更高的溫度和壓力。而低熱導率
的氣體降低了氣體撞擊熱能的傳遞,從而降低了撞
擊的溫度。氣體的溶解度也是一個影響的因素。氣
體的溶解度越大,它就越可能擴散到氣穴中。這些
溶解的氣體為氣穴的形成提供核心。
當然還有一些其它的因素如時間、水中干擾物
質、催化劑( TiO2 ) [ 2 、4 ] 等。許多研究表明,無論哪種
因素的影響,超聲波反應器的經濟性不能忽視。
3 超聲波在水處理中的應用
超聲波由於其獨特的特性,有著廣泛的應用范
圍。但一般說來,單一的超聲波處理並不能達到滿
意的處理效果。目前的研究主要集中在超聲波與其
它處理方法的聯合處理廢水。
311 強化生物處理
利用超聲波技術可以改善污泥的固2液界面、加
強氣體的傳質和營養物傳遞,從而強化生物處理。
O1 Schlafer[5 ] 研究人員利用低功率超聲波處理釀酒
工業廢水,生物反應器獲得了較好的處理效果。在
實驗中,超聲波功率為013W/ L 、頻率25kHz。經過
超聲波處理後的生物絮體濃度由0112g/ L 增加為
014g/ L ,處理效率提高了50 %。
寧平等[6 ] 利用超聲波輻射2活性污泥聯合處理
焦化廢水,研究表明,當選擇空氣作為曝氣氣體,向
廢水中曝氣而不用超聲波時,廢水中CODCr 降解率
僅為45 %;在聲能強度為11914kW/ m2 條件下,用
超聲波時其降解率可達65 %; 當把超聲波輻射2活
性污泥聯合處理焦化廢水時,CODCr 的降解率提高
到81 %。同時發現經超聲波預處理後的廢水中無
亞硝酸氮,而且加活性污泥後,其耗氧速率有明顯的
降低,說明經超聲波處理後的焦化廢水對生物無毒
性。
第1 期 超聲波技術及其在水處理中的應用49
&; 1994-2006 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net
312 處理造紙黑液
造紙黑液是由木質素與腐殖酸物質構成的色度
極暗、顏色很深的廢液,對其進行處理一直是工業水
處理的難題之一。沈壯志[7 ] 等採用PFS/ H2 O2 與超
聲波聯合處理,通過對比發現,聯合超聲波處理後
CODCr的去除率提高了13 %左右、PFS 節約14 %、
H2O2節約50 —80 %。周珊[ 8 ] 等利用超聲波技術與
組合高級氧化技術對造紙黑液進行處理。研究發現
在超聲波輻照下,可以將造紙廢液中大分子有機污
染物部分分解為小分子有機物。在溫度30 ℃、p H
為6 條件下,單獨超聲波輻照4h ,CODCr 去除率為
1715 %、TOC 去除率為1317 %。但在US2H2 O2
2
FeSO4 工藝下輻照4h ,由於活性自由基的產生,使廢
液CODCr 去除率高達4719 %、TOC 去除率高達
4518 %。
313 超聲波2物理能場分解有機物
在水處理中物理能場的應用比較廣泛,將超聲
波和其它物理能場(光場、電場、磁場) 相聯合是水處
理中的研究方向之一。E1Naff rechoux[9 ] 等將超聲
波與紫外光聯合處理生活污水分解有機物,研究認
為,在分解有機物過程中存在三種作用: 紫外光分
解、超聲波形成羥基自由基氧化分解、紫外光分解空
氣產生臭氧氧化分解。付榮英[10 ] 等利用超聲波和
紫外光協同作用氧化降解鄰氯苯酚,研究表明,紫外
光和H2O2 體系對鄰氯苯酚的降解率僅為43 %。而
聯合超聲波後,降解率可達83 %。這說明超聲波與
紫外光產生了協同作用。
超聲波與電場聯合是一種新型的水處理技術。
劉靜[ 11 ] 等利用超聲波和電場處理印染廢水,在初始
濃度為370mg/ L 、p H = 2 、電壓為5V 的最佳條件下
作用60min ,印染廢水的脫色率可達9616 %。研究
發現單獨超聲波對印染廢水的降解能力較弱,而超
聲波2電場協同作用下的脫色率遠大於單一電場作
用。
4 結論
超聲波在水處理領域的應用雖然已經得到了人
們廣泛地認識,但是有許多問題仍然有待解決。
411 超聲波反應的條件控制比較困難。不同的底
物由於其不同物理化學性質,其最佳的分解條件是
不同的,尤其是考慮其經濟性時。分解不同的底物
時,為使其達到最佳的分解效果,必須對超聲波的強
度、分解時間、催化劑等條件進行試驗。
412 到目前為止,超聲波技術還沒有大規模運用到
實踐中,許多的應用都是在實驗室里完成。這些試
驗都是針對某一類底物,模擬該物質的溶液進行處
理。超聲波有待進一步在實踐中的考驗。
413 超聲波大規模應用的問題主要在設備上,研製
出能夠連續處理廢水、低能耗、大容量的超聲波反應
器是關鍵所在。
參考文獻
[ 1 ] Parag R. Gogate ; Sukti Mujumdar ;J agdish Thampi ,Dest ruction
of Phenol using sonochemical reactors : scale up aspect s and compari2
son of novel configuration wit h conventional reactors ,Separation and
Purification Technology ,2004 ,34 :25 —34
[ 2 ] Collins Appaw ; Yusuf G. Adewuyi ,Dest ruction of carbon disul2
fide in aqueous solutions by sonochemical oxidation ,Journal of Haz2
ardous Materials ,2002 ,90 :237 —249
[ 3 ] Yi jiang ; Christian Pet rier ; T. David Waite , Kinetics and mecha2
nisms of ult rasonic degradation of volatile chlorinated aromatics in a2
queous solutions ,Ult rasonic Sonochemisty ,2002 ,9 :317 —323
[ 4 ]Maria Papadaki ;Richard J . Emerya ;Mohd A. Abu2Hassan ;Alex
D′taz2Bustos ; Ian S. Metcalfe ;Dionissios Mantzavinos ,Sonocatalytic
oxidation processes for t he removal of contaminant s cotaining aro2
matic rings f rom aqueous effluent s ,Separation and Purification Tech2
nology ,2004 ,34 :35 —42
[ 5 ]O. Schlafer ;M. Sievers ; H. Klotzbucher ; T. I. Onyeche , Improve2
ment of biological activity by low energy ult rasound assisted bioreac2
tor ,Ult rasonics ,20003 ,8 :711 —716
[ 6 ]寧 平;徐金球;黃東賓;等,超聲波輻射2活性污泥聯合處理焦化
廢水,環境科學,2003 ,3 (24) :65 —69
[ 7 ]沈壯志;程建政;蘭從慶,超聲波/ PFS 聯合對造紙黑液處理的研
究,應用聲學,2003 ,2 (22) :45 —48
[ 8 ]周 珊;吳曉暉;黃衛紅;等,超聲波降解造紙黑液的初步研究,工
業水處理,2002 ,10 (22) :26 —28
[ 9 ] E. Naff rechoux ; S. Chanoux ; Pet rier J . Suptil , Sonochemical and
Photochemical Oxidation of organic matter ,Ult rasonics Sonochemis2
t ry ,2000 ,7 :255 —259
[ 10 ]付榮英;陳 亮;胡牡丹;等,超聲波波2光催化氧化降解鄰率苯
酚的研究,環境污染與防治,2004 ,2 (26) :116 —118
[ 11 ]劉 靜;謝 英;卞華松,超聲波電化學法處理印染廢水的實驗
研究,上海環境科學,2001 ,3 (20) :151 —157
50 四川化工 第9 卷 2006 年第1 期
&; 1994-2006 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net
『捌』 印染廢水成分
主要成分是些活性染料罷了
印染廢水的顯著特徵之一 ,是帶有較高的色度。經過生化處理後 ,出水色回度有所降低答 ,但仍帶有較深的色澤 ,難以達到排放標准。因此 ,脫色是印染廢水處理中的一個重要環節 [1] 。目前全世界使用的染料品種達數萬種 ,其中活性染料由於其色澤鮮艷、色譜齊全 ,正被越來越廣泛地採用。但由於活性染料的理化特性使其成為印染廢水中難去除的染料之一。化學混凝法雖然對疏水性染料的脫色效果好 ,但對活性染料等親水性染料的脫色效果具有很大的不穩定性。筆者就化學混凝法對廢水中活性染料的脫色影響因素和控制條件等進行了試驗研究。
『玖』 關於污水處理小實驗
水質變黑 濁度升來高 主要源都是你菌體群落控制不好
以下我指出幾點存在及可能存在的問題
1.模擬生產就一定要隨著檢測結果的變化或正反饋或逆反饋地通過一定設定條件改變你的工藝參數。 用一個固定參數去模擬生化過程略有些荒唐。
2.你的流量控制以及聯通每個缸子的管徑如何?能否達到模擬平推流?
3.你的固定床是不是需要經過一定時間反沖洗?
4.你的進水貌似少加了無機鹽。
5.厭氧液面的白色乳狀是什麼,要搞清楚。
『拾』 模擬印染廢水怎麼配置
將購買的染料,根據需要的濃度用去離子水溶解即可。一般200-300mg/L的濃度算中低濃度的印染廢水。
若要進一步模擬真實廢水,還可以加入氯化鈉、碳酸鈉等無機離子。