脫硫廢水含固量檢測方法
⑴ 脫硫廢水零排放的關鍵技術在於如何去除廢水中的高含鹽量
燃煤電廠脫硫廢水因高含鹽量、成分復雜、高腐蝕性、回用困難的特點成為回制約燃煤電廠廢水零排放的關鍵答因素。目前一般採用「混凝沉澱預處理+深度處理」的工藝對脫硫廢水進行處理,使脫硫廢水中溶解性固體以結晶鹽的形式去除,處理後的出水達到《工業循環冷卻水處理設計規范》(GB 50050-2007)中「間冷開式系統循環冷卻水水質指標」的要求,可以用於電廠循環冷卻水補充水,處理後的結晶鹽經乾燥打包後可用作工業用鹽,真正實現「廢水零排放」目的。
⑵ 電廠脫硫廢水的加葯量一般是多少
廢水加葯一般是要通過你們廢水3連箱的容量和廢水處理的容量來計算的!不同電廠造的廢水處理系統的箱子大小都不一樣!所以不計算一般得出的數字是不精確的!
⑶ 電廠脫硫廢水特點有哪些
電廠脫硫廢水由於其高濁度、高硬度,高含鹽量、污染物種類多,且不同電廠水質波動大等版特點,因此電廠脫硫權廢水處理成為燃煤電廠中成分最為復雜、處理難度最大的工業廢水。
電廠脫硫廢水具體特點:
1、含鹽量高。
2、懸浮物含量高。
3、硬度高導致易結垢。
4、腐蝕性強。
5、水質隨時間和工況不同而變化。
⑷ 電廠脫硫廢水處理有哪些難點
電廠脫硫廢水中一般含有大量的重金屬離子、氯化物、硫酸根離子及鹽分,pH值一般專在屬5~6之間,脫硫廢水水質呈弱酸性。
處理時需要在水中加入Ca(OH)2,將pH值調節到8.5~9.0之間,使得重金屬離子(如銅、鐵、鎳、鉻和鉛)生成氫氧化物沉澱。
同時反應過程中還會生成CaCl2、CaSO3等沉澱物,以分離氯根離子、氟化物、亞硝酸鹽、硫酸鹽等鹽類物質;對於汞、銅等重金屬,目前普遍採用15%TMT溶液替代Na2S來將其沉澱出來。
並且從傳統電廠脫硫廢水處理工藝中我們可以看出:預處理工藝中加入了大量的熟石灰,這會導致水中硬度離子含量較高,且水中殘留有高濃度的SO42-、Cl-,屬於典型的高含鹽廢水。水中硬度離子含量高會導致處理設備結垢污堵,Cl-離子含量高會對設備、管道產生嚴重腐蝕。
其次,脫硫廢水水質成分復雜,污染物超標嚴重,水中鎘、汞、硫化物、氟化物含量高。另外,脫硫廢水受燃煤品種、脫硫工藝、吸收劑等多種因素影響,水質變化較大。
⑸ 火電廠脫硫廢水含汞量一般多少
含鉛廢水主要來源於蓄電池生產、選礦、石油加工、鉛冶煉、廢鉛酸蓄電池回收利用等行業:一般採用沉澱反應、混凝沉澱和活性炭吸附的處理工藝處理;
含汞廢水主要來源於有色金屬冶煉廠、化工廠、農葯廠、造紙廠、染料廠及熱工儀器儀表廠等。從廢水中去除無機汞的方法有硫化物沉澱法、化學凝聚法、活性炭吸附怯、金屬還原法、離子交換法和微生物法等。一般偏鹼性含汞廢水通常採用化學凝聚法或硫化物沉澱法處理。偏酸性的含汞廢水可用金屬還原法處理。低濃度的含汞廢水可用活性炭吸附法、化學凝聚法或活性污泥法處理,有機汞廢水較難處理,通常先將有機汞氧化為無機汞,而後進行處理。 各種處理方法的效果和成本取決於汞的存在形態、初始濃度、廢水中的共存離子以及要求出水水質達到的標准。
(一)還原法:(1)NaBH4(硼酸鈉)還原法:非金屬還原劑——硼酸鈉,與汞反應後主要生成汞和偏硼酸、放出氫氣。Hg2++BH4-+2OH- Hg↓+3H2↑+BO2- 。(2)金屬還原法:凡是氧化還原電位低於Hg2+的,如Cu. Zn. Fe. Mn. Mg..Al 等,可將相應的金屬屑裝成填料塔,置換廢水中的Hg2+離子。以鐵為例: Fe+Hg2+= Fe2++Hg↓
(二)硫化法:H2++S2-=HgS↓ 2Hg2++S-=Hg2SHgS ↓+Hg↓
(三)吸附法:常採用活性炭為吸附劑,具體做法是首先用硫化鈉使汞離子轉化為硫化汞沉澱析出,然後用活性炭吸附,這樣處理過的凈化液所含的殘余汞能達到國家規定的排放標准。
(四)離子交換法:將幾種樹脂裝柱組成廢水凈化系列,這樣含汞廢水通過幾個交換柱後,出水中檢不出汞。
(五)凝取沉澱法:向含汞廢水中投加石灰,生成的Ca(OH)2對汞有凝聚吸附作用,在有三價鐵離子存在的情況下,效果更好。用硫酸鋁作凝聚劑處理含汞廢水,效果也較好。經凝聚沉澱後,出水水質含汞量可降到0.05 m g/L以下。
(六)溶劑萃取法:目前,國外有採用三異辛胺一二甲苯對含汞廢水進行萃取,經萃取後,凈化液中殘留汞在0.017mg/L以下。
此外,國外採用微生物回收汞、電解法回收汞、鐵氧體沉澱法除汞、硫化物沉澱—浮選分離法除汞,國內正在研究的有轉化法除汞、含腐植酸煤吸附法除汞等。
⑹ 如何測定脫硫廢水中的硫酸鈣和亞硫酸鈣
首先,既然是溶液中那麼一定是離子形式存在了。那麼可以加氯化鋇,使亞硫酸根和硫酸根均沉澱。再結晶風干後稱量,再加鹽酸,再結晶風干。根據質量差可求出亞硫酸根和硫酸根物質的量,再根據廢水試液用量算濃度。
⑺ 我們應該怎麼解決脫硫廢水處理系統中存在的問題
1、分析傳統的脫硫廢水處理系統,主要問題是脫硫廢水含固量高,脫硫廢水取自回收水箱,經版過廢水旋流站初權級分離後,含固量為15%。脫硫廢水含固量高,使整個廢水處理系統不堪重負。
2、脫硫廢水中固體懸浮物的分離,除了使用旋流器離心分離的傳統廢水處理方法外,還有一個簡單有效的方法--自然沉澱。
脫硫廢水自然沉澱需要有足夠的時間和空間。因為廢水系統只要能夠滿足控制漿液品質的要求,無需連續運行,自然沉澱的時間條件能夠滿足,脫硫事故漿液箱若不採用側進式攪拌器,而是採用脈沖懸浮系統的話,利用長期閑置的脫硫事故漿液箱來進行脫硫廢水自然沉澱,空間條件可以滿足。所以,利用現有的事故漿液箱進行脫硫廢水自然沉澱是降低其含固量的最佳選擇。
採用事故漿液箱預先沉澱澄清石膏漿液的辦法,可以充分利用原有脫硫系統設備,如事故漿液箱、三聯箱等,徹底拋棄了傳統系統中故障率高的設備,如一體化澄清器、壓濾機、污泥輸送泵等。改造小,收益大,是解決脫硫廢水處理難題的一種簡單、可靠的新方法。
⑻ 幾種脫硫廢水處理工藝什麼樣子的呢
1、脫硫廢水蒸發濃縮
通過蒸發和乾燥設備能夠讓脫硫廢水分離成為高質量的內水或水蒸氣容以及固體廢棄物,可以實現水的循環使用,可以完成火力發電廠廢水零排放,此方法的缺點是需要高額的投資,目前在國內還沒有實際運行的實例。
2、脫硫廢水的生物處理
脫硫廢水中COD固然不高,但有別於一般的廢水,脫硫廢水形成的化學需氧量的主要因素是還原態的無機物,並不是有機物,脫硫廢水還有高鹽度,高氨氮和高總氮的特點,這說明脫硫廢水的可生化性很差。
3、微生物燃料電池對脫硫廢水的處理
微生物燃料電池是將廢水中有機物的化學能轉化為電能,在去除污染物的同時將產生的電能回收,實現了能量轉化。
近年來,隨著微生物燃料電池的迅速發展,作為一種新的反應裝置有著高效的去除污染物的效果和產電回收能源的雙重效果,微生物燃料電池的發展不可限量,將微生物燃料電池與脫硫廢水處理結合起來會是一個很好的出路。