50kpa污水曝氣風機
『壹』 5米深的曝氣池,羅茨風機壓力68.6Kpa,曝氣風管要多粗
還要知道流量才能確定風機口徑。
據我經驗,這個壓力一般都是用200mm口徑的。風量在25到50立方每分鍾之間。
『貳』 污水池曝氣風機風量怎麼算
選羅茨風機要兩個參數:壓力和風量.可先根據BOD的去除量計算需氧量,再根據曝專氣設備的氧轉移效屬率及其它一些附加條件計算風機工作狀況時的需氣量,根據空氣的需要量和池體的水深選擇風機,相關的計算公式在《三廢設計手冊----廢水卷》上有,因此,此情況建議風量8立方每分,壓力50KPA-55KPA即可,可選擇百事德或錦工羅茨風機,實惠耐用,也可以讓他們算.
『叄』 污水處理羅茨風機選型風量怎麼算
選羅茨風機要兩個參數:
壓力和風量.可先根據BOD的去除量計算需氧量,再根據曝版氣設備的氧轉移效率權及其它一些附加條件計算風機工作狀況時的需氣量,根據空氣的需要量和池體的水深選擇風機,
相關的計算公式在《三廢設計手冊----廢水卷》上有,因此,此情況建議風量8立方每分,壓力50KPA-55KPA即可,可選擇百事德或錦工羅茨風機,實惠耐用,也可以讓他們算.
『肆』 我是新手 急求一篇醫院污水處理設計方案!
污水簡介
一般醫院污水由來自住院部、門診室、實(化)驗室、食堂、浴室內、衛生間、試劑室、洗容衣房等場所排放的污水組成。醫院污水中含有一些特殊的污染物,如葯物、消毒劑、診斷用劑、洗滌劑,以及大量病原性微生物、寄生蟲卵及各種病毒,如蛔蟲卵、肝炎病毒、結核菌和痢疾菌等。
污水特點
該污水是一種低濃度污水,水質與一般生活污水類似,其中除含有有機的和無機的污染物,如各種葯物、消毒劑、手術遺棄物等污染物,還含有大量病菌、病毒和寄生蟲,成份較為復雜。與工業污水和生活污水相比,它具有水量小,污染力強的特點。該污水如未經處理而直接排入水體,必然會污染水源,傳播疾病,會對周圍水域及土壤等造成較嚴重的污染,從而危害人們的日常生活。
處理方法
此類污水含大量有機物,可生化性好。針對醫院污水的特點和排放水質的要求,經綜合分析並結合醫院污水處理的有關規定,吸收相關企業污水處理實際經驗, 尤其是同類型污水處理中的設計、運行經驗, 本工程採用生化處理和二氧化氯消毒工藝,採用缺氧和好氧並用的方法來降低污水的COD和BOD,使污水達到凈化的效果。二氧化氯消毒是一種成熟、有效的消毒措施,而且操作和維護管理都比較方便。
『伍』 什麼是羅茨風機,型號的含義
一、羅茨風機由美國羅茨兄弟發明,因此叫羅茨風機。
原理是利用兩個葉形轉子內在氣缸內作相對運動容來壓縮和輸送氣體的回轉高壓風機。
工作原理如圖:
『陸』 污水處理流量折算
你說的系數可能就是
總變化系數Kz:最大日最大時污水量與平均日平均時污水量的比值稱回為總變化系數。答
一般是根據流量按經驗查出來
有一個經驗公式,該式是我國在多年觀測資料的基礎上進行綜合分析總結出的計算公式。它反映了我國總變化系數與平均流量之間的關系:
Q平均<5時 kz=2.3
Q平均5<Q平均<1000時 kz=2.7/(Q平均的0.11次方)
Q平均>1000時 kz=1.3
『柒』 曝氣管能用那些風機。對應水深,曝氣管長度多少
一般用羅茨風機,
風機的壓力與水深有直接關系,1KPa壓力可距水面0.1米曝氣,如專果5米的話就要50KPa,也就是屬常說的0.5公斤壓力。另外根據實際情況還要加上0.2~0.4公斤的壓力損失。
我們公司有壓縮空氣管網,所以我們是通過減壓直接供氣。
希望能幫助到你
『捌』 污水處理流量怎麼折算
污水處理工藝流程是指在達到所要求的處理程度的前提下,污水處理各單元的有機組合,以滿足污水處理的要求。
污水處理折算:
(一)、設計水量,水質及處理程度:
平均流量:5萬噸/天,變化系數1.4;
進水:COD:400 mg/L,BOD:300 mg/L,SS:350 mg/L;
出水:COD: 60 mg/L,BOD: 20 mg/L,SS: 20 mg/L;
處理程度計算:COD:(400-60)/400=85% ;
BOD:(300-20)/300=93.3% ;
SS:(350-20)/350=94.3% 。
(二)、機械格柵及其設計:
機械格柵是由一組平行的金屬柵條製成,斜置在污水流經的渠道上或水泵前集水井處,用以截留污水中的大塊懸浮雜質,以免後續處理單元的水泵或構築物造成損害。
設計中取二組機械格柵,N=2組,安裝角度α=60°
Q 設計水量=平均流量×變化系數=0.810 m3/s
2、機械格柵槽寬度:
B=S(n-1)+bn
式中: B——機械格柵槽寬度(m);
S——每根機械格柵條的寬度(m)。
設計中取S=0.015m,則計算得B=0.93m。
3、進水渠道漸寬部分的長度:
4、出水渠道漸窄部分的長度:
5、通過機械格柵的水頭損失:
6、柵後明渠的總高度:
H=h+h1+h2
式中: H——柵後明渠的總高度(m);
h2——明渠超高(m),一般採用0.3-0.5m
設計中取h2 =0.30m,得到H=1.28m。
7、柵槽總長度:
8、每日柵渣量計算:
採用機械除渣及皮帶輸送機或無軸輸送機輸送柵渣,採用機械柵渣打包機將柵渣打包,汽車運走。
9、進水與出水渠道:
城市污水通過DN1200mm的管道送入進水渠道,設計中取進水渠道寬度B1 =0.9m,進水水深h1=h=0.8m,出水渠道B2=B1=0.9m,出水水深h2=h1=0.8m。
(三)、沉砂池及其設計:
沉砂池是藉助於污水中的顆粒與水的比重不同,使大顆粒的沙粒、石子、煤渣等無機顆粒沉降,減少大顆粒物質在輸水管內沉積和消化池內沉積。
沉砂池按照運行方式不同可分為平流式沉砂池,豎流式沉砂池,曝氣式沉砂池,渦流式沉砂池。
設計中採用曝氣沉砂池,沉砂池設2組,N=2組,每組設計流量0.4051m3/s
1、沉砂池有效容積:
式中: V——沉砂池有效容積(m3);
Q——設計流量(m3/s);
t——停留時間(min),一般採用1-3min。
設計中取t=2min,Q=0.4051m3/s,得到V=48.61m3。
出水堰後自由跌落0.15m,出水流入出水槽,出水槽寬度B2=0.8m,出水槽水深h2=0.35m,水流流速v2=0.89m/s。採用出水管道在出水槽中部與出水槽連接,出水管道採用鋼管。管徑DN2=800mm,管內流速v2=0.99m/s,水力坡度i=1.46‰。
12、排砂裝置:
採用吸砂泵排砂,吸砂泵設置在沉砂斗內,藉助空氣提升將沉砂排出沉砂池,吸砂泵管徑DN=200mm。
(四)、初沉池及其設計:
初次沉澱池是藉助於污水中的懸浮物質在重力的作用下可以下沉,從而與污水分離,初次沉澱池去除懸浮物40%~60%,去除BOD20%~30%。
初次沉澱池按照運行方式不同可分為平流沉澱池、豎流沉澱池、輻流沉澱池、斜板沉澱池。
設計中採用平流沉澱池,平流沉澱池是利用污水從沉澱池一端流入,按水平方向沿沉澱池長度從另一端流出,污水在沉澱池內水平流動時,污水中的懸浮物在重力作用下沉澱,與污水分離。平流沉澱池由進水裝置、出水裝置、沉澱區、緩沖層、污泥區及排泥裝置組成。
沉澱池設2組,N=2組,每組設計流量Q=0.4051m3/s。
10、沉澱池總高度:
H=h1+h2+h3+h4
式中:h1——沉澱池超高(m),一般採用0.3-0.5;
h3——緩沖層高度(m),一般採用0.3m;
h4——污泥部分高度(m),一般採用污泥斗高度與池底坡底i=1‰的高度之和。
設計中取h1=0.3m,h3=0.3m,得h4=3.94m,得到H=7.54m。
15、出水渠道:
沉澱池出水端設出水渠道,出水管與出水渠道連接,將污水送至集水井。
式中: v3——出水渠道水流流速(m/s),一般採用v3≥0.4m/s;
B3——出水渠道寬度(m);
H3——出水渠道水深(m),一般採用0.5-2.0。
設計中取B3=1.0M,H3=0.8m,得到v3=0.51m/s>0.4m/s。
出水管道採用鋼管,管徑DN=1000mm,管內流速為v=0.51m/s,水力坡降i=0.479‰。
16、進水擋板、出水擋板:
沉澱池設進水擋板和出水擋板,進水擋板距進水穿孔花牆0.5m,擋板高出水面0.3m, 伸入水下0.8m。出水擋板距出水堰0.5m,擋板高出水面0.3m,伸入水下0.5m。在出水擋板處設一個浮渣收集裝置,用來收集攔截的浮渣。
17、排泥管:
沉澱池採用重力排泥,排泥管直徑DN300mm,排泥時間t4=20min,排泥管流速v4=0.82m/s,排泥管伸入污泥斗底部。排泥管上端高出水面0.3m,便於清通和排氣。排泥靜水壓頭採用1.2m。
18、刮泥裝置:
沉澱池採用行車式刮泥機,刮泥機設於池頂,刮板伸入池底,刮泥機行走時將污泥推入污泥斗內。
(五)、曝氣池及其設計:
設計中採用傳統活性污泥法。傳統活性污泥法,又稱普通活性污泥法,污水從池子首端進入池內,二沉池迴流的污泥也同步進入,廢水在池內呈推流形式流至池子末端,其池型為多廊道式,污水流出池外進入二次沉澱池,進行泥水分離。污水在推流過程中,有機物在微生物的作用下得到降解,濃度逐漸降低。傳統活性污泥法對污水處理效率高,BOD去除率可達到90%以上,是較早開始使用並沿用至今的一種運行方式
7、曝氣池總高度:
H總=H+h
式中: H總——曝氣池總高度(m);
h——曝氣池超高(m),一般取0.3—0.5m。
設計中取 h=0.5m,則 H=4.7m。
10、管道設計:
①中位管:
曝氣池中部設中位管,在活性污泥培養馴化時排放上清液。中位管管徑為600mm。
②放空管:
曝氣池在檢修時,需要將水放空,因此應在曝氣池底部設放空管,放空管管徑為500mm。
④消泡管
在曝氣池隔牆上設置消泡水管,管徑為DN25mm,管上設閥門。消泡管是用來消除曝氣池在運行初期和運行過程中產生的泡沫。
⑤空氣管
曝氣池內需設置空氣管路,並設置空氣擴散設備,起到充氧和攪拌混合的作用。
11、曝氣池需氧量計算:
依照氣水比5:1進行計算,Q=14580m3/h。
12、鼓風機選擇:
空氣擴散裝置安裝在距離池底0.2m處,曝氣池有效水深為4.2m,空氣管路內的水頭損失按1.0m計,則空壓機所需壓力為:
P=(4.2-0.2+1.0)×9.8=49kPa
鼓風機供氣量:
Gsmax=14580m3/h=243m3/min。
根據所需壓力及空氣量,選擇RE-250型羅茨鼓風機,共5台,該鼓風機風壓49kPa,風量75.8m3/min。正常條件下,3台工作,2台備用;高負荷時,4台工作,1台備用
(六)、二沉池及其設計:
二沉池一般可分為平流式、輻流式、豎流式和斜板(管)等幾類。
平流式沉澱池可用於大、中、小型污水處理廠,但一般多用於初沉池,作為二沉池比較少見。平流式沉澱池配水不易均勻,排泥設施復雜,不易管理。
輻流式沉澱池一般採用對稱布置,配水採用集配水井,這樣各池之間配水均勻,結構緊湊。輻流式沉澱池排泥機械已定型化,運行效果好,管理方便。輻流式沉澱池適用於大、中型污水處理廠。
豎流式沉澱池一般用於小型污水處理廠以及中小型污水廠的污泥濃縮池。該池型的佔地面積小、運行管理簡單,但埋深較大,施工困難,耐沖擊負荷差。
斜管沉澱池具有沉澱效率高、停留時間短、佔地少等優點。一般常用於小型污水處理廠或工業企業內的小型污水處理站。斜管(板)沉澱池處理效果不穩定,容易形成污泥堵塞,維護管理不便。
設計中選用輻流沉澱池,沉澱池設2組,N=2組,每組設計流量0.405m3/s。
3、沉澱池有效水深:
h2=q′×t
式中: h2——沉澱池有效水深(m);
t——沉澱時間(h),一般採用1—3h。
設計中取 t=2.5h,得到 h2=3.5m。
4、徑深比:
D/h2=10.4,滿足6-12之間的要求。
5、污泥部分所需容積:
式中: Q0——平均流量(m3/s);
R——污泥迴流比(%);
X——污泥濃度(mg/L);
Xr——二沉池排泥濃度(mg/L)。
設計中取Q0=0.579 m3/s,R=50%,
,
SVI——污泥容積指數,一般採用70-150;
r——系數,一般採用1.2。
設計中取SVI=100,r=1.2,得到Xr=1.2×104mg/L,X=4000mg/L。
經計算得到 V1=1563.3m3。應採用連續排泥方式。
6、沉澱池的進、出水管道設計:
進水管:流量應為設計流量+迴流量,管徑計算為900mm
出水管:管徑計算為800mm
排泥管:管徑為500mm
7、出水堰計算:
堰上負荷的校核。規定堰上負荷范圍1.5-2.9L/m.s之間。
8、沉澱池總高度:
H=h1+h2+h3+h4+h5
式中:H——沉澱池總高度(m);
h1——沉澱池超高(m),一般採用0.3-0.5m;
h2——沉澱池有效水深(m);
h3——沉澱池緩沖層高度(m),一般採用0.3m;
h4——沉澱池底部圓錐體高度(m);
h5——沉澱池污泥區高度(m)。
設計中取h1=0.3m,h3=0.3m,h2=3.5m.
根據污泥部分容積過大及二沉池污泥的特點,採用機械刮吸泥機連續排泥,池底坡度為0.05。
h4=(r-r1)×i
式中:r——沉澱池半徑(m);
r1——沉澱池進水豎井半徑(m),一般採用1.0m;
i——沉澱池池底坡度。
設計中取r1=1.0m,i=0.05,得到h4=0.86m。
式中:V1——污泥部分所需容積(m3);
V2——沉澱池底部圓錐體容積(m3);
F——沉澱池表面積(m2)。
計算可得 =315.4m3,則h5=1.20m。
得到H=6.16m。
(七)、消毒接觸池及其設計:
污水經過以上構築物處理後,雖然水質得到了改善,細菌數量也大幅減少,但是細菌的絕對值依然十分客觀,並有存在病原菌的可能,因此,污水在排放水體前,應進行消毒處理。
設計中採用平流式消毒接觸池,消毒接觸池設2組,每組3廊道。
1、消毒接觸池容積:
V=Qt
式中: Q——單池污水設計流量(m3/s);
t——消毒接觸時間(min),一般採用30min。
設計中取t=30min,得每組消毒接觸池的容積為729m3。
2、消毒接觸池表面積:
F=V/h2
式中:h2——消毒池有效水深,設計中取為2.5m。
設計中取h2=2.5m,得到F=291.6m2。
3、消毒接觸池池長:
L′=F/B
式中:B——消毒池寬度(m),設計中取為5m。
設計中取B=5m,計算得 L=58.32m。每廊道長為19.44m,設計中取為20m。
校核長寬比:L′/B=11.7>10,合乎要求。
4、消毒接觸池池高:
H=h1+h2
式中:h1——消毒池超高(m),一般採用0.3m;
設計中取h1=0.3m,計算得 H=2.8m。
5、進水部分:
每個消毒接觸池的進水管管徑D=800mm,v=1.0m/s。
6、混合:
採用管道混合的方式,加氯管線直接接入消毒接觸池進水管,為增強混合效果,加氯點後接D=800mm的靜態混合器。
(八)、污泥濃縮池及其設計:
污泥濃縮的對象是顆粒間的空隙水,濃縮的目的是在於縮小污泥的體積,便於後續污泥處理,常用污泥濃縮池分為豎流濃縮池和輻流濃縮池2種。二沉池排出的剩餘污泥含水率高,污泥數量較大,需要進行濃縮處理;初沉污泥含水量較低,可以不採用濃縮處理。設計中一般採用濃縮池處理剩餘活性污泥。濃縮前污泥含水率99%,濃縮後污泥含水率97%。
13、溢流堰:
濃縮池溢流出水經過溢流堰進入出水槽,然後匯入出水管排出。出水槽流量q=0.0015m3/s,設出水槽寬b=0.15m,水深0.05m,則水流速為0.2m/s,溢流堰周長:
c=π(D-2b)
計算得到c=15.86m。
溢流堰採用單側90°三角形出水堰,三角堰頂寬0.16m,深0.08m,每格沉澱池有110個三角堰,三角堰流量q0為:
Q1=0.0015/110=0.0000136m3/s
h′=0.7q02/5
式中: q0——每個三角堰流量(m3/s);
h′——三角堰堰水深(m)。
計算得到h′=0.0079m。
『玖』 風機選型的應用問題
一、鼓風機是污水處理工程中常用的充氧設備,在污水廠風機選型時,風機廠家產品樣本上給出的均是標准進氣狀態下的性能參數,我國規定的風機標准進氣狀態: 壓力p0 =101. 3 kPa ,溫度T0 = 20 ℃,相對濕度φ= 50 % ,空氣密度ρ= 1. 2 kg/ m3 。然而風機在實際使用中並非標准狀態,當鼓風機的環境工況如溫度、大氣壓力以及海拔高度等不同時,風機的性能也將發生變化,設計選型時就不能直接使用產品樣本上的性能參數,而需要根據實際使用狀態將風機的性能要求,換算成標准進氣狀態下的風機參數來選型。
二、風機選型中應關注鼓風機出口壓力影響因素的分析容積式鼓風機排氣壓力的高低並不取決於風機本身,而是氣體由鼓風機排出後裝置的情況,即所謂「背壓」決定的 ,曝氣鼓風機具有強制輸氣的特點。鼓風機銘牌上標出的排氣壓力是風機的額定排氣壓力。實際上,鼓風機可以在低於額定排氣壓力的任意壓力下工作,而且只要強度和排氣溫度允許,也可以超過額定排氣壓力工作。對於污水處理廠而言,排氣系統所產生的絕對壓力(背壓) 為管路系統的壓力損失值、曝氣池水深和環境大氣壓力之和,如圖1 所示。若由於某種原因,如曝氣頭或管路堵塞,使管路系統的壓力損失增加,「背壓」也會升高,於是鼓風機的壓力也就相應升高;又若曝氣頭破裂或管路泄漏等原因,管路系統的壓力損失則會減少「, 背壓」便不斷降低,鼓風機的壓力也隨之降低。綜上所述,確定曝氣鼓風機壓力時,只需要鼓風機在標准狀態下所能達到的絕對壓力等於使用狀態下的大氣壓力、曝氣池水深和管路損失之和。
三、風機選型時應關注鼓風機空氣流量因素在計算污水處理的需氧量時,其結果為標准狀態下所需氧的質量流量qm (kg/ min) ,再將其換算成標准狀態下所需空氣的容積流量qv1(m3/ min) ,如果鼓風機的使用狀態不是標准狀態,例如在高原地區使用,則空氣密度、含濕量會發生變化,鼓風機所供應的空氣容積流量與標准狀態是相同的,而所供空氣的質量流量將減少,有可能導致供氧量不足。因此,必須計算出能供應相同質量流量的容積流量,即換算流量。在高原地區使用時,環境大氣壓力也會發生變化,壓力比相應升高,那麼,鼓風機的泄漏流量則會增大,這將導致鼓風機所供應的空氣容積流量減少,也可能造成供氧量不足。因此,設計時必須考慮使用條件發生變化時各種因素的影響,以保證風機所供應的實際空氣流量能夠滿足使用要求,並需計算出換算流量和泄漏流量。
四、風機選型應關注鼓風機供氣流量的變化規律對於同一台鼓風機,在冬季和夏季,其容積流量是不會發生變化的,但因空氣密度的不同質量流量會發生變化,也就是說供氧量會有所不同。鼓風機在標准狀態與使用狀態下的容積流量是不變的,但因為空氣密度(ρ) 、含濕量等發生了變化,導致鼓風機輸送至曝氣池的供氧量( FOR) 在冬季溫度降低時增加、夏季溫度升高時降低。例如,某一污水處理廠,選用上述計算例題中的羅茨鼓風機,根據環境溫度變化, 計算出鼓風機的實際供氧量,其一年的變化規律在實際運行過程中,由於進水量、水質、水溫、ML S S 等參數的變化,系統需氧量( SOR) 也會發生變化在夏季,水溫較高,曝氣池需氧量( SOR) 增大,但鼓風機的供氧量( FOR)在減少,這是設計時考慮需氧量的最不利工況點,此時,供氧量、需氧量基本相當;在冬季,水溫降低,曝氣池需氧量( SOR) 減少,但鼓風機的供氧量( FOR) 增大,此時,供氧量較需氧量大出許多。這是由於冬季氣溫降低,空氣密度增加,那麼風機所供給的干空氣的質量流量較標准狀態大幅度增加,從而引起供氧量增加,從運行的實際測量情況來看,每年冬季曝氣池的溶解氧較夏季會高出1~3mg/ L 。因此,在生產運行過程中,需要針對這種變化對設備進行及時的調整,使鼓風機的充氧能力與實際運行中的需氧量相適應。對於羅茨鼓風機來說,使用變頻器,通過改變風機轉速來調整供風量是很經濟實用的。不同季節曝氣池需氧量( SOR) 、鼓風機供氧量( FOR) 變化規律五、結論綜上所述,同一台鼓風機在不同的使用條件下,其性能的變化非常大,所以必須通過嚴謹的計算進行選型, 否則有可能導致生化系統的供氧不足; 另外,在冬季和夏季由於空氣密度發生了變化,鼓風機所供應氧氣的質量流量變化很大,冬季供氧量大大超過了需氧量,所以,應採取變頻調速等措施使生化系統的溶解氧濃度保持穩定。
風機變頻調速器選型:
風機在啟動時,電流會比額定高5-6倍的,不但會影響風機的使用壽命而且消耗較多的電量.系統在設計時在電機選型上會留有一定的餘量,電機的速度是固定不變,但在實際使用過程中,有時要以較低或者較高的速度運行。SAJ變頻器可實現電機軟啟動、補償功率因素、通過改變設備輸入電壓頻率達到節能調速的目的,而且能給設備提供過流、過壓、過載等保護功能。
風機所配電機的選型:
1.電機是風機的動力來源,電機的選型公式為 P=K*Q*P/1000*3600/η
K:電機儲備系數
η:風機效率
『拾』 百事德機械(江蘇)有限公司的加工設備
公司引進高端的加工設備,為產品100%合格提供了有力的保證。 BK/BKW型羅茨風機為容積式羅茨風機,是我公司羅茨風機系列具有代表性和競爭力的優秀產品之一,久經市場考驗,採用國外先進技術並引進美國Tuthill公司技術,設計合理,性能優越,廣泛應用於國內外各類污水處理及水泥電廠行業。採用葉軸一體結構,一體鑄造,一體加工而成;並且採用美國CR油封,密封性能卓越。與國內其他同類產品相比,技術成熟,具有明顯的優勢。
流量范圍:2.3~151.6m3/min, 壓力范圍:10~100kpa。
主要用於環保、電力、水力、化工、建材、糧食、養殖環保水處理等行業的鼓風曝氣、氣力輸送或氣源供應等。 HC-S型回轉式鼓風機採用國外先進技術,通過轉子偏心運轉不斷壓縮輸送氣體,並通過壓力差自動送油,設計巧妙,具有低噪音,運轉平穩,風量穩定等特點。
流量范圍:0.28~5.4m3/min, 壓力范圍:10~50kpa。
主要用於水處理行業的鼓風曝氣,電鍍槽、工業廢水的攪拌曝氣,醫院、實驗室的污水攪拌曝氣,塑焊、吹風的氣源供應,印刷行業的真空送紙,燃燒器的噴霧,玻璃行業及其它。 結構緊湊,進出風口結構相同,安裝方式靈活多變;
葉軸一體結構,避免了葉軸分體結構的缺陷;
風機水冷卻結構,改良軸承工作條件,延長了軸承的使用壽命;
風機內部及葉輪表面噴塗特殊材料,潤滑性、抗粘結性好;
風機能傳輸酸、鹼、腐蝕、易燃易爆等特殊氣體。 採用新線形的葉輪機ENDLESS結構的殼體進出風口,風機回漏風小、溫度低,能耗比普通風機降低15%~20%。
採用球墨鑄鐵的葉輪,耐磨性好、韌性好、抗沖擊性能好。
採用高精度的齒輪和軸承,整機使用壽命長。
流量范圍:1.47~163.22m3/min, 壓力范圍:10~100kpa。 D系列多級離心鼓風機為多級、串聯式、單吸入、雙支承離心鼓風機,轉子採用先進的准三維(三元流)設計,線型合理,鼓風機效率達到65%以上。通過進口端蝶閥來調節流量(50%--100%),也可以通過變頻電機調速來調節流量。
進口流量:20~400m3/min,出口壓力:1000~10000mmH2O。
主要用於污水處理、冶煉高爐、洗煤廠、礦山浮選、化工造氣等領域氣體的輸送。 GS系列單級高速離心風機為單級懸臂式、軸向進氣、徑向排氣結構。空氣經進氣過濾裝置,進入吸入管及進口導葉器,由主驅動機藉助聯軸器與增速箱齒輪聯接,增速箱齒輪驅動高速轉動的三元混流半開式葉輪對氣體做功,氣體經無葉擴壓器、蝸室排出。
機組運行全過程採用自整定智能儀表或可編程式控制制器(PLC)與人機界面,可實現自動/手動調節風量。採用數字顯示觸摸屏控制櫃,通過相應的支撐軟體對機組進行全方位控制和調節。同時記錄各種故障,並進行故障智能診斷,提示產生故障原因,方便機組運行和維護。
進口流量:120~400m3/min,出口壓力:1000~7000mmH2O。