吹脫廢水除氨氮工藝
⑴ 污水氨氮去除技術
氨氮廢水在選擇處理技術的過程中,應從水質條件、處理效率、成本和處理標准幾內個方面來考容慮,氨氮廢水最傳統的處理方法是吹脫法,隨著國家對環保要求的提高,吹脫法的一些劣勢也顯現出來。依斯倍環保擁有「脫氨膜處理高氨氮廢水技術」的獨特專利,此項技術已被成功納入《江蘇省水污染防治技術指導目錄》,依斯倍脫氨膜技術具體是採用高分子聚合物材料製成疏水性的中空纖維陣列,纏繞到有大量通道的布水管上,再封入膜殼,同時完成導流擋板的製作。脫氨膜工藝省卻傳統工藝吹掃空氣的動作,節省了大量的電耗,依斯倍環保脫氨膜技術已成功應用於江蘇利民集團氨氮廢水處理工程,工程設備能耗只有傳統吹脫法的10%,氨氮去除率高達85%。
⑵ 污水處理廠氨氮廢水去除方法是怎樣的呢
氨氮廢水特點:
氨氮廢水的一般的形成是由於氨水和無機氨共同存在所造成的,廢水中氨氮的構成主要有兩種,一種是氨水形成的氨氮,一種是無機氨形成的氨氮,主要是硫酸銨,氯化銨等等。氨氮廢水主要來自化工、冶金、化肥、煤氣、煉焦、鞣革、味精、肉類加工和養殖等行業。排放的廢水以及垃圾滲濾液等。
氨氮廢水危害:
氨氮廢水對魚類及某些生物也有毒害作用。另外,當含少量氨氮的廢水回用於工業中時,對某些金屬,特別是銅具有腐蝕作用,還可以促進輸水管道和用水設備中微生物的繁殖,形成生物垢,堵塞管道和設備。
氨氮廢水處理方法:
處理氨氮廢水的方法有很多,目前常見的有化學沉澱法、吹脫法、化學氧化法、生物法、膜分離法、離子交換法以及土壤灌溉等。
氨氮廢水處理方法以及各種方法的優缺點:
1、化學沉澱法。又稱為MAP沉澱法,是通過向含有氨氮的廢水中投加鎂化物和磷酸或磷酸氫鹽,使廢水中的NH4﹢與Mg²﹢、PO4³﹣在水溶液中反應生成磷酸按鎂沉澱,分子式為MgNH4P04.6H20,從而達到去除氨氮的目的。
影響化學沉澱法處理效果的因素主要有pH值、溫度、氨氮濃度以及摩爾比(n(Mg²﹢):n(NH4﹢):n(P04³-))等。
化學沉澱法的缺點:由於受磷酸鐵鎂溶度積的限制,廢水中的氨氮達到一定濃度後,再投人葯劑量,則去除效果不明顯,且使投入成本大大增加,因此化學沉澱法需與其它適合深度處理的方法配合使用;葯劑使用量大,產生的污泥較多,處理成本偏高;投加葯劑時引人的氯離子和余磷易造成二次污染。
2、吹脫法。去除氨氮是通過調整pH值至鹼性,使廢水中的氨離子向氨轉化,使其主要以游離氨形態存在,再通過載氣將游離氨從廢水中帶出,從而達到去除氨氮的目的。
影響吹脫效率的因素主要有pH值、溫度、氣液比、氣體流速、初始濃度等。
吹脫法去除氨氮效果較好,操作簡便,易於控制。對於吹脫的氨氮可以用硫酸做吸收劑,生成的硫酸錢製成化肥使用。吹脫法是目前常用的物化脫氮技術。但吹脫法存在一些缺點,如吹脫塔內經常結垢,低溫時氨氮去除效率低,吹脫的氣體形成二次污染等。吹脫法一般與其它氨氮廢水處理方法聯合運用,用吹脫法對高濃度氨氮廢水預處理。
3、化學氧化法包含:折點氯化法、催化氧化法、電化學氧化法;
4、生物法包含:傳統生物脫氮技術、新型生物脫氮技術(同時硝化反硝化(SND)、短程消化反硝化、厭氧氨氧化)
5、膜分離法。利用膜的選擇透過性對液體中的成分進行選擇性分離,從而達到氨氮脫除的目的。包括反滲透、納濾和電滲析等。影響膜分離法的因素有膜特性、壓力或電壓、pH值、溫度以及氨氮濃度等。
膜分離法的優點是氨氮回收率高,操作簡便,處理效果穩定,無二次污染等。但在處理高濃度氨氮廢水時,所使用的薄膜易結垢堵塞,再生、反洗頻繁,增加處理成本,故該法較適用於經過預處理的或中低濃度的氨氮廢水。
6、離子交換法。通過對氨離子具有很強選擇吸附作用的材料去除廢水中氨氮的方法。常用的吸附材料有活性炭、沸石、蒙脫石及交換樹脂等。
離子交換法是通過對氨離子具有很強選擇吸附作用的材料去除廢水中氨氮的方法。常用的吸附材料有活性炭、沸石、蒙脫石及交換樹脂等。
7、土壤灌溉。是將低濃度氨氮廢水直接作為肥料使用的方法。對於有些含有病菌、重金屬、有機及無機等有害物質的氨氮廢水需經預處理將其去除後再進行灌溉。土壤灌溉要求氨氮濃度一般為幾十毫克每升。
⑶ 污水除氨氮,用哪些方法
除氨氮可以用吹脫法。
在鹼性條件下,利用氨氮的氣相濃度和液相濃度之間的氣液平衡關系進行分離的一種方法。一般認為吹脫效率與溫度、pH、氣液比有關。
而控制吹脫效率高低的關鍵因素是溫度、氣液比和pH。
在水溫大於25 ℃,氣液比控制在3500左右,滲濾液pH控制在10.5左右,對於氨氮濃度高達2000~4000mg/L的垃圾滲濾液,去除率可達到90%以上。吹脫法在低溫時氨氮去除效率不高。
採用超聲波吹脫技術對化肥廠高濃度氨氮廢水(例如882mg/L)進行了處理試驗。最佳工藝條件為pH=11,超聲吹脫時間為40min,氣水比為1000:1試驗結果表明,廢水採用超聲波輻射以後,氨氮的吹脫效果明顯增加,與傳統吹脫技術相比,氨氮的去除率增加了17%~164%,在90%以上,吹脫後氨氮在100mg/L以內。
為了以較低的代價將pH調節至鹼性,需要向廢水中投加一定量的氫氧化鈣,但容易生水垢。同時,為了防止吹脫出的氨氮造成二次污染,需要在吹脫塔後設置氨氮吸收裝置。
在處理經UASB預處理的垃圾滲濾液(2240mg/L)時發現在pH=11.5,反應時間為24h,僅以120r/min的速度梯度進行機械攪拌,氨氮去除率便可達95%。而在pH=12時通過曝氣脫氨氮,在第17小時pH開始下降,氨氮去除率僅為85%。據此認為,吹脫法脫氮的主要機理應該是機械攪拌而不是空氣擴散攪拌。
⑷ 什麼叫吹脫法除氨氮的原理是什麼
常用的處理氨氮廢水的方法主要有吹脫法、生化法、離子交換法、折回點氯化法和磷酸銨鎂答沉澱(MAP)法等。目前,國內多採用生化法和吹脫法,國外則多採用生化法和磷酸銨鎂沉澱法。吹脫法多用於處理中高濃度、大流量氨氮廢水,吹脫出的氨可以回收利用,但有容易結垢、低溫時氨氮去除效率低、吹脫時間長、二次污染、出水氨氮濃度仍偏高等缺點,所以明確影響吹脫法的關鍵因素,提高氨氮去除率,對於氨氮處理成本控制、水污染得到控制、實現城市的可持續發展具有重要的意義。吹脫法的基本原理是利用廢水中所含的氨氮等揮發性物質的實際濃度與平衡濃度之間存在的差異,在鹼性條件下使用空氣吹脫,由於在吹脫過程中不斷排出氣體,改變了氣相中的氨氣濃度,從而使其實際濃度始終小於該條件下的平衡濃度,最終使廢水中溶解的氨不斷穿過氣液界面,使廢水中的NH3-N得以脫除,常以空氣作為載體。氨吹脫是一個傳質過程,推動力來自空氣中氨的分壓與廢水中氨濃度相當的平衡分壓之間的差,氣體組份在液面的分壓和液體內的濃度符合亨利定理,即成正比關系。此法也叫「氨解析法」,解析速率與溫度、氣液比有關。
⑸ 吹脫法處理氨氮廢水是否新思路
謝謝樓上的專家抄噢,襲但是這個版塊好像不能給你加分噢。其實我也知道生物脫氮工藝現在很流行,但是實驗室條件不夠,而且我是學化工的,對於生物方面不是很了解,導師建議從原始的吹脫法做起,可是以他的思路何以發文章啊,正在愁呢。。。
⑹ 高氨氮廢水處理工藝
根據你給的一些其他數據,我說點個人看法:
1.生化性不錯,但氨氮進水濃度比較高,出水要求氨氮為15,所以建議使用A/O
2.廢水進入A/O前考慮作預處理,比如吹脫,考慮到不造成2次污染,可以加一尾氣吸收裝置
3.看產品的情況,廢水本身很可能是鹼性的,在此基礎上調節作吹脫,也可以節約部分葯劑成本
4.COD本身生化性比較好,一般情況下問題不大,在吹脫後的情況下,氨氮倒50~100一下不難,後續A/O在正常運行的情況下達到排放標准不難
5.如果不用吹脫,直接500多濃度的氨氮進行生化處理,壓力太大,雖然實際運行中有處理好的案例,但不夠保險,故實際選擇還是看自身情況
⑺ 氨氮廢水使用吹脫法+a2o工藝如何處理
根據我做的十幾個工程案例來看,氨氮才450用吹脫塔效果很差。
直接A2O的話碳氮比嚴重失調了,至少要達到5.
這樣每天需要加大量的碳源。建議使用物理混凝方法去除氨氮
⑻ 處理氨氮廢水的方法
氨氮廢水處理方法:
處理氨氮廢水的方法有很多,目前常見的有化學沉澱法、吹脫法、化學氧化法、生物法、膜分離法、離子交換法以及土壤灌溉等。
氨氮廢水處理方法以及各種方法的優缺點:
1、化學沉澱法。又稱為MAP沉澱法,是通過向含有氨氮的廢水中投加鎂化物和磷酸或磷酸氫鹽,使廢水中的NH4﹢與Mg²﹢、PO4³﹣在水溶液中反應生成磷酸按鎂沉澱,分子式為MgNH4P04.6H20,從而達到去除氨氮的目的。
影響化學沉澱法處理效果的因素主要有pH值、溫度、氨氮濃度以及摩爾比(n(Mg²﹢):n(NH4﹢):n(P04³-))等。
化學沉澱法的缺點:由於受磷酸鐵鎂溶度積的限制,廢水中的氨氮達到一定濃度後,再投人葯劑量,則去除效果不明顯,且使投入成本大大增加,因此化學沉澱法需與其它適合深度處理的方法配合使用;葯劑使用量大,產生的污泥較多,處理成本偏高;投加葯劑時引人的氯離子和余磷易造成二次污染。
2、吹脫法。去除氨氮是通過調整pH值至鹼性,使廢水中的氨離子向氨轉化,使其主要以游離氨形態存在,再通過載氣將游離氨從廢水中帶出,從而達到去除氨氮的目的。
影響吹脫效率的因素主要有pH值、溫度、氣液比、氣體流速、初始濃度等。
吹脫法去除氨氮效果較好,操作簡便,易於控制。對於吹脫的氨氮可以用硫酸做吸收劑,生成的硫酸錢製成化肥使用。吹脫法是目前常用的物化脫氮技術。但吹脫法存在一些缺點,如吹脫塔內經常結垢,低溫時氨氮去除效率低,吹脫的氣體形成二次污染等。吹脫法一般與其它氨氮廢水處理方法聯合運用,用吹脫法對高濃度氨氮廢水預處理。
3、化學氧化法包含:折點氯化法、催化氧化法、電化學氧化法;
4、生物法包含:傳統生物脫氮技術、新型生物脫氮技術(同時硝化反硝化(SND)、短程消化反硝化、厭氧氨氧化)
5、膜分離法。利用膜的選擇透過性對液體中的成分進行選擇性分離,從而達到氨氮脫除的目的。包括反滲透、納濾和電滲析等。影響膜分離法的因素有膜特性、壓力或電壓、pH值、溫度以及氨氮濃度等。
膜分離法的優點是氨氮回收率高,操作簡便,處理效果穩定,無二次污染等。但在處理高濃度氨氮廢水時,所使用的薄膜易結垢堵塞,再生、反洗頻繁,增加處理成本,故該法較適用於經過預處理的或中低濃度的氨氮廢水。
6、離子交換法。通過對氨離子具有很強選擇吸附作用的材料去除廢水中氨氮的方法。常用的吸附材料有活性炭、沸石、蒙脫石及交換樹脂等。
離子交換法是通過對氨離子具有很強選擇吸附作用的材料去除廢水中氨氮的方法。常用的吸附材料有活性炭、沸石、蒙脫石及交換樹脂等。
7、土壤灌溉。是將低濃度氨氮廢水直接作為肥料使用的方法。對於有些含有病菌、重金屬、有機及無機等有害物質的氨氮廢水需經預處理將其去除後再進行灌溉。土壤灌溉要求氨氮濃度一般為幾十毫克每升。
⑼ 廢水中氨氮的去除
隨著環保科技的不斷進步,廢水中氨氮的去除方法也在不斷完善。
廢水中氨氮的去除方法運用比較多的有生物法、空氣吹脫、化學法等。
1
生物法
目前,生物法是比較傳統、成熟的廢水中氨氮的去除方法,能在一定程度上去除污水中的氨氮。
傳統生物脫氮途徑一般包括硝化和反硝化兩個階段。這兩個階段的反應分別由硝化菌和反硝化菌作用完成。
由於對環境條件的要求不同,這兩個過程不能同時發生,而只能序列式進行。
即硝化反應發生在好氧條件下,反硝化反應發生在缺氧或厭氧條件下。
使用要求
1
pH:控制在8左右;
2
溫度:維持在20℃~40℃;
3
溶解氧:硝化階段保持在2~3mg/L,反硝化階段保持在1mg/L以下。
2
空氣吹脫法
讓廢水與空氣充分接觸,則水中揮發性的氨氣將由液相向氣相轉移,達到廢水中氨氮的去除效果。
吹脫塔內裝填木質或塑料板條填料,空氣流由塔的下部進入,而廢水則由塔頂落至塔底集水池。
使用要求
1
pH:控制在10.8~11.5;
2
溫度:水溫降低時氨的溶解度增加,吹脫效率降低;
3
氣/水比:可取2500~5000(m3/m2)
4
水力負荷:2.5~5m3/m2•h
3
化學法
該廢水中氨氮的去除方法也因使用簡單、去除率高、時間短而受到眾多環保人的歡迎。
在污水中直接投加一種可以去除廢水中氨氮的葯劑——氨氮去除劑。
該方法可以在5分鍾左右,氨氮去除率96%以上,達到深度脫氮的效果。
使用要求
1
pH:可以在很寬的范圍使用;
2
溫度:即便很低的溫度都可以使用;
3
無污染:真正環保的脫氮方法,沒有2次污染,無沉澱物。
⑽ 工業廢水去除氨氮的方法
根據廢水中氨氮濃度的不同,可將廢水分為3類:高濃度氨氮廢水(NH3-N>500mg/l),中等濃度氨氮廢水(NH3-N:50-500mg/l),低濃度氨氮廢水(NH3-N<50mg/l)。然而高濃度的氨氮廢水對微生物的活性有抑製作用,制約了生化法對其的處理應用和效果,同時會降低生化系統對有機污染物的降解效率,從而導致處理出水難以達到要求。
故本工程的關鍵之一在於氨氮的去除,去除氨氮的主要方法有:物理法、化學法、生物法。物理法含反滲透、蒸餾、土壤灌溉等處理技術;化學法含離子交換、氨吹脫、折點加氯、焚燒、化學沉澱、催化裂解、電滲析、電化學等處理技術;生物法含藻類養殖、生物硝化、固定化生物技術等處理技術。目前比較實用的方法有:折點加氯法、選擇性離子交換法、氨吹脫法、生物法以及化學沉澱法。
1. 折點氯化法去除氨氮
折點氯化法是將氯氣或次氯酸鈉通入廢水中將廢水中的NH3-N氧化成N2的化學脫氮工藝。當氯氣通入廢水中達到某一點時水中游離氯含量最低,氨的濃度降為零。當氯氣通入量超過該點時,水中的游離氯就會增多。因此該點稱為折點,該狀態下的氯化稱為折點氯化。處理氨氮廢水所需的實際氯氣量取決於溫度、pH值及氨氮濃度。氧化每克氨氮需要9~10mg氯氣。pH值在6~7時為最佳反應區間,接觸時間為0.5~2小時。
折點加氯法處理後的出水在排放前一般需要用活性碳或二氧化硫進行反氯化,以去除水中殘留的氯。1mg殘留氯大約需要0.9~1.0mg的二氧化硫。在反氯化時會產生氫離子,但由此引起的pH值下降一般可以忽略,因此去除1mg殘留氯只消耗2mg左右(以CaCO3計)。折點氯化法除氨機理如下:
Cl2+H2O→HOCl+H++Cl-
NH4++HOCl→NH2Cl+H++H2O
NHCl2+H2O→NOH+2H++2Cl-
NHCl2+NaOH→N2+HOCl+H++Cl-
折點氯化法最突出的優點是可通過正確控制加氯量和對流量進行均化,使廢水中全部氨氮降為零,同時使廢水達到消毒的目的。對於氨氮濃度低(小於50mg/L)的廢水來說,用這種方法較為經濟。為了克服單獨採用折點加氯法處理氨氮廢水需要大量加氯的缺點,常將此法與生物硝化連用,先硝化再除微量殘留氨氮。氯化法的處理率達90%~100%,處理效果穩定,不受水溫影響,在寒冷地區此法特別有吸引力。投資較少,但運行費用高,副產物氯胺和氯化有機物會造成二次污染,氯化法只適用於處理低濃度氨氮廢水。
2. 選擇性離子交換化去除氨氮
離子交換是指在固體顆粒和液體的界面上發生的離子交換過程。離子交換法選用對NH4+離子有很強選擇性的沸石作為交換樹脂,從而達到去除氨氮的目的。沸石具有對非離子氨的吸附作用和與離子氨的離子交換作用,它是一類硅質的陽離子交換劑,成本低,對NH4+有很強的選擇性。
O.Lahav等用沸石作為離子交換材料,將沸石作為一種把氨氮從廢水中分離出來的分離器以及硝化細菌的載體。該工藝在一個簡單的反應器中分吸附階段和生物再生階段兩個階段進行。在吸附階段,沸石柱作為典型的離子交換柱;而在生物再生階段,附在沸石上的細菌把脫附的氨氮氧化成硝態氮。研究結果表明,該工藝具有較高的氨氮去除率和穩定性,能成功地去除原水和二級出水中的氨氮。
沸石離子交換與pH的選擇有很大關系,pH在4~8的范圍是沸石離子交換的最佳區域。當pH<4時,H+與NH4+發生競爭;當pH>8時,NH4+變為NH3而失去離子交換性能。用離子交換法處理含氨氮10~20mg/L的城市污水,出水濃度可達1mg/L以下。離子交換法具有工藝簡單、投資省去除率高的特點,適用於中低濃度的氨氮廢水(<500mg/L),對於高濃度的氨氮廢水會因樹脂再生頻繁而造成操作困難。但再生液為高濃度氨氮廢水,仍需進一步處理。
3. 空氣吹脫法與汽提法去除氨氮
空氣吹脫法是將廢水與氣體接觸,將氨氮從液相轉移到氣相的方法。該方法適宜用於高濃度氨氮廢水的處理。吹脫是使水作為不連續相與空氣接觸,利用水中組分的實際濃度與平衡濃度之間的差異,使氨氮轉移至氣相而去除廢水中的氨氮通常以銨離子(NH4+)和游離氨(NH3)的狀態保持平衡而存在。將廢水pH值調節至鹼性時,離子態銨轉化為分子態氨,然後通入空氣將氨吹脫出。吹脫法除氨氮,去除率可達60%~95%,工藝流程簡單,處理效果穩定,吹脫出的氨氣用鹽酸吸收生成氯化銨可回用於純鹼生產作母液,也可根據市場需求,用水吸收生產氨水或用硫酸吸收生產硫酸銨副產品,未收尾氣返回吹脫塔中。但水溫低時吹脫效率低,不適合在寒冷的冬季使用。
用該法處理氨氮時,需考慮排放的游離氨總量應符合氨的大氣排放標准,以免造成二次污染。低濃度廢水通常在常溫下用空氣吹脫,而煉鋼、石油化工、化肥、有機化工、有色金屬冶煉等行業的高濃度廢水則常用蒸汽進行吹脫。該方法比較適合處理高濃度氨氮廢水,但吹脫效率影響因子多,不容易控制,特別是溫度影響比較大,在北方寒冷季節效率會大大降低,現在許多吹脫裝置考慮到經濟性,沒有回收氨,直接排放到大氣中,造成大氣污染。
汽提法是用蒸汽將廢水中的游離氨轉變為氨氣逸出,處理機理與吹脫法一樣是一個傳質過程,即在高pH值時,使廢水與氣體密切接觸,從而降低廢水中氨濃度的過程。傳質過程的推動力是氣體中氨的分壓與廢水中氨的濃度相當的平衡分壓之間的差。延長氣水間的接觸時間及接觸緊密程度可提高氨氮的處理效率,用填料塔可以滿足此要求。塔的填料或充填物可以通過增加浸潤表面積和在整個塔內形成小水滴或生成薄膜來增加氣水間的接觸時間汽提法適用於處理連續排放的高濃度氨氮廢水,操作條件與吹脫法類似,對氨氮的去除率可達97%以上。但汽提塔內容易生成水垢,使操作無法正常進行。
吹脫和汽提法處理廢水後所逸出的氨氣可進行回收:用硫酸吸收作為肥料使用;冷凝為1%的氨溶液。
4. 生物法去除氨氮
生物法去除氨氮是在指廢水中的氨氮在各種微生物的作用下,通過硝化和反硝化等一系列反應,最終形成氮氣,從而達到去除氨氮的目的。生物法脫氮的工藝有很多種,但是機理基本相同。都需要經過硝化和反硝化兩個階段。
硝化反應是在好氧條件下通過好氧硝化菌的作用將廢水中的氨氮氧化為亞硝酸鹽或硝酸鹽,包括兩個基本反應步驟:由亞硝酸菌參與的將氨氮轉化為亞硝酸鹽的反應。由硝酸菌參與的將亞硝酸鹽轉化為硝酸鹽的反應。亞硝酸菌和硝酸菌都是自養菌,它們利用廢水中的碳源,通過與NH3-N的氧化還原反應獲得能量。反應方程式如下:
亞硝化: 2NH4++3O2→2NO2-+2H2O+4H+
硝化 : 2NO2-+O2→2NO3-
硝化菌的適宜pH值為8.0~8.4,最佳溫度為35℃,溫度對硝化菌的影響很大,溫度下降10℃,硝化速度下降一半;DO濃度:2~3mg/L;BOD5負荷:0.06-0.1kgBOD5/(kgMLSS•d);泥齡在3~5天以上。
在缺氧條件下,利用反硝化菌(脫氮菌)將亞硝酸鹽和硝酸鹽還原為氮氣而從廢水中逸出由於兼性脫氮菌(反硝化菌)的作用,將硝化過程中產生的硝酸鹽或亞硝酸鹽還原成N2的過程,稱為反硝化。反硝化過程中的電子供體是各種各樣的有機底物(碳源)。以甲醇為碳源為例,其反應式為:
6NO3-+2CH3OH→6NO2-+2CO2+4H2O
6NO2-+3CH3OH→3N2+3CO2+3H2O+6OH-
反硝化菌的適宜pH值為6.5~8.0;最佳溫度為30℃,當溫度低於10℃時,反硝化速度明顯下降,而當溫度低至3℃時,反硝化作用將停止;DO濃度<0.5mg/L;BOD5/TN>3~5。生物脫氮法可去除多種含氮化合物,總氮去除率可達70%~95%,二次污染小且比較經濟,因此在國內外運用最多。其缺點是佔地面積大,低溫時效率低。
常見的生物脫氮流程可以分為3類:
⑴多級污泥系統
多級污泥系統通常被稱為傳統的生物脫氮流程。此流程可以得到相當好的BOD5去除效果和脫氮效果,其缺點是流程長,構築物多,基建費用高,需要外加碳源,運行費用高,出水中殘留一定量甲醇;
⑵單級污泥系統
單級污泥系統的形式包括前置反硝化系統、後置反硝化系統及交替工作系統。前置反硝化的生物脫氮流程,通常稱為A/O流程。與傳統的生物脫氮工藝流程相比,該工藝特點:流程簡單、構築物少,只有一個污泥迴流系統和混合液迴流系統,基建費用可大大節省;將脫氮池設置在去碳源,降低運行費用;好氧池在缺氧池後,可使反硝化殘留的有機污染物得到進一步去除,提高出水水質;缺氧池在前,污水中的有機碳被反硝化菌所利用,可減輕其後好氧池的有機負荷。此外,後置式反硝化系統,因為混合液缺乏有機物,一般還需要人工投加碳源,但脫氮的效果高於前置式,理論上可接近100%的脫氮效果。交替工作的生物脫氮流程主要由兩個串聯池子組成,通過改換進水和出水的方向,兩個池子交替在缺氧和好氧的條件下運行。它本質上仍是A/O系統,但利用交替工作的方式,避免了混合液的迴流,其脫氮效果優於一般A/O流程。其缺點是運行管理費用較高,必須配置計算機控制自動操作系統;
⑶生物膜系統
將上述A/O系統中的缺氧池和好氧池改為固定生物膜反應器,即形成生物膜脫氮系統。此系統中應有混合液迴流,但不需污泥迴流,在缺氧的好氧反應器中保存了適應於反硝化和好氧氧化及硝化反應的兩個污泥系統。
由於常規生物處理高濃度氨氮廢水還存在以下:
為了能使微生物正常生長,必須增加迴流比來稀釋原廢水;
硝化過程不僅需要大量氧氣,而且反硝化需要大量的碳源,一般認為COD/TKN至少為9。
5. 化學沉澱法去除氨氮
化學沉澱法是根據廢水中污染物的性質,必要時投加某種化工原料,在一定的工藝條件下(溫度、催化劑、pH值、壓力、攪拌條件、反應時間、配料比例等等)進行化學反應,使廢水中污染物生成溶解度很小的沉澱物或聚合物,或者生成不溶於水的氣體產物,從而使廢水凈化,或者達到一定的去除率。
化學沉澱法處理NH3-N是始於20世紀60年代,在90年代興起的一種新的處理方法,其主要原理就是NH4+、Mg2+、PO43-在鹼性水溶液中生成沉澱。
在氨氮廢水中投加化學沉澱劑Mg(OH)2、H3PO4與NH4+反應生成MgNH4PO4•6H2O(鳥糞石)沉澱,該沉澱物經造粒等過程後,可開發作為復合肥使用。整個反應的pH值的適宜范圍為9~11。pH值<9時,溶液中PO43-濃度很低,不利於MgNH4PO4•6H2O沉澱生成,而主要生成Mg(H2PO4)2;如果pH值>11,此反應將在強鹼性溶液中生成比MgNH4PO4•6H2O更難溶於水的Mg3(PO4)2的沉澱。同時,溶液中的NH4+將揮發成游離氨,不利於廢水中氨氮的去除。利用化學沉澱法,可使廢水中氨氮作為肥料得以回收。