線性伏安掃描法測定廢水中的鎘論文
① 線性掃描伏安法
從正電壓掃向負電壓,電極得到電子,發生還原反應,即還原峰。
② 水和廢水檢測分析方法銅鉛鎘石墨爐怎麼測定
你好,來
水和廢水檢測自分析方法銅鉛鎘石墨爐的檢測方法大體相同,但是因為兩個裡面的成分可能不同,所以檢測的時候有微小的區別。所以這個要做詳細的成分分析,並且做環境檢測和水質檢測,希望能夠幫助你,如果還是不懂的話問問西安國聯質檢
③ 用標准加入法測定某水樣中的鎘,取四份等量水樣
Y=0.0037X+0.0424
Y:吸光度;
X:鎘含量(μg)
Y=0時,X=11.46μg
水樣中鎘的濃度為:11.46/20*1000=573μg/L
例如:
線性回歸就可以了,用科版學計算器或EXCL均可。權
最簡單的就是在坐標紙上畫就可以了。
y=ax-b
x:吸光度
y:鎘的濃度值(加入標准液的)
(3)線性伏安掃描法測定廢水中的鎘論文擴展閱讀:
吸光系數與入射光的波長以及被光通過的物質有關,只要光的波長被固定下來,同一種物質,吸光系數就不變。
當一束光通過一個吸光物質(通常為溶液)時,溶質吸收了光能,光的強度減弱。吸光度就是用來衡量光被吸收程度的一個物理量。
吸光度用A表示。
A=abc,其中a為吸光系數,單位L/(g·cm),b為光在樣本中經過的距離(通常為比色皿的厚度),單位cm , c為溶液濃度,單位g/L。
A=Ecl
影響吸光度的因數是b和c。a是與溶質有關的一個常量。此外,溫度通過影響c,而影響A。
④ 線性掃描伏安法中,電位有沒有可能由負到正,電流得到峰值
你提到了電位,參考點選擇掃描電壓最大值和最小值得中點不就實現了正負電壓嗎?
至於電流的峰值出現在哪裡要看你的被測元件特性了。
⑤ 從線性掃描伏安曲線可以得到哪些結論
1、線性掃描伏安法
線性掃描伏安法是在電極上施加一個線性變化的電壓,即電極電位是隨外
加電壓線性變化記錄工作電極上的電解電流的方法。記錄的電流隨電極電位變化的曲線稱為線性掃描伏安圖。可逆電極反應的峰電流可由下式表示:
Ip=0.4463nFADo1/2Co*(n F v/RT)1/2=5.99*105n3/2Ado1/2v1/2Co* (1) 式中n為電子交換數,A為電極有效面積,Do為反應物的擴散數,v為電位掃描速度,Co*為反應物(氧化態)的本體濃度。也可簡化為(A不變時) ip=kv1/2Co* (2) 即峰電流與掃描速度的1/2次方成正比,與反應物的本體濃度成正比。這就是線性掃描伏安法定量分析的依據。
對於可逆電極反應,峰電位與掃描速度無關,
Ep=E1/2±1.1RT/nF (3) 但當電位反應為不可逆時(准可逆或完全不可逆)。Ep隨掃描速度增大而負(正)移。
2、循環伏安法
循環伏安法的原理同線性掃描伏安法相同,只是比線性掃描伏安法多了一
個回歸。所以稱為循環伏安法。循環伏安法是電化學方法中最常用的實驗技術。循環伏安法有兩個重要的實驗參數,一個峰電位之比,二是峰電位之差。對於可逆電極反應,峰電流之比iPc/ipa的絕對值約等於1。峰電位之差約為59.6mv(25℃)。
△Ep=2.22RT/nF
⑥ 線性掃描伏安法中,電位的負值代表什麼怎麼會出現負電位
相對參比電極的電位。
⑦ 那位高手知道國標法測定廢水中的鋅鉛鎘的實驗流程是怎麼樣的
總鋅:原子吸收分光光度法,GB7475-87或雙硫腙分光光度法,GB7472-87
總鉛:原子吸收分光內光度法(螯合萃容取法)GB7475-87或雙硫腙分光光度法,GB7470-87
總鎘:原子吸收分光光度法(螯合萃取法)GB7475-87或雙硫腙分光光度法,GB7471-87
⑧ 工業廢水中鉛含量的測定論文
水中鉛測定方法詳解(1)
在中性和鹼性溶液中,雙硫腙與鉛反應生成單取代雙硫腙絡合物,溶於有機溶劑而呈洋紅色。反應靈敏,最大吸收波長為520nm,摩爾吸光系數(ε)6.86×104L/(mol·cm)。
有機溶劑通常使用三氯甲烷或四氯化碳,四氯化碳可比三氯甲烷在較低pH值萃取鉛,不形成二鉛酸鹽,且四氯化碳不溶於水,揮發性較低,比重較大。另一方面,鉛一雙硫腙絡合物在三氯甲烷中溶解度較大,可萃取較大量的鉛。由於雙硫腙在三氯甲烷中溶解度比四氯化碳為大,因此,當需要從三氯甲烷中完全除去雙硫腙時,必須保持較高的pH值。
當使用三氯甲烷作溶劑時,鉛可在pH8~11.5被定量萃取。,通常採用百里酚藍(pH8.O~9.6)作指示劑,調節水相由綠變藍(pH~9.5),然後進行萃取。亦有建議在高pH值進行萃取,如SnydercsJ提出,在含檸檬酸銨和氰化鉀的pH9.5~10.0水溶液中,用雙硫腙一三氯甲烷溶液萃取鉛,繼用稀硝酸反萃取,最後用氨性氰化物溶液調節至pH11.5,以雙硫腙三氯甲烷溶液萃取,在pHll.5的高pH值下,使過量雙硫腙成為銨鹽而進入水層。
影響鉛的萃取率,除pH外,還與所用溶劑、存在陰離子的種類和數量、兩相的體積比、雙硫腙在有機相中的濃度等參數有關。陰離子由於與鉛形成絡合物而影響萃取平衡,如在同樣的pH,當含一定濃度的乙酸鹽、酒石酸鹽和檸檬酸鹽時,可使萃取率降低。
雙硫腙法測定鉛,可採用單色法,亦可採用混色法,前者以氨性氰化物溶液洗去有機層中過量的雙硫腙後,測量絡合物的吸光度,後者則有機層中殘留過量的雙硫腙不經除去直接測量吸光度,操作簡便。然而對鉛含量極微的水樣,由於受基體影響,當採用混色法測定,以無鉛水制備的空白試驗為參比時,往往會出現負值,而單色法則無此現象。
干擾及其消除
在最適pH萃取鉛時,Ag+、Hg2+、Pd2+、Au3+、Cu2+、Zn2+、cd2+、Co2+和Ni2+亦可與雙硫腙絡合而被萃取,可加氰化物掩蔽之。如有大量的Ag+、Hg2+、Pd2+、Au3+和Cu2+存在(每一種金屬離子超過1mg),則最好是在強酸性溶液中,甩雙硫腙一氯仿溶液預先將這些金屬離子萃取除去。而後再測定鉛。
Bi2+、In3+、Tl+和Sn2+不能為氰化物所掩蔽,鉍在較低pH時比鉛易於被雙硫腙萃取,因此可將水層調節至一定pH(通常為2.O~3.5),鉍被萃取而鉛仍在水液中,然後提高pH值而萃取
鉛。亦可先在較高pH值,使鉍和鉛一起被萃取,然後用緩沖液洗有機層使鉛進入水層(如用
C014作溶劑則pH為2.3~2.5,用CHCl3則為pH3.4),或用鹼性溶液(通常pH大於1l的0.5~
1%氰化鉀溶液)洗有機層,使鉍先行解離。
鉍量很大時,可用溴和氫溴酸處理,使成三溴化鉍使其揮發。
銦的干擾:銦萃取的最適pH為5.2~6.3(CCl4)和8.3~9.6(CHCl3),因此可採用pH值大
於lO,以CCl4為溶劑,當銦存在100倍過量時,可進行鉛的萃取。
鉈的干擾嚴重:可調節pH至6.0~6.4,用雙硫腙萃取鉛,此時鉈不被萃取。或將萃取物與
0.5%氰化鉀溶液振搖,此時鉈一雙硫腙鹽解離而鉛一雙硫腙鹽則不解離。
大量的鉈亦可以在2~4mol/L HCl中,用乙醚萃取除去。
Fe3+可由於氰化物的存在而形成高鐵氰化物,使雙硫腙氧化而干擾,如加鹽酸羥胺、肼、亞硫酸鈉或其他還原劑,使變成亞鐵氰化物則不幹擾。銅亦可能有類似的干擾。
含大量Fe3+時,可在1.2mol/L HCl介質中,加過量銅鐵試劑,用CHCl3萃取之,此時鉛不被沉澱亦不被萃取,而Cu3+、Bi3+、Tl3+和Sn2+亦被除去,過量銅鐵試劑用CHCl3萃取除去。
Sn2+可引起干擾,而Sn4+則不幹擾,含量大時,可形成溴化錫揮發除去。
在鹼性介質中可產生沉澱的金屬(氫氧化物),以檸檬酸銨或酒石酸鹽絡合掩蔽之。
另外還有一些金屬可妨礙鉛的萃取,特別如鈦(5mg或以上)可阻礙鉛從pH7~11的氨性檸檬酸鹽溶液中的完全萃取。含高濃度鋁時,亦有類似情況。遇此場合,可先用硫化物沉澱分離,必要時加少量銅作為共沉澱劑。
陰離子的影響,硫化物是較重要的,試劑級的氰化鉀中常發現含有硫化物。其他陰離子如檸檬酸鹽、酒石酸鹽。存在高濃度時,因絡合作用而阻礙鉛的萃取。高濃度的磷酸鹽、膠體狀的硅酸亦可使鉛的萃取發生困難,必要時以較濃的雙硫腙溶液反復萃取之。
鉛一雙硫腙絡合物可被稀酸溶液所解離這一性質,有助於干擾物質的分離,即第一次用較濃的雙硫腙溶液萃取分離之後,用稀酸液振搖,使鉛返回水相,然後再調節至最適pH,第二次用雙硫腙溶液從水相中萃取鉛 。
水中鉛測定方法詳解(2)
(《生活飲用水檢驗規范》部分)
在地殼中,鉛是一種相對少的元素,以低濃度廣泛存在於未受污染的沉積岩與土壤中。未受污染的海水約含0.03μg/L,而接近表層與海岸則濃度可增高10倍。淡水的含量較高,約為1~50μg/L。
由於使用含鉛汽油和冶煉廠的煙塵使大氣中含有鉛,從而使水中濃度增高。工業生產,采礦或冶煉廠廢水均可污染水體。使用含鉛高的管道或含鉛化合物的塑料管作自來水管,可使飲水中鉛含量增高。
鉛可在人體內蓄積,主要毒性為引起貧血、神經機能失調和腎損傷。
27.1水中鉛的測定方法有原子吸收分光光度法、分光光度法、示波極譜法、電位溶出法等。
與其它元素相比,鉛測定方法的發展較慢。雖也有一些新方法的報導,但有實用價值的
不多。孫勤樞等報導的氧化電位溶出法是一種較好的方法,可以同時測定水中銅、鉛、鐵、
鋅、鎘。其中鉛的線性范圍為0.1~3400μg/L,用來測定水中鉛與原子吸收法基本一致,但精
密度優於原子吸收法。
在報導的分光光度法中,比較好的有碘化鉀-丁基羅丹明B-阿拉伯膠-曲拉通x-100體系分光光度法。該法靈敏度較高,摩爾吸光系數為6.2×105L·mol-1·cm-1,可以滿足要求。水中常見的離子無干擾,少見的離子如Ag+、Cu2+、Cd2+、Hg2+等,可用巰基棉預處理消除。它測定湖水中鉛的結果與原子吸收法一致。
27.1原子吸收法測鉛,靈敏度及精密度均不太理想。有文獻報道同時應用高性能空心陰極燈,超聲波霧化器和縫管式原子捕集器可使靈敏度大為提高,精密度明顯改善。詳細情況請參考第二篇第五節。
27.2無火焰原子吸收法測定鉛時,經常使用次靈敏線283.3nmo雖然用靈敏線217.0nm測定鉛的靈敏度比用次靈敏線283.3nm高約2倍,但在217.0nm處的能量很難與氘燈能量平衡。若用塞曼效應校正背景時可採用217.0nm分析線。
27.2參見25鎘的註解25.2。
27.2.1有文獻指出:用HGA-72型石墨爐測定鉛時發現,K、Na、Al的氯化物不幹擾鉛的測定,ca、co、Fe、Mn的氯化物對鉛的測定有干擾。濃度為1g/L的NiCl2能將鉛的信號全部抑制。除了濃度為lg/L的NaNO3干擾鉛的信號約為20%外,其餘的硝酸鹽對鉛的測定沒有影響。若使用經LaCl3處理過的石墨管測定,濃度高達500mg/L的氯化物也不幹擾鉛的測定。
27.2.2 當鉛濃度為10μg/L時,10mg/L的K、Cd、Zn、Be、Fe、Mn無干擾,100mg/L的Na、Ca 無干擾,S042-、P043-有干擾,加入7.5g/L的La可降低干擾。
27.2.3.4可作為鉛的基體改進劑的無機試劑還有:NH4NO3,(NH4)2HPO4,CaCl2,Pt和Pd等。有機試劑有:草酸、抗壞血酸和硫脲等。
27.3.2雙硫腙分光光度法是一種比較古老的方法,但至今仍有一定的實用價值。雙硫腙在弱鹼性溶液中與鉛形成紅色絡合物。
27.3.3.4有人作過試驗,使用的雙硫腙透光率為60%比70%的標准曲線線性關系好,試驗結果見表27.1。
表27.1 雙硫腙透光率對線性的影響
27.3.5.2.2水中鈣、鎂離子在鹼性溶液中可形成沉澱析出,影響對鉛的萃取,加入檸檬酸銨可防止析出沉澱,因檸檬酸銨可與鈣、鎂等離子形成穩定的絡合物。
27.3.5.2.2銅、鋅等金屬離子也與雙硫腙反應生成紅色絡合物,對鉛的測定有干擾。加入 氰化鉀可與這些離子形成穩定的絡陰離子如 [Cu(CN)4]3-和[Zn(CN)4]2- ,故可消除它們的干擾。
⑨ 線性掃描伏安法測試時參比電極參數中氯化鉀是什麼意思
減小誤差(線性相當於取了平均值),可以直接讀出電阻,可看到V與I的直接關系等。