含砷廢水檢測ppt
『壹』 某硫酸工廠的酸性廢水中砷(As)元素含量極高,為控制砷的排放,採用化學沉降法處理含砷廢水,相關數據如
(1)圖表中硫酸濃度為.4g/L,換算物質的量濃度=
| ||
1L |
(2)三價砷(H3AsO3弱酸)不易沉降,可投入MnO2先將其氧化成五價砷(H3AsO4弱酸)同時生成Mn2+和H2O,則該反應的離子方程式為:2H++MnO2+H3AsO3=H3AsO4+Mn2++H2O,
故答案為:2H++MnO2+H3AsO3=H3AsO4+Mn2++H2O;
(3)①硫酸鈣難溶於酸,所以酸性條件下能析出,因此pH調節到2時廢水中有大量沉澱產生,沉澱主要成分的化學式為CaSO4,故答案為:CaSO4;
②H3AsO4是弱酸電離出來的AsO43-較少,所以酸性條件下不易形成Ca3(AsO4)2沉澱,當溶液中pH調節到8左右時AsO43-濃度增大,Ca3(AsO4)2開始沉澱,
故答案為:H3AsO4是弱酸,當溶液中pH調節到8左右時AsO43-濃度增大,Ca3(AsO4)2開始沉澱;
③H3AsO4的第三步電離式為HAsO42-?H++AsO43-,所以第三步電離的平衡常數的表達式為K3=
c(AsO43?)?c(H+) |
c(HAsO42?) |
c(OH?)?c(HAsO42?) |
c(AsO43?) |
c(HAsO42?)?c(OH?)?c(H+) |
c(AsO43?)?c(H+) |
Kw |
K3 |
10?14 |
4.0×10?12 |
故答案為:
c(AsO43?)?c(H+) |
c(HAsO42?) |
『貳』 用化學沉澱法處理含砷廢水時有沒有砷蒸汽形成,形成的蒸汽對人體的傷害
用化學沉澱法處理含砷廢水,主要是利用硫化鈉深沉澱大部分砷,以及石灰鐵鹽法吸附聚沉殘砷。此過程沒含砷蒸汽生成,自然也不存在「蒸汽對人體的傷害」。
『叄』 事故區域檢測出特別污染物是什麼意思
重大環境污染事件之十年紀錄
最近二十年,隨著經濟列車的不斷加速,我國進入了環境高風險時期,各種環境污染事件層出不窮,尤其是最近十年,環境污染事件的發展規模、損害後果、污染類型等都日趨擴大。筆者搜集整理了2002年至2012年最近十年的重大環境污染事件,希望能以這些沉重的紀錄,打撈那些並不遙遠的慘痛記憶,催生起共同保護家園的意識和行動。
2002年
貴州都勻礦渣污染事件
2002年9月11日,貴州都勻壩固鎮多傑村上游一個鉛鋅礦尾渣大壩崩塌,上千立方米礦渣從懸崖上直瀉而下,注入山腳的范家河,沿岸被尾渣浸泡過的樹木枯死,良田被礦渣掩埋,粉末狀鉛鋅尾渣與河水混合成的黏稠泥漿經范家河徑直排入清水江。事發後,下游二十多公里的清水江依然一片渾濁,人畜一時飲水困難。
雲南南盤江水污染事件
2002年10月,雲南省南盤江柴石灘以上河段突發嚴重水污染事件,造成上百噸魚類死亡,下游柴石灘水庫3億多立方米水體受污染。因南盤江沿岸人口稠密,工農業生產集中,是雲南經濟較發達的區域之一,此次水污染事件不僅造成巨大經濟損失,且社會影響十分惡劣。
2003年
三門峽水庫泄出「一庫污水」
2003年,因三門峽大壩上游一些企業的工業污水排放和黃河附近城鎮的生活污水排放逐年增加,黃河發生有實測記錄以來最嚴重的污染,三門峽水庫泄水呈「醬油色」,水質惡化為V類,成為名副其實的「一庫污水」。三門峽市區雖緊鄰黃河,但市民不得不花錢購買從附近山上運來的山泉水,「守著黃河買水吃」成為三門峽市一大奇觀。
2004年
四川沱江特大水污染事件
2004年2月底和3月初,四川化工股份有限公司第二化肥廠將大量高濃度氨氮廢水排入沱江支流毗河,導致沱江江水變黃變臭,氨氮超標竟達50倍之多。污染發生後,50萬公斤網箱魚死亡,直接經濟損失3億元左右。沿江簡陽、資中、內江三地被迫停水4周,影響百萬群眾,當地純凈水被搶購一空,當地政府從宜賓、成都調集消防車送水,依然無法滿足居民日常用水。為緩解災情,還從都江堰、三岔湖緊急調水稀釋2000噸氨氮,但為時已晚。據專家當時測算,沱江被破壞的生態至少需要5年時間來恢復。
河南濮陽喝不上「放心水」
自2004年10月以來,河南省濮陽市黃河取水口發生持續4個多月的水污染事件,城區四十多萬居民的飲水安全受到威脅,濮陽市被迫啟用備用地下水源。據調查,自1997年以來,濮陽市黃河取水口已連續多年遭受污染,城市飲用水源每年約有4至5個月受污染影響。
四川青衣江水污染事件
2004年12月下旬,由於一些造紙企業向四川樂山市青衣江偷偷排放大量工業污水,導致水面出現大量白色泡沫,並散發出一陣陣刺鼻的鹼味。青衣江本是樂山市近四十萬市民的飲用水源,但水質嚴重污染後,周邊的自來水公司因生產達標飲用水的難度加大而瀕臨停產,當地市民面臨斷水危機。
2005年
重慶綦江水污染事件
從2005年1月3日起,因取水點被上游重慶華強化肥有限公司排放的廢水所污染,導致水廠停止供水,重慶綦江古南街道橋河片區近3萬居民斷水兩天,綦江齒輪廠也因此暫停生產。
浙江嘉興遭遇污染性缺水危機
2005年3月中旬,浙江省嘉興市街頭出現了各類節水宣傳品,要求居民們用淘米水洗菜,用洗衣水擦地,或者在抽水馬桶水箱里放磚頭以節約沖水量。該市居民的用水價格也從每噸1.65元漲至1.9元。調查表明,盡管嘉興河網密集,是聞名天下的「水鄉」,但因上游的過境水污染,嘉興達標的可用水十分缺乏。
黃河水淪為「農業之害」
2005年,黃河流域一些地區的農作物出現減產甚至絕收,原因是從青海經甘肅、寧夏至內蒙古的黃河沿岸,能源、重化工、有色金屬、造紙等高污染工業企業林立,廢污水排放量逐年增大,大量未達標的工業廢水直接排入引支渠,導致黃河沿岸部分灌溉面積近似於污水灌溉,黃河水淪為「農業之害」。
松花江重大水污染事件
2005年11月13日,中石油吉林石化公司雙苯廠苯胺車間發生爆炸事故,造成5人死亡、1人失蹤,近70人受傷。爆炸發生後,約100噸苯、苯胺和硝基苯等有機污染物流入松花江,導致江水嚴重污染,沿岸數百萬居民的生活受到影響,吉林省松原市、黑龍江省哈爾濱市先後停水多日。順流而下的污染甚至威脅到俄羅斯哈巴羅夫斯克邊疆區,造成嚴重的國際負面影響。此次事件還暴露出信息不公開、危機處理能力不足等弊端,如哈爾濱曾出現謠言四起、搶購飲用水等恐慌場面。
事後,國務院調查組認定這是一起特別重大水污染責任事件,對12名事故責任人作出黨紀、政紀處理,原國家環保總局局長解振華為此辭職。5年間,國家為松花江流域水污染防治累計投入治污資金78.4億元。
廣東北江鎘污染事故
2005年12月15日,廣東北江韶關段出現嚴重鎘污染,高橋斷面檢測到鎘濃度超標12倍多。北江是珠江三大支流之一,也是廣東各市的重要飲用水源,因韶關地處北江上游,此次污染直接威脅下游近千萬群眾的飲水安全和成千上萬企業的正常用水,部分城市自來水供應停止。經調查,事故起因是韶關冶煉廠設備檢修期間違法超標排放含鎘廢水所致。
2006年
河北白洋淀死魚事件
2006年2月和3月,素有「華北明珠」美譽的華北地區最大淡水湖泊白洋淀,接連出現大面積死魚。調查結果顯示,死魚事件的主因是水體污染較重、水中溶解氧過低,最終造成魚類窒息。據統計,河北任丘市所屬9.6萬畝水域受到污染,水色發黑,有臭味,網箱中養殖魚類全部死亡,淀中漂浮著大量死亡的野生魚類,部分水草發黑枯死。
吉林忙牛河水污染事件
2006年8月21日,吉林省吉林市環保局接到群眾舉報,忙牛河附近發生化工污染。經現場勘察,發現部分水質呈紅色,並伴有少量泡沫,污染物為二甲基苯胺,並形成長約5公里的污染帶。經調查,此次事故系吉林長白山精細化工有限公司向忙牛河中人為排放化工廢水所致。
湖南嶽陽砷污染事件
2006年9月8日,湖南省岳陽縣城飲用水源地新牆河發生水污染事件,砷超標10倍左右,8萬居民的飲用水安全受到威脅。經調查,造成此次污染的禍首是上游3家化工廠,因日常性排放工業污水,致使大量高濃度含砷廢水流入新牆河。
四川瀘州電廠重大環境污染事故
2006年11月15日,四川瀘州川南電廠工程施工單位在污水設施尚未建成的情況下,開始燃油系統安裝調試,造成柴油泄漏混入冷卻水管道並排入長江。當天,該企業報告進入長江的柴油為0.38噸,經環保部門督查,次日再報進入長江的柴油實為16.945噸。這起事故導致瀘州市城區停水,並進入重慶境內形成跨界污染。
事後,國家環保總局認定這是一起重大環境污染事件,瀘州川南發電有限公司被處20萬元人民幣的經濟處罰,公司相關責任人被分別處以扣減獎金、撤銷職務等處罰。2007年5月15日前,四川環保局暫停審批滬州市除污染治理項目外所有新建項目。
2007年
太湖、巢湖、滇池爆發藍藻危機
從2007年5月29日開始,江蘇省無錫市城區的大批市民家中自來水水質突然發生變化,並伴有難聞的氣味,無法正常飲用。原因是作為當地飲用水源的太湖出現了大面積藍藻,這個年年侵擾太湖的「常客」,這一年來得更早、更凶。小小藍藻一夜間打亂了數百萬無錫市民的正常生活,超市內的純凈水被搶購一空,街頭零售的桶裝純凈水也價格猛漲。
進入6月份,巢湖、滇池也出現藍藻。安徽巢湖西半湖出現了5平方公里左右的大面積藍藻,隨著持續高溫,巢湖東半湖也出現藍藻,威脅當地飲水安全。雲南昆明滇池也因連日天氣悶熱,藍藻大量繁殖。在滇池海埂一線的岸邊,湖水如綠油漆一般,並伴有陣陣腥臭。
江蘇沭陽水污染事件
2007年7月2日下午3時,江蘇沭陽縣地面水廠發現,短時間內,大流量的污水侵入到位於淮沭河的自來水廠取水口,水流出現明顯異味。經檢測,取水口的水氨氮含量為每升28毫克左右,遠遠超出國家取水口水質標准。由於被污染的水經處理後仍不能達到飲用水標准,城區供水系統被迫關閉,20萬人口用水受到影響,整個沭陽縣城停水超過40小時。
2008年
廣州白水村「毒水」事件
2008年3月2日,廣州白雲區鍾落潭鎮白沙村41名村民在自家或在飯館吃過飯後,不約而同出現了嘔吐、胸悶、手指發黑及抽筋等中毒症狀,被陸續送往醫院救治。據調查,此次污染的原因是白沙村裡一私營小廠使用亞硝酸鹽不當,污染了該廠擅自開挖的位於廠區內的水井,而該水井的抽水管和自來水管非法私自接駁,又導致自來水污染。
雲南陽宗海砷污染事件
2008年6月以來,雲南九大高原湖泊之一的陽宗海被測出水體中的砷濃度嚴重超出飲用水安全標准,直接危及兩萬人的飲水安全。從7月8日起,沿湖周邊民眾及企業全面停止從中取水作為生活飲用水。9月12日,雲南省政府決定對陽宗海實施「三禁」,即禁止飲用、禁止游泳、禁止捕撈水生產品。並決定採取措施查處污染企業,啟動綜合治污措施,爭取用3年左右使陽宗海水質恢復正常。
因這起污染事件,雲南省對26名政府工作人員實施了行政問責,其中12人予以免職處分。為強化環境執法,昆明市公安局成立了環境保護分局,這一機構設置在全國尚屬首次。
2009年
江蘇鹽城水污染事件
2009年2月20日,因自來水水源受到酚類化合物污染,江蘇鹽城市大面積斷水近67小時,20萬市民生活受到影響,占該市市區人口的五分之二。據調查,製造這起污染事件的竟是被評為當地標兵企業的鹽城市標新化工廠,該廠為減少治污成本,居然趁大雨天偷排了30噸化工廢水,最終污染了水源地。事後,該廠兩名負責人因「投放危險物質罪」分別被判處10年和6年有期徒刑,這也是我國首次以這一罪名對環境污染事件作出刑事處罰。
山東沂南砷污染事件天貓美國普衛欣提示:霧霾天氣出行記得做好防護。
2009年4月,山東沂南縣億鑫化工有限公司在未獲批相關手續的情況下,非法生產阿散酸,並將生產過程中產生的大量含砷有毒廢水存放在一處蓄意隱藏的污水池中。7月20日、23日深夜,趁當地降雨,該公司用水泵將含砷量超標2.7254萬倍的廢水排放到涑河中,造成水體嚴重污染。事後,三名涉案負責人被分別判刑,並被判共同賠償國家3714萬元的經濟損失。
『肆』 含砷廢水怎樣處理
處理含砷廢水,目前國內外主要有中和沉澱法、絮凝沉澱法、鐵氧體法、硫化物沉澱法等,適用於高濃度含砷廢水,生成的污泥易造成二次污染。在化學法方面的研究已經比較成熟,很多人曾在這方面做了深入的研究。
1 化學法處理含砷廢水
中和沉澱法作為工程上應用較廣的一種方法,很多人在這方面作了深入的研究,機理主要是往廢水中添加鹼(一般是氫氧化鈣)提高其pH,這時可生成亞砷酸鈣、砷酸鈣和氟化鈣沉澱。這種方法能除去大部分砷和氟,且方法簡單,但泥渣沉澱緩慢,難以將廢水凈化到符合排放標准。
絮凝共沉澱法,這是目前處理含砷廢水用得最多的方法。它是藉助加入(或廢水中原有)Fe3+、Fe2+、Al3+和Mg2+等離子,並用鹼(一般是氫氧化鈣)調到適當pH,使其形成氫氧化物膠體吸附並與廢水中的砷反應,生成難溶鹽沉澱而將其除去。其具體方法有,石灰-鋁鹽法、石灰-高鐵法、石灰-亞鐵法等。
鐵氧體法,在國外,自70年代起已有較多報道,工藝過程是在含砷廢水中加入一定數量的硫酸亞鐵,然後加鹼調pH至8.5-9.0,反應溫度60-70℃,鼓風氧化20-30分鍾,可生成咖啡色的磁性鐵氧體渣。Nakazawa Hiroshi 等研究指出,在熱的含砷廢水中加鐵鹽(FeSO4或Fe2(SO4)3),在一定pH下,恆溫加熱1 h。用這種沉澱法比普通沉澱法效果更好。特別是利用磁鐵礦中Fe3+鹽處理廢水中As(III)、As(V),在溫度90℃,不僅效果很好,而且所需要的Fe3+濃度也降到小於0.05mg/L。趙宗升曾從化學熱力學和鐵砷沉澱物的紅外光譜兩個方面探討了氧化鐵砷體系沉澱除砷的機理,發現在低pH值條件下,廢水中的砷酸根離子與鐵離子形成溶解積很小的FeAsO4,並與過量的鐵離子形成的FeOOH羥基氧化鐵生成吸附沉澱物,使砷得到去除。
馬偉等報道,採用硫化法與磁場協同處理含砷廢水,提高了硫化渣的絮凝沉降速度和過濾速度,並提高了硫化劑的利用率。研究發現經磁場處理後,溶液的電導率增加,電勢降低,磁化處理使水的結構發生了變化,改變了水的滲透效果。國外曾有人提出在高度厭氧的條件下,在硫化物沉澱劑的作用下生成難溶、穩定的硫化砷,從而除去砷。
化學沉澱法作為含砷廢水的一種主要處理方法,工程化比較普遍,但並不是採用單一的處理方式,而是幾種處理方式的綜合處理,如鈣鹽與鐵鹽相結合,鐵鹽與鋁鹽相結合等等。這種綜合處理能提高砷的去除率。但由於化學法普遍要加入大量的化學葯劑,並成為沉澱物的形式沉澱出來。這就決定了化學法處理後會存在大量的二次污染,如大量廢渣的產生,而這些廢渣的處理目前尚無較好的處理處置方法,所以對其在工程上的應用和以後的可持續發展都存在巨大的負面作用。
2 物化法處理含砷廢水
物化法一般都是採用離子交換 、吸附、萃取、反滲透等方法除去廢液中的砷。物化法大都是些近年來發展起來的較新方法,實用的尚不多見,但是有眾多學者在這方面做了深入的研究,並取得了顯著的成果。
陳紅等曾利用MnO2對含As(III)廢水進行了吸附實驗,結果表明,MnO2對As(III)有著較強的吸附能力,其飽和吸附量為44.06mg/g(δ-MnO2)和17.9 mg/g(ε-MnO2),陰離子的存在使MnO2吸附量有所下降,一些陽離子(如Ga3+、In3+)可增加其吸附量,吸附後的MnO2經解吸後可重復使用。
胡天覺等報道,合成制備了一種對As(III)離子高效選擇性吸附的螯合離子交換樹脂,用該離子交換柱脫砷:含As(III)5 g/L的溶液脫砷率高於99.99%,脫砷溶液中砷含量完全達標,而且離子交換柱用2mol/L的氫氧化鈉(含5% 硫氫化鈉)作洗脫液洗滌,可完全回收As(III)並使樹脂再生循環利用。
劉瑞霞等也曾制備了一種新型離子交換纖維,該離子交換纖維對砷酸根離子具有較高的吸附容量和較快的吸附速度。實驗表明該纖維具有較好的動態吸附特性,30mL 0.5mol/L氫氧化鈉溶液可定量將96.0 mg/g吸附量的砷從纖維上洗脫。
另外,還有不少人作了用鋼渣、選礦尾渣、高爐冶煉礦渣等廢渣處理含砷廢水的研究,取得了不錯的成果。但由於物化法只能處理濃度較低,處理量不大,組成單純且有較高回收價值的廢水,而工業廢水的成分較復雜,所以物化法的工程化程度較低。
3 微生物法處理含砷廢水
與傳統物理化學方法相比,用微生物法處理含砷廢水具有經濟、高效且無害化等優點,已成為公認最具發展前途的方法。
3.1 活性污泥
國內外諸多研究表明,活性污泥ECP(胞外多聚物)能大量吸附溶液中的金屬離子,尤其是重金屬離子,他們與ECP的絡合更為穩定。關於吸附機制,在ECP的復雜成分中吸附重金屬離子的似乎是糖類。Brown和Lester(1979)指出ECP中的中性糖和陰離子多糖有著吸附不同金屬離子的結合點位,不同價態或不同電荷的金屬離子可以在不同的點位與 ECP結合,如中性糖的羥基、陰離子多聚物的羥基都可能是金屬的結合位。Kasan、Lester、Modak和Natarajam等認為:活性污泥對重金屬離子的吸附有兩種機制即表面吸附和胞內吸收;表面吸附是指活性污泥微生物的胞外多聚物(甲殼素、殼聚糖等)含有配位基團—OH,—COOH,—NH2,PO43-和—HS等,他們與金屬離子進行沉澱、絡合、離子交換和吸附,其特點是快速、可逆和不需要外加能量,與代謝無關;胞外吸收通過金屬離子和胞內的透膜酶、水解酶相結合而實現,速度較慢需要能量,而且與代謝有關。
此外,Ralinske指出:好氧生物能大量富集各種重金屬離子,這些離子積累於細胞外多聚物中,並在厭氧條件下釋放回液相中。這就有利於我們在二沉池中分離和沉降重金屬離子。
在活性污泥法處理含砷廢水的實驗中,存在許多影響因素,主要影響因素如下:
(1)砷的濃度及價態
不同價態的砷對活性污泥的毒性不同。實驗表明,As(III)對脫氫酶的毒性比As(V)平均大53倍。As(III)對蛋白酶活性的毒性約為As(V)的75倍。還有,As(III)對活性污泥脲酶活性的毒害作用是As(V)的35倍。所以處理含砷廢水時有必要將As(III)氧化成As(V)。實驗還表明,活性污泥對低濃度砷的去除率高於對高濃度砷的去除率,這是由於污泥的吸附能力有限所造成的。此外,重金屬離子濃度小於5mg·L-1時,活性污泥法對污水中有機物的處理效果不受重金屬影響,當重金屬離子濃度大於30mg·L-1時,活性污泥法污水中有機物的處理效果則大大受到影響。
(2)有機負荷
有機負荷對活性污泥去除五價砷也有較大的影響,有機負荷高,去除率也高。主要有兩方面的原因:一是污水中的有機物本身可和五價砷相結合,降低了污水中砷的濃度;二是有機物濃度高有利微生物生長繁殖,這進一步提高活性污泥對五價砷的去除率。此外,有機負荷高還可以防止污泥膨脹。因為在高有機負荷環境中絮狀菌比大多數絲狀菌有更強的吸附和存貯營養物能力,能夠充分利用高濃度的底物迅速增殖,具有較高的比生長速率,抑制了絲狀菌的生長。在低負荷下混合液中底物濃度長時間都低,由於缺少足夠的營養底物,絮狀菌的生長受到抑制,而絲狀菌具有較大的比表面積,當環境不利於微生物的生長時,絲狀菌會從菌膠團中伸展出來以增加其攝取營養物質的表面積。一方面,伸出絮體之外的絲狀菌更易吸收底物和營養,其生長速率高於絮狀菌,從而成為活性污泥中的優勢菌種;另一方面,絲狀菌越多,其菌絲越長,活性污泥越不易沉降,SVI越高,導致了污泥膨脹。
(3)pH
pH 對金屬去除影響很大,因為pH不僅影響金屬的沉降狀態,而且影響吸附點的電荷。一般pH 升高有利於污泥對陽離子金屬的吸附。直至產生氫氧化物沉澱,反之則有利於對呈負電荷狀態存在的金屬的吸附。但是,過高或過低的pH對微生物生長繁殖不利,具體表現在以下幾個方面:①pH過低(pH=1.5),會引起微生物體表面由帶負電變為帶正電,進而影響微生物對營養物的吸收。②過高或過低的 PH還可影響培養基中有機化合物的離子化作用,從而間接影響微生物。③酶只有在最適宜的pH時才能發揮其最大活性,極端的pH使酶的活性降低,進而影響微生物細胞內的生物化學過程,甚至直接破壞微生物細胞。④過高或過低的pH均降低微生物對高溫的抵抗能力。
(4)生物固體停留時間(Qc)
Qc對陽離子金屬去除有較大影響,因為活性污泥表面常被難溶性或微溶性的多聚物所包圍(如多糖),這些多聚物表面的電荷可使金屬迅速地得以去除。已經證實,細菌多聚物產生和細菌生長相有關,穩定相和內源呼吸階段多聚物產量最大,而Qc增大,污泥中細菌處於穩定相和內源呼吸階段,有利於對金屬的去除。
(5)污泥濃度
污泥濃度高,吸附點也隨著增加,從而有利於金屬的去除。從去除金屬的角度出發,高有機負荷,高污泥濃度的運行方式最為理想。
活性污泥法處理含砷廢水,不論在處理費用,還是二次污染,或者工程化方面,都比傳統處理方法具有相當突出的優勢。雖然在理論研究方面還不是十分完善,但是在處理機制和影響因素方面都已達成一定的共識。如果在處理工藝上再進行一定的改進,如往污泥中投加優勢菌種,可以改善污水的處理效果;此外,還可以引進生活污水進行混合處理並進行曝氣,這樣不僅降低了砷的濃度以及砷對污泥的毒害作用,同時還解決了活性污泥的營養源問題,為活性污泥法處理含砷廢水的工程化應用開辟了一片新天地。
3.2 菌藻共生體
國外研究表明,生物遷移轉化作為一種新的微生物法處理重金屬廢水,與傳統方法相比,具有更高效,費用更低等優點。用小球藻的生物遷移轉化處理重金屬廢水的工藝,有一些已投入工程運作。
菌藻共生體對砷的去除機理可認為是藻類和細菌的共同作用。許多研究表明,在去除金屬過程中,微生物的表面起著重要作用。菌藻共生體中,藻類和細菌表面存在許多功能鍵,如羥基、氨基、羧基、硫基等。這些功能鍵可與水中砷共價結合,砷先與藻類和細菌表面上親和力最強的鍵結合,然後與較弱的鍵結合,吸附在細胞表面的砷再慢慢滲入細胞內原生質中。因而在藻類和細胞吸附砷中,可能經過快吸附過程和較慢吸附兩過程後,吸附作用才趨於平衡。
廖敏等人曾研究了菌藻共生體對廢水中砷的去除效果。研究發現:培養分離所得菌藻共生體中以小球藻為主,此時菌藻共生體積累砷達7.47 g/kg乾重。在引入菌藻共生體並培養16h後,其對無營養源的含As(III),As(V)的廢水除砷率達80%以上,並趨於平衡,含營養源的As(III)、As(V)的廢水中,菌藻共生體對As(V)的去除率大於As(III),對As(V)去除率超過70%,但對As(III)的去除率也在50%以上,在除砷過程中同時出現砷的解吸現象。在無營養源條件下,對As(III)、As(V)混合廢水的除砷率超過80%。
菌藻共生體是一種易培養獲得的材料。其對廢水中的砷具有較強的去除力,並能同時去除廢水中的營養物,因此其在含砷廢水的處理運用中有著廣闊的前景。
3.3 投菌活性污泥法
投菌活性污泥法(Application of Bio-Augmentation Process with Liquid Live microorganisms)是將具有強活力的細菌投入到曝氣池裡去,使曝氣池混合液內的各種細菌處於最佳活性狀態,這樣.不僅投入了吸氣池內所缺少的細菌,在流入污水水質不變的條件下,微生物氧化作用顯著,而且,當污水水質改變,環境變異的情況下,微生物仍能適應,保持活性,其氧化代謝過程依然充分,投入菌液後使曝氣池耐沖擊負荷,提高污水處理廠的處理效果,改善了出水水質。
投菌活性污泥法(LLMO)是出之一種新的概念,它是根據在同一環境里,最適宜的細菌能自然繁殖,同樣,污水處理廠曝氣池混合液內的細菌也會自然繁殖到一定數目,自然界無處不可找到細茵,然而,在同一環境里並非可以找到一切細菌這一原則,作為理論指導,從自然界土壤內篩選出污水廠中的有用細菌製成液態的或固態的產品。液態菌液微生物成活率高;固態菌使用前需先用水溶成液態,細菌的成活率較液態菌液低,使用時按一定比例將液態菌液投入曝氣池內或投到需用處,投菌活性污泥法(LLMO)在國外已收到良好的應用效果。
因此,我們可望通過向活性污泥中投加對砷具有高耐受力,對砷具有特殊處理效果的混合菌種,達到對砷的高效處理,凈化工業含砷廢水。
4 前景展望
隨著冶金、化工等產業的日益發展,以及含砷製品市場的日益拓大,含砷廢水的排放和污染問題,必將影響到人們的生活水平的提高,影響到人類生存環境的改善,所以解決含砷廢水的污染問題已迫在眉睫。然而傳統的處理方法都存在一定的問題。如化學法,雖然在工程上有了一定的應用,處理效果也較明顯,但由於化學葯劑的添加,導致了產生大量的廢渣,而這些廢渣目前尚無較好的處置辦法。而物理法的處理費用較高,處理投資非常大,無法進行工程運作。微生物法作為一種最有前途的處理方法,不僅具有高效、無二次污染,而且處理費用低等優點。其中,活性污泥法處理含砷廢水的理論在國內外處於熱點研究探索中,又由於活性污泥具有的來源廣泛,容易培養,處理後二次污染小等一系列優點,使其在工程上的應用成為可能,成為含砷廢水的主要處理方法。此外,若對單純活性污泥法進行工藝上的改進,如引進優勢菌種,或摻入生活污水進行混合處理等工藝上的改進,都可能為活性污泥法的應用創造更為廣闊的前景。
『伍』 含砷廢水中砷以什麼形式存在
如果是有機砷,那就太多可能存在形式?
如果是無機砷,那就相對簡單,一般以砷酸/亞砷酸(酸性廢水)或砷酸鹽/亞砷酸鹽(鹼性廢水)形式存在。
『陸』 含砷廢水的顏色
紅色
『柒』 處理含砷廢水的方法有哪些
(1)石灰法;(2)石灰-鐵鹽法;(3)硫化法;(4)軟錳礦法;(5)綜合回收法;(6)磷酸鹽法;(7)活性炭、活性鋁吸附法;(8)反滲透法;(9)離子交換法。
『捌』 以硫鐵礦為原料生產硫酸所得的酸性廢水中砷元素含量極高,為控制砷的排放,採用化學沉降法處理含砷廢水,
(1)圖表中硫酸濃度為28.42g/L,換算物質的量濃度=
| ||
1L |
故答案為:.29;
(2)難溶物Ca3(AsO4)2的沉澱溶解平衡為:Ca3(AsO4)2(s)?3Ca2++2AsO43-;溶度積Ksp=c3(Ca2+)?c2 (AsO43-);若混合溶液中Al3+、Fe3+的濃度均為1.0×10-4mol?L-1,依據Ksp大小可以得到,Ksp(FeAsO4 )小,反應過程中Fe3+先析出沉澱;依據Ksp(FeAsO4 )=c(Fe3+)c(AsO43-)=5.7×10-21;Fe3+的濃度均為1.0×10-4mol?L-1,計算得到 c(AsO43-)=5.7×10-17mol/L;
故答案為:c3(Ca2+)?c2 (AsO43-);5.7×10-17;
(3)三價砷(H3AsO3弱酸)不易沉降,可投入MnO2先將其氧化成五價砷(H3AsO4弱酸),則該反應的離子方程式為:2H++MnO2+H3AsO3=H3AsO4+Mn2++H2O;
故答案為:2H++MnO2+H3AsO3=H3AsO4+Mn2++H2O;
(4)①硫酸鈣難溶於酸,所以酸性條件下能析出,因此pH調節到2時廢水中有大量沉澱產生,沉澱主要成分的化學式為CaSO4,故答案為:CaSO4;
②H3AsO4是弱酸電離出來的AsO43-較少,所以酸性條件下不易形成Ca3(AsO4)2沉澱,當溶液中pH調節到8左右時AsO43-濃度增大,Ca3(AsO4)2開始沉澱,
故答案為:H3AsO4是弱酸,當溶液中pH調節到8左右時AsO43-濃度增大,Ca3(AsO4)2開始沉澱.
『玖』 含砷廢水含有哪些,含砷廢水含有哪些知識
廢水中的砷如果是有機砷,那就太多可能存在形式、
如果是無機砷,那就相對簡單,一般回以砷酸/亞砷酸(酸性廢水答)或砷酸鹽/亞砷酸鹽(鹼性廢水)形式存在。
含砷廢水處理方法(1)石灰法;(2)石灰-鐵鹽法;(3)硫化法;(4)軟錳礦法;(5)綜合回收法;(6)磷酸鹽法;(7)活性炭、活性鋁吸附法;(8)反滲透法;(9)離子交換法。