腈綸廢水來源
『壹』 SBR好氧顆粒污泥對腈綸廢水的處理情況如何
腈綸廢水的COD去除數據(SBR/UASB)
天數/d 好氧進水COD 好氧出水COD COD去除率/% 厭氧進水COD 厭氧出水COD COD去除率/%
1
2 372 360 3.225806 698 687 1.575931
3 597 557 6.700168 360 355 1.388889
4
5 641 619 3.432137 690 1030 -49.2754
6 416 548 -31.7308 340 247 27.35294
7 566 577 -1.94346 588 720 -22.449
8
9 579 607 -4.83592 331 623 -88.2175
10 652 663 -1.68712
11
12 438 255 41.78082
13
14
15 861 232 73.05459
16
17
18 320 160 50
19
20
21 298 104 65.10067
22
23
24
25
26 406 350 13.7931
27
28 749 261 65.15354
29
30
31 575 377 34.43478 710 867 -22.1127
32 541 248 54.15896 788 450 42.8934
33 426 220 48.35681 468 394 15.81197
34 571 151 73.55517 431 319 25.98608
35 503 117 76.73956 454 364 19.82379
36 569 146 74.34095 518 372 28.18533
37 439 113 74.25968 473 428 9.513742
38 402 113 71.89055 567 352 37.91887
39 699 168 75.96567 884 358 59.50226
40 550 117 78.72727 561 383 31.72906
總平均 523.5455 290.9091 43.00728 559.5882 506.5882 6.937682
腈綸廢水的平均COD去除率在60%左右,丙烯腈廢水的平均COD去除率在41%左右。然而,在啟動後第29天將好氧反應器的進水中加入葡萄糖,COD調至200mg/L,在第34天加入葡萄糖400mg/L,通過圖11可以看到:兩者的COD去除率均有改善。此時,SBR對腈綸廢水的COD去除率在75%,對丙烯腈廢水的COD去除率為46%,雖然丙烯腈廢水的COD去除率有小幅度提高,然而實際上腈綸廢水的進水COD維持不變得同時,出水COD在大幅下降,丙烯腈廢水的進水COD在維持不變的同時,出水COD也同比增加,即說明對於實際廢水中的丙烯腈的去除率沒有較大提高。所以這說明,單從COD的角度,對於丙烯腈廢水不可直接運行SBR工藝,需要必要的預處理。
此外,上述試驗也間接表明,在反應器的啟動期加入某些易降解的物質,如葡萄糖等,可以為微生物提供碳源,促使其生長,加快啟動的效率,縮短啟動周期,同時也可以提高對污染物的去除率。
由於SBR工藝獨特的運行方式,目前國內外很多學者證實在各種基質和運行條件下都可以實現SBR反應器中污泥的顆粒化。與傳統活性污泥相比,好氧顆粒污泥在廢水處理效果上顯示出明顯的優勢:A、提高了反應器的生物濃度(反應器中MLSS>5g/L),由於生物處理單元污染物的去除主要是通過反應器中持留的微生物完成,因此通過污泥顆粒化技術可以大大增強SBR反應器生物處理的潛力;B、沉降性能好,顆粒污泥的沉降性能是其最突出的特點,一般其SVI值都小於100mL/g;C、污泥活性高,據有關試驗測定,單位質量的微生物單位時間對氧氣的吸收量(WOUR)為1.27mg(O2)/(g(VSS)•min),而普通活性污泥法的WOUR值為0.8 mg(O2)/(g(VSS)•min)左右,由此可見,好氧顆粒活性污泥的生物代謝活性明顯高於普通活性污泥。另外,好氧顆粒污泥還具有負荷高抗沖擊負荷能力強、較高的反應器換水率和傳質速率等優點。因此,通過應用本實驗室已經掌握的好氧顆粒污泥關鍵培養技術在SBR反應器中實現好氧污泥的顆粒化可以大大改善其處理效率和出水水質。
以上幾種情況是腈綸廢水生化處理過程中經常遇到的。當出現某種情況時,要冷靜地分析原因,採取相應的對策,也要馬上採取措施挽救活性污泥。污泥是污水處理的基本要素,同時在實際廢水處理運行中,務必要加強監測和檢查,充分發揮調節池的均質作用,保證進入生化處理系統的廢水符合進水指標,盡量避免以上幾種情況發生。
『貳』 各種工業廢水的產量去哪裡可以查到
可以使用《第一次全國污染源普查工業污染源產排污系數手冊》,是2008年2月,國務院第一次全國污染源普查領導小組辦公室編發的,按照行業分類可已查到
『叄』 腈綸廢水有單獨的排放標准嗎
1997年來12月31日之前建設乮包括改、擴乯源的石化企業丆COD一級標准值由100mg/l調整為120mg/l•C有單獨外排口的特殊石化裝置的COD標准值按照一級丗160mg/l•C二級丗250 mg/l執行丆特殊石化裝置指丗丙烯腈-腈綸、己內醯胺、環氧氯丙烷、環氧丙烷、間甲酚、BHT、PTA、奈系列和催化劑生產裝置。
『肆』 晴綸是什麼材料
聚丙烯腈或丙烯腈含量大於85%(質量百分比)的丙烯腈共聚物製成的合成纖維。
衣服主要有內三大材料,分別是容:晴綸、纖維和棉。睛綸是一種合成纖維製成的面料,所以晴綸的防水性比較好,且不易皺,多是用來做風衣之類。不過睛綸臟了很難洗,特別是黑色的風衣,而且睛綸對皮膚刺激性大,不是做衣服的好選擇。
所以,一般來說比較好的衣服是百分之30左右的纖維+70左右的棉做成的,這樣的衣服不易起皺,還容易清洗,對人體皮膚也不會產生刺激性。
(4)腈綸廢水來源擴展閱讀:
氨綸氨綸的學名為聚氨酯彈性纖維,國外又稱「萊克拉」,「斯潘齊爾」等。它是一種具有特別的彈性性能的化學纖維,已工業化生產,並成為發展最快的一種彈性纖維。
氨綸彈性優異。而強度比乳膠絲高2~3倍,線密度也更細,並且更耐化學降解。氨綸的耐酸鹼性、耐汗、耐海水性、耐乾洗性、耐磨性均較好。
氨綸纖維一般不單獨使用,而是少量地摻入織物中,如與其它纖維合股或製成包芯紗,用於織制彈力織物。
聚烯烴彈力纖維,聚烯烴彈力纖維是採用熱塑性彈性體經熔融紡絲而成的,能耐220℃的高溫,具有耐氯漂及強酸強鹼處理,具有較強的抗紫外線降解等特性的新型彈力絲。
『伍』 腈綸來源於哪
腈綸學名聚丙烯腈纖維,近火軟化熔縮,著火後冒黑煙,火焰呈白色,離火焰後迅速燃燒,散發出火燒肉的辛酸氣味,燒後灰燼為不規則黑色硬塊,手捻易碎。
『陸』 電鍍廢水中含氰廢水的處理方法有哪些
1·各種處理方法簡述
國內含氰廢水處理方法比較多[3,4],但應用哪一種工藝主要決定於含氰廢水的質量濃度、性質以及實際處理的效果。廢水中氰的質量濃度可粗略分為高、中、低3種。一般情況下,成分復雜的高質量濃度廢水CN>800 mg/L,也有多種廢水氰的質量濃度在(1-10)×103 mg/L之間,可先採用酸化法回收氰化物,殘液再繼續氧化處理。中質量濃度含氰廢水一般在200 mg/L~800 mg/L之間,根據廢水成分的復雜程度選擇處理工藝;廢水成分簡單、回收氰化物有經濟效益的,適合先採用酸化法,殘液再繼續採用二次處理;酸化回收無經濟效益的廢水,可直接採用氧化法進行破壞。在國內實際生產時,高、中質量濃度(接近800 mg/L)含氰廢水一般根據成分復雜程度而決定採用的工藝方法;有些成分簡單的廢水,也可以先回收氰化物,回收後殘液再直接進行氧化破壞CN-,中、低質量濃度的廢水均採用直接氧化處理工藝。近些年,回收氰化物的方法較多,如酸化揮發-鹼吸收法、萃取法、酸沉澱-中和法(兩步沉澱法)、三步沉澱法等。目前,廠礦企業實際採用單一處理工藝的較少,因單一工藝處理很難達到國家排放標准,大部分企業均採用多種組合的工藝進行處理。主要組合處理工藝是酸化回收與直接氧化的技術結合,另一種組合是直接氧化、自然凈化[5]與活性炭吸附工藝[6]的技術組合,許多新的廢水全循環技術組合工藝也是主要發展趨勢之一。含氰廢水處理方法的選擇主要根據廢水的來源、性質及水量來決定。其中包括化學法、物理化學法、物理法及生化法,但是運用最多的是採用化學法來處理含氰廢水。以下主要對幾種常用的物理、化學法處理含氰廢水進行介紹。
2·常用處理技術
2.1加酸曝氣法
這是已進入實用化階段的方法,在美國等一些國家中正在興建一定規模的設施。最初試驗室在中性液中利用曝氣來把氰排除到大氣中去,以後改進為先加酸使污水最大限度地酸化,然後進行曝氣,這樣可以更有效地去除氰。所使用的酸通常是硫酸。雖然也有利用煙氣來進行酸性化的建議,但尚未到成熟階段,所以沒有普及。此法的效果受曝氣程度和酸性化程度的支配,按照實例來看,當pH為2.8時,對含氰濃度達500 mg/L的污水進行曝氣,可以獲得含氰濃度為0.09 mg/L~0.14 mg/L的處理水。因為在實施此法以後,氰仍保持原有狀態,作為有毒氣體而被排放到大氣中,既要有利的廠址條件,又必須具備高煙囪,因而只有在極有限的地區,才有採用此法的可能。如用液鹼來捕集已氣化的氰,這樣既可彌補上述缺點,還可回收氰。
2.2絡鹽法
20世紀70年代,國內企業有的曾經採用該方法,但現在均不採用。從環境安全防範的觀點出發,這種方法可以作為氰化物產生突發性污染事故時而採用快速補救的方法之一,硫酸亞鐵溶液投入水中可以迅速降低水中含氰污染物所造成的危害程度,減小對環境的危害,特別是對水生生物的傷害。廢水中CN-質量濃度很低時,該方法處理效果不好。可以使用的葯品雖多種多樣,但最廣泛使用的是硫酸亞鐵。該法利用硫酸亞鐵與氰形成絡鹽,然後使絡鹽沉澱並加以除去。硫酸亞鐵法將氰化物轉化為鐵的亞鐵氰化物,再轉化成普魯士藍型不溶性化合物[7],然後傾析或過濾出來。
其特點是操作簡單,處理費用低,且可回收普魯士藍沉澱作顏料。缺點是處理效果差,淤渣很多,分離出不溶物後的廢水呈藍色,濃度超過一定限度,就不能被去除。從反應的平衡來看,上述濃度過高,去除率下降是難以避免的問題,按一般情況來說,用石灰等使水的pH值保持在7.5~10.5之間,這樣就使沉澱生成處於最佳狀態。但即使採用上述措施,因為含氰量在一定數值以下,就不再降低,在處理含氰濃度低的污水時,其效果是微小的。如改用鎳做處理劑,其效果雖比鐵有利,但價格昂貴。熊正為[8]對硫酸亞鐵法處理電鍍含氰廢水進行了試驗研究,探討了硫酸亞鐵除氰的原理及其去除效果。試驗結果表明:硫酸亞鐵法處理電鍍含氰廢水,硫酸亞鐵加入量為理論值的1.69倍,0.1%PAM絮凝劑用量為1 mg/L時,氰化物的去除率可達98%,同時還可去除部分重金屬污染物和COD,COD可去除約59%;pH值對除氰效果的影響較大,CN-與硫酸亞鐵絡合成亞鐵氰化物時pH值控制在9.50~10.50,生成的亞鐵氰化物再轉化成較穩定的普魯士藍型不溶性化合物須將pH值反調控制在7.00~8.00時,除氰效果較好。
2.3臭氧處理法
近年來,用臭氧處理氰化物方法的研究,開展得相當普遍,但由於電力費用高昂的缺點,所以還沒達到一般性的實用化階段
O3+KCN→KCNO+O2
KCNO+O3+H2O→KHCO3+N2+O2
臭氧在水溶液中可釋放出原子氧參加反應,表現出很強的氧化性,能徹底氧化游離狀態的氰化物。銅離子對氰離子和氰根離子的氧化分解有觸媒作用,添加10 mg/L左右的硫酸銅能促進氰的分解反應。
臭氧法的突出特點是在整個過程中不增加其他污染物質,污泥量少,且因增加了水中的溶解氧而使出水不易發臭。採用臭氧氧化法處理廢水中的氰化物,只需臭氧發生設備,無需葯劑購置和運輸,而且工藝簡單、方便,處理後廢水總氰化物質量濃度可以達到國家污水綜合排放標准,處理廢液中不增加其它有害物質,無二次污染,不需要進一步處理。但是,由於臭氧發生器產生臭氧的成本高、設備維修困難,工業應用受到了一定限制。只要臭氧發生器能突破產生臭氧的瓶頸,工業應用前景非常廣闊。臭氧氧化法要消耗大量的電能[9],在缺少電力的地方難以應用。我國已有臭氧發生裝置成品出售,一些工廠目前正在使用這種處理技術。應該指出的是目前的臭氧發生器能耗很大,生產1 kg O3耗電12 kW·h~15 kW·h,處理費用較高。除個別地方外,一般難以達到廢水處理的經濟要求。另外,單獨使用臭氧不能使絡合狀態存在的氰化物徹底氧化。顏海波[10]等採用臭氧技術對電鍍含氰廢水進行處理,電鍍含氰廢水中的CN-濃度在30 mg/L~36 mg/L之間,採用以臭氧為氧化劑的活性炭催化氧化技術處理後,CN-的出口濃度<0.5 mg/L,去除率在97.7%以上。該處理系統實現了廢水處理自動化,具有投資省、效果好、成本低、運行穩定等優點,且不會產生二次污染,值得推廣應用。
2.4過氧化氫法
2.4.1鹼性條件
在常溫、鹼性(pH=9.5~11)、有Cu2+作催化劑的條件下,H2O2能使游離氰化物及其金屬絡合物(但不能使鐵氰化物)氧化成氰酸鹽,以金屬氰絡合物形式存在的銅、鎳和鋅等金屬,一旦氰化物被氧化除去後,他們就會生成氫氧化物沉澱。那些過量的過氧化氫也能迅速分解成水和氧氣。污水中亞鐵氰化物被銅沉澱而除去。其反應方程式如下。游離氰化物與過氧化氫反應的方程式:
上述反應中生成的氰酸鹽水解生成銨離子和碳酸鹽離子或碳酸氫鹽離子,水解速度取決於pH值。一般情況下,硫氰酸鹽不會或很少被氧化。污水處理過程中,含氰絡合物的反應順序如下:
2.4.2酸性條件
一般將廢水加熱至40℃,在不斷攪拌條件下加入含有少量金屬離子作催化劑的H2O2和37%甲醛的混合溶液,再攪拌1 h左右完成反應。反應在酸性條件下分兩步進行:
此法適用於濃度波動較大的含氰廢水的處理,整個過程無HCN氣體產生,操作安全,但所需試劑費用較高。山東黃金集團有限公司三山島金礦採用過氧化氫對含氰污水酸化回收後尾液進行二次處理[11]。
近1 a的生產應用情況表明,該法具有工藝操作簡單、投資省、成本低等優點,能容易地將含氰(CN)-5 mg/L~50 mg/L的酸化回收尾液處理到<0.5 mg/L,葯劑費用為7.56元/m3。
2.5鹼性氯化處理法
目前處理含氰廢水比較成熟的技術是採用鹼性氯化法處理,必須注意含氰廢水要與其它廢水嚴格分流,避免混入鎳、鐵等金屬離子,否則處理困難。
通過氯處理來分解氰化物的可能性,早已肯定,可是在初期氯處理是在酸性溶液中進行,因而有濃度相當大的氯化氫有毒氣體產生,操作也很不安全。但如果在鹼性條件下進行氯處理,中間產物氯化氫幾乎在一剎那間都轉化為氰酸鹽,於是此法在氰化物處理方面已成為實際的而且安全的方法。該法的原理是廢水在鹼性條件下,採用氯系氧化劑將氰化物破壞而除去的方法,處理過程分為兩個階段,第一階段是將氰氧化為氰酸鹽,對氰破壞不徹底,叫做不完全氧化階段,該工藝的原理是在鹼性條件下(一般pH≥10),用次氯酸鹽將氰化物氧化成氰酸鹽。
CN-+ClO-+H2O→CNCl+2OHCNCl+2OH-→
CNO-+Cl-+H2O
將兩式合並,得
CN-+ClO-→CNO-+Cl-
CNO-+2H2O→CO2+NH3+OH-
局部氧化法破氰反應生成的氰酸根的毒性是CN-的1/1 000,所以有的廠在廢水濃度比較低時,廢水經局部破氰處理後就排入後續的處理金屬離子的處理設施。但是,CNO-畢竟是有毒物質,在酸性條件下極易水解生成氨(NH)3。pH反應條件控制:一級氧化破氰:值10~11;理論投葯量:簡單氰化物CN-:Cl2=1:2.73,復合氰化物CN-:Cl2=1:3.42。用ORP儀控制反應終點為300 mv~350 mv,反應時間10 min~15 min。
第二階段是將氰酸鹽進一步氧化分解成二氧化碳和水,叫完全氧化階段。在局部氧化處理的基礎上,調節廢水的pH(一般pH≥8.5),再投加一定量的氧化劑,經攪拌使CNO-完全氧化為N2和CO2。
pH反應條件控制:二級氧化破氰:pH值7-8(用H2SO4回調);理論投葯量:簡單氰化物CN-:Cl2=1:4.09,復合氰化物CN-:Cl2=1:4.09。用ORP儀控制反應終點為600mv~700mv;反應時間10min~30min。反應出水余氯濃度控制在3 mg/L~5 mg/L。
滕華妹[12]等採用兩級鹼性氯化法處理工藝對杭州西爾靈鍾廠含氰廢水進行處理,間隙法操作,手工控制投葯量,原廢水含氰濃度59.8 mg/L~141.1 mg/L,平均為84.6 mg/L,分段調節pH,採用自製的機械攪拌器攪拌,根據在實驗室測得的氰化物濃度,分段計算投葯量,廢水處理取得很好的效果,排放廢水中氰化物濃度均小於國家排放標准0.5 mg/L。另有採用次氯酸鈉、亞氯酸鈉、漂粉等替代氯氣的方法,其原理和方法與通氯氣相同,而類似加氯器的特殊裝置卻不再需要,而且可以避免氯氣泄露的危險,它適用於小規模的污水處理。在已決定採用這種處理法的場合,必須考慮到殘存的氯在放流目的地所發生的影響。
2.6食鹽電解法
通過食鹽水電解同時生成氯氣和強鹼,把他們使用於氰的分解。以電鍍廠而言,因為容易獲得電力供應,所以操作方便,處理葯品費用非常低廉。尤其在分批操作時,能夠在夜間空閑時間,充分利用原來供電鍍操作用的整流器,因而設備費用也可以降低。此法的缺點是電解陽極用的碳極的使用壽命較短。它適用於較小規模的工廠。
(1)隔膜電解法:這是在食鹽電解法中使用隔膜的方法,其原理是鹼性氯化處理法。食鹽中如有很多雜質,隔膜所用的石棉就容易發生間隙堵塞的缺點。在連續運轉的場合,使用飽和食鹽水,如管理不善,容易發生食鹽補充不足的情況,因而分解反應不能繼續進行,所以必須經常注意。
(2)無隔膜電解法:進行食鹽水的無隔膜電解時,在陽極上有氯氣發生,它與陰極上生成的鹼反應後,即生成次氯酸鹽。
Cl2+2NaOH→NaOCl+NaCl+H2O
如把生成的此氯酸鹽加註在含氰污水中,氰就被氧化而生成氰酸鹽。
NaCN+NaOCl→NaCNO+NaCl
並且進一步分解為碳酸氣和氮氣。
2NaCNO+3NaOCl+H2O→2CO2+N2+NaOH+3NaCl
3·含氰廢水生物處理方法的應用進展
有學者[13]採用BOD5/COD比值法和好氧呼吸曲線法在國內外首次針對高濃度有機氰廢水及其污染物進行了全面的好氧可生化性研究,結果表明,低濃度氰工藝含氰廢水在低濃度下,可生化性較好,在高濃度下,可生化性較差,濃度過高的甚至無法被好氧生物降解;肖敏[14]等在30℃條件下,採用血清瓶液體置換系統,撒氣厭氧水化反應設備條件,測定了丙烯腈、腈綸生產過程廢水等各種高濃度有機氰廢水的厭氧生物可降解性及廢水中丙烯腈、乙腈和氰化物等主要污染物對產甲烷菌的毒性。結果表明,丙烯腈在低質量濃度下為代謝毒素,厭氧菌產甲烷活性在恢復試驗中得到恢復,在高質量濃度(>120 mg/L)為生理毒素,毒性引起的產甲烷活性受抑制,但在短時期內得到恢復;氰化物在低質量濃度下為生理毒;較高質量濃度下(25 mg/L)為殺菌性毒素,厭氧菌細胞已遭受嚴重破壞,無法修復;乙腈始終為代謝毒素;張力等[15]採用膜分離技術處理丙烯晴含氰廢水,處理後外排氰根離子濃度CN-<0.0005%,COD<1 500 mg/L,表明了使用超濾膜對原水能有效的凈化,並在一定程度上能降低原水的COD含量。
『柒』 生物在水體自凈過程中的作用
1 降解由人造成的有機物的污染,使有機排放物降解成小分子。
2 富集並吸收水體中的重金屬離子。
3 浮游植物光合作用釋放活性氧,幫助小分子的氧化分解。
『捌』 化工污染源及治理措施
石油化工污染源概述 一、前言 凡是向環境排放有害物質或對環境產生有害影響的場所、設備和裝置統稱為污染源。通過污染源的調查積累了基礎數據資料,再經過污染源的評價可了解企業的污染源的特點,結合本地區環境保護目標制定出污染綜合防治規則。 石化工業是以石油和天然氣為原料,通過各種不同工藝途徑製成所需的油品、化工產品和生活用品。石油化工過程中使用的原料、生產過程、產品(包括副產品)都有可能產生污染物,其排出污染物的種類和數量是隨著生產工藝、生產規模所採用不同的原材料及產品品種的變化而改變。 二、石油化工廢水污染源及治理 由於石化生產的產品品種繁多,廢水中的污染物十分復雜。其特點是廢水量大、組分復雜。例如煉油廠平均每加工一噸原油產生的廢水量為0.3-3.5噸。石油化工廢水中主要污染物有石油類、硫化物、酚、丙烯腈、醛類、三苯、含氮化合物、部分有機物、部分重金屬及含酸、鹼廢水。 1、含油廢水 主要來源:工藝過程與油品接觸的冷凝水、介質水、生成水,油品洗滌水、油品運輸船壓艙水、循環冷卻水、油品油氣冷凝水、焦化除焦廢水及受油品污染的地面水。 主要污染物:油,有的含油廢水含有酚、硫化物等。 處理原則:在裝置或罐區預先隔除浮油,後排入污水處理廠再處理。此方法簡單、費用低、效果好,能就地回收油品。 2、含酚廢水 主要來源:常減壓延遲焦化、催化裂化及苯酚-丙酮、間甲酚、雙酚A等生產裝置。 主要污染物:酚 處理原則:對於含酚量低,無回收價值,可與全廠廢水混合後不加預處理直接排入污水場。如含酚廢水酚含量較高(>1000mg/l)應在裝置區內回收或進行預處理再排入污水廠。 3、含硫廢水 主要來源:煉油廠二次加工裝置、分離罐的排水、油品和油氣的冷凝分離水、芳烴聯合裝置。 主要污染物:硫化物(S2-) 處理方法:空氣氧化法和水蒸氣汽提法。 4、含氰廢水 主要來源:丙烯腈裝置、腈綸廠聚合車間、紡絲車間及回收車間的排水、丁腈橡膠裝置。 主要污染物:丙烯腈、乙腈、異丙醇。 處理方法:目前常用塔式生物濾池法(又稱生化塔),效果很好。 5、含醛廢水 主要來源:乙醛裝置、維綸抽絲裝置、醋酸乙烯裝置、甲醛裝置等。 主要污染物:乙醛、甲醛、甲醇、丙烯醛。 6、含苯廢水 主要來源:制苯車間、苯乙烯裝置、聚苯乙烯裝置、乙基苯裝置、烷基苯裝置以及乙烯裝置的裂解急冷水洗廢水。 處理方法:一般常用吹脫法,另有活性碳吸附法。 7、含酸鹼廢水 主要來源:煉油廠、石油化工廠的洗滌水,成品罐的切水、鍋爐水處理排水及酸鹼汞房的排放水。 治理方法:低濃度含酸廢水常用中和法和綜合利用的方法,高濃度含酸廢水治理方法有塔式濃縮法、鼓泡濃縮法、浸沒燃燒法等。 三、石油化工廢氣污染源及治理 石油化工廢氣主要來源於加熱爐和鍋爐排出的燃燒氣體、生產裝置產生過剩氣體、熱電廠燃燒排出廢氣、在貯運和設備運轉產生的跑、冒、滴、漏都構成石油化工的大氣污染源。 主要污染物是二氧化硫、氮氧化物、烴類、乙烯、一氧化碳、惡臭、丙烯腈及顆粒狀物質。 大氣污染物的排放量與所採取的加工工藝綜合利用和回收方法有關。 治理原則:1、結合技術改造採用少污染或無污染的工藝。 2、加強環境管理和應用新治理技術。 3、廢氣、廢水、廢渣的再利用。 四、石油化工廢渣污染源及治理 石油化工在生產過程中產生廢渣種類繁多,成份復雜,大多數屬於化工廢渣,主要有酸渣、鹼渣、油污泥、白土渣、廢催化劑、活性污泥、苯酸廢渣、煤渣、粉煤灰、廢絲、廢塊等。 處理方法:1、廢渣的再資源化。 2、廢渣的處理(化學處理、脫水、焚燒)。 3、廢渣的堆存。 總之盡可能要變廢為寶,再資源化,減少廢渣對環境的污染。 五、結束語 了解源頭分布是為了找出污染源,減少、消除污染源,為此一方面在工程設計上要正確劃分廢物系統,採取有效的治理方案,另一方面要在管理上實行嚴格控制,做到標本兼治,以防為主。
『玖』 怎樣深度處理腈綸廢水
腈綸廢水屬於難降解工業廢水, 從全國范圍看,腈綸工業廢水的處理普遍不理想。腈綸廢水主要是指腈綸生產過程中產生的含氰廢水,含有多種污染物質。由於腈綸廢水很難生物降解,並且存在著 生物抑制性成分,因此其處理工藝和方法相對比較復雜。腈綸廢水主要生產工藝路線的生產特點決定腈綸廢水的主要處理方法的工藝。建議先建立腈綸廢水預處理體系,後進行生化處理。
請參閱如下:
工藝選擇及其依據
根據含氰污水的水質特性及其具有較高的濃度沖擊和毒性沖擊的特點。通過對其他同類型污水處理工程的類比分析,對該污水處理工程的工藝簡述如下。丙烯腈、腈綸生產污水是屬難處理的化工污水之一,由於某些成分對微生物有抑制和毒害作用,降解緩慢,所以要使CODcr、NH3-N、氰化物等多項指標達到排放要求採用單一的處理方法往往不能奏效,需採用生物、化學、生物物理等綜合處理方法;否則,如採用一種方法會造成基建或運行費過大的問題。如採用單一化學氧化的方法,會造成運行費用過高,採用單一生物法會造成基建費過高。對於難處理的石油化工污水可以採用多種方法相結合的工藝流程,對不同的處理階段和不同的污染物採用相應的處理方法進行有效的處理,達到高效、經濟、合理。
由於污水的組成復雜,工程採用化學法進行預處理,採用生物法進行主體處理,採用生物物理法進行後續處理,最終達到採用較低投資和運行成本,實現處理出水達標的目的。
預處理系統:為了排除高濃度及毒性的沖擊,在預處理系統中必須設置事故池。在含氰污水中主要防治氰根濃度的沖擊問題,一般情況下未經含氰污水馴化後的微生物對氰根的承受能力為1~2 mg/L,經含氰污水馴化後的微生物對氰根的承受能力為3~5 mg/L。當污水中的氰根含量大於5 mg/L時,微生物將產生中毒,在生化反應池中活性污泥會產生離散、上浮現象,微生物失去活性,出水水質惡化。由於丙烯腈、腈綸生產污水中氰根濃度一般小於5 mg/L,當生產系統出現故障或某工程的操作失誤會造成生產污水中氰根含量大於5 mg/L時,處理系統將這一現象視為事故狀態。預處理中將事故狀態的高濃度含氰污水排入事故池,採用小流量逐步排出的方法,再進入處理系統。
其二,通過化學混凝氣浮去除部分懸浮固體及膠狀物質(一部分低聚合物);混凝氣浮對去除污水中懸浮物和膠狀物是一種最有效的方法之一。在凝聚劑和助凝劑的作用下不僅能去除懸浮物和膠狀物,同時還能去除一部分大分子結構的溶解性有機物。去除污水中的大分子結構的溶解性有機物採用混凝的化學法已被公認,然後通過生物水解酸化作用把剩餘的大部分大分子有機物轉化為小分子物質,即可提高BOD/COD比值,約為20%,COD的去除率可達到30~40%,使主體處理系統發揮更大的能力。
主體處理系統:主體處理系統處理效果的好壞直接影響到能否達標的關鍵。選擇具有同時去除C和N的生化工藝是比較經濟而有效的方法。
後續處理系統:根據處理後出水水質要求達到COD≤100 mg/L,NH3-N≤25 mg/L等排放標准,在預處理、主體處理系統後,還必須加入後續處理系統來保證出水水質達標。在化工污水的處理過程中,一般通過預處理和主體處理系統後污水中的易生物降解物質均被去除,而存下一部分為難生物降解物質,如部分殘留的大分子有機物(如低聚合物等)和微生物代謝物質,而這部分物質濃度低(接近排放標准值),這些物質主要以COD值出現在水中,在普通的生化反應池內難以降解;在後續處理系統中必須選擇具有對難降解物質能有效去除的工藝,才能保證處理後出水達標排放。
建議採用SBR工藝運行模式,其操作由進水、曝氣反應、沉澱、排出和閑置5個基本過程,從進水至閑置間的工作時間為一個周期。在一個周期內的5個過程都在一個反應池內按程序完成,整個處理系統可以通過二個或二個以上的反應池進行組合交替完成。由於SBR工藝流程短,反應過程在一個池內按時間程序完成,所以在時間程序中進水階段可以降低曝氣強度使池內產生缺氧狀態,而曝氣階段的時間可根據實際反應時間而定。通過時間順序可以對缺氧、好氧的比例進行調整,使處理系統更適應水質的變化和達到期望的出水標准;通過時間程序可控制沉澱出水水質,根據活性污泥的實際沉澱時間使出水SS濃度更低。