當前位置:首頁 » 污水廢水 » 污水主課液

污水主課液

發布時間: 2021-03-18 16:25:17

污水中有害物質

污水中有害物質可分為三類:重金屬、病原微生物、有機化學物

  1. 重金屬:包括鐵銹、泥沙、鉛、汞、鋅、鉻等等,常飲重金屬超標的水極易引起人體骨痛、痴呆、結石等疾病;

  2. 病原微生物:常飲細菌超標的水極易引起人體霍亂、甲肝、感冒、非典、禽流感、傳染病等等;

  3. 有機化學物:化肥、農葯、自來水中的余氯等有機化學物極易引起人體細胞突變、腫瘤、畸形等疾病的發生。


重金屬廢水是指礦冶、機械製造、化工、電子、儀表等工業生產過程中排出的含重金屬的廢水。重金屬(如含鎘、鎳、汞、鋅等)廢水是對一環境污染最嚴重和對人類危害最大的工業廢水之一,其水質水量與生產工藝有關。廢水中的重金屬一般不能分解破壞,只能轉移其存在位置和轉變其物化形態。處理方法是首先改革生產工藝,不用或少用毒性大的重金屬,在生產地點就地處理(如不排出生產車間)常採用化學沉澱法、離子交換法等進行處理,處理後的水中重金屬低於排放標准可以排放或回用。形成新的重金屬濃縮產物盡量回收利用或加以無害化處理


生活污水、畜禽飼養場污水以及製革、洗毛、屠宰業和醫院等排出的廢水,常含有各種病原體,如病毒、病菌。病原微生物是指可以侵犯人體,引起感染甚至傳染病的微生物,或稱病原體。病原體中,以細菌和病毒的危害性最大。病原微生物指朊毒體、寄生蟲(原蟲、蠕蟲、醫學昆蟲)、真菌、細菌、螺旋體、支原體、立克次體、衣原體、病毒。


有機化學物污水易造成水質富營養化,危害比較大。在生活污水、食品加工和造紙等工業廢水中,含有碳水化合物、蛋白質、油脂、木質素等有機物質。這些物質以懸浮或溶解狀態存在於污水中,可通過微生物的生物化學作用而分解。在其分解過程中需要消耗氧氣,因而被稱為耗氧污染物。這種污染物可造成水中溶解氧減少,影響魚類和其他水生生物的生長。水中溶解氧耗盡後,有機物進行厭氧分解,產生硫化氫、氨和硫醇等難聞氣味,使水質惡化。水體中有機物成分非常復雜,耗氧有機物濃度常用單位體積水中耗氧物質生化分解過程中所消耗的氧量表示。


⑵ 污水處理中MLSS是什麼意思

混合液懸浮固體濃度(mixde liquid suspended solids)的簡寫,它又稱為混合液污泥濃度,它表示的是在曝氣池單位容積混合液內所含有的活性污泥固體物的總重量(mg/L)。

⑶ 垃圾滲濾液污水怎麼處理呢

方法有很多,我這邊用的是「CLEAR NITE 污水處理劑」,網路搜下就能回找到
垃圾滲濾液的生物處理答主要是指依靠處理系統中的微生物的新陳代謝作用以及微生物絮體對污染物的吸附作用來去除滲濾液中的有機污染物的廢水處理方法,可分為厭氧和好氧處理兩種。國內外用於垃圾滲濾液處理的方法主要有厭氧處理系統、好氧處理系統等處理方法。

最普遍的滲濾液處理方法包括延時曝氣、生物轉盤以及曝氣穩定塘,這些方法對降低垃圾滲濾液中的BOD5、COD和氨氮都取得一定的效果,還可以去處另一些污染物如鐵、錳等金屬離子。

⑷ 污水是怎樣處理的

1、物理法:主要利用物理作用分離污水中的非溶解性物質,在處理過程中不改變化學性質。常用的有重力分離、離心分離、反滲透、氣浮等。物理法處理構築物較簡單、經濟,用於村鎮水體容量大、自凈能力強、污水處理程度要求不高的情況。

2、生物法:利用微生物的新陳代謝功能,將污水中呈溶解或膠體狀態的有機物分解氧化為穩定的無機物質,使污水得到凈化。常用的有活性污泥法和生物膜法。生物法處理程度比物理法要高。

3、化學法:是利用化學反應作用來處理或回收污水的溶解物質或膠體物質的方法,多用於工業廢水。常用的有混凝法、中和法、氧化還原法、離子交換法等。化學處理法處理效果好、費用高,多用作生化處理後的出水,作進一步的處理,提高出水水質。

(4)污水主課液擴展閱讀

污染成因:

人類生產活動造成的水體污染中,工業引起的水體污染最嚴重。如工業廢水,它含污染物多,成分復雜,不僅在水中不易凈化,而且處理也比較困難。

工業廢水,是工業污染引起水體污染的最重要的原因。它占工業排出的污染物的大部分。工業廢水所含的污染物因工廠種類不同而千差萬別,即使是同類工廠,生產過程不同,其所含污染物的質和量也不一樣。工業除了排出的廢水直接注入水體引起污染外,固體廢物和廢氣也會污染水體。

農業污染首先是由於耕作或開荒使土地表面疏鬆,在土壤和地形還未穩定時降雨,大量泥沙流入水中,增加水中的懸浮物。

還有一個重要原因是農葯、化肥的使用量日益增多,而使用的農葯和化肥只有少量附著或被吸收,其餘絕大部分殘留在土壤和漂浮在大氣中,通過降雨,經過地表徑流的沖刷進入地表水和滲入地表水形成污染。

城市污染源是因城市人口集中,城市生活污水、垃圾和廢氣引起水體污染造成的。城市污染源對水體的污染主要是生活污水,它是人們日常生活中產生的各種污水的混合液,其中包括廚房、洗滌房、浴室和廁所排出的污水。

世界上僅城市地區一年排出的工業和生活廢水就多達500立方公里,而每一滴污水將污染數倍乃至數十倍的水體。

⑸ 污水處理問題

平常心;要求有氣候變化、林業、水利、農業、邏輯、宏觀經濟等知識加上本身環境工程學。
我自己沒什麼素質,呵呵。本身是林業管護(民間出來的),現在兼職干水處理(磁分離工藝--美國劍橋的技術),賣生物肥(微生物菌劑--解磷、氮、鉀;改良土壤),喜歡錢,但不貪財--沒說嗎:人活著,錢沒了--人生最最痛苦的事,哈哈!
我也不是水處理專家(我們有理工學院的技術支持),不知道A/O工藝優缺點,只知道生物磁化工藝包含吧?在解決高COD等達標的前提下,相對於其他傳統工藝,成本低;投資低;濃縮-簡單到一個小集裝箱里,佔地成本也大大降低;磁粉的特性加快了沉澱(尤其是重金屬水),提高污水處理速度;能耗低;一個人都能看,也沒什麼清洗、維修的,電機燒了,呵呵廠家也不是專業生產的。國內現在也有做磁分離設備的,但核心技術不過關,COD降不下來及成本比較高,當然現在我們也算國內的,畢竟專利也放在了中國。
願意了解可以看一下原理

污水處理工藝原理分析對比

1、活性污泥法
長期以來,城市生活污水多採用活性污泥法,它是世界各國應用最廣的一種生物處理流程,具有處理能力高,出水水質好的優點。該方法主要由曝氣池、沉澱池、污泥迴流和剩餘污泥排放系統組成。廢水和迴流的活性污泥一起進入曝氣池形成混合液。曝氣池是一個生物反應器,通過曝氣設備充入空氣,空氣中的氧溶入混合液,產生好氧代謝反應,且使混合液得到足夠的攪拌而呈懸浮狀態,這樣,廢水中的有機物、氧氣同微生物能充分接觸反應。隨後混合液進入沉澱池,混合液中的懸浮固體在沉澱池中沉下來和水分離,流出沉澱池的就是凈化水。沉澱池中的污泥大部分迴流,稱為迴流污泥,迴流污泥的目的是使曝氣池內保持一定的懸浮固體濃度,也就是保持一定的微生物濃度。曝氣池中的生化反應引起微生物的增殖,增殖的微生物量通常從沉澱池中排除,以維持活性污泥系統的穩定運行,這部分污泥叫剩餘污泥。活性污泥除了有氧化和分解有機物的能力外,還要有良好的凝聚和沉降性能,以使活性污泥能從混合液中分離出來,得到澄清的出水。採用傳統的活性污泥法,往往基建費、運行費高,能耗大,管理復雜,易出現污泥膨脹現象;設備不能滿足高效低耗的要求。
2、生物膜法
在污水生物處理的發展和應用中,活性污泥和生物膜法一直占據主導地位。生物膜法主要用於從廢水中去除溶解性有機污染物,主要特點是微生物附著在介質「濾料」表面,形成生物膜,污水同生物膜接觸後,溶解的有機污染物被微生物吸附轉化為H2O、CO2、NH3和微生物細胞物質,污水得到凈化,所需氧化一般直接來自大氣。生物膜法處理系統適用於處理中小規模的城市廢水,採用的處理構築物有高負荷生物濾池和生物轉盤,生物濾池在我國南方更為適用。隨著新型填料的開發和配套技術的不斷完善,與活性污泥法平行發展起來的生物膜法處理工藝在近年來得以快速發展。由於生物膜法具有處理效率高、耐沖擊負荷性能好、產泥量低、佔地面積少、便於運行管理等優點,在處理中極具競爭力,但先期投資同樣巨大,後期運營成本較高。
3、氧化法
氧化法是目前廣泛採用並極具發展潛力的城市生活污水預處理方法之一。根據氧化劑的種類及反應器的類型,氧化法可分為化學氧化法、催化氧化法、(催化)濕式氧化法,光催化氧化法、超臨界氧化法等。化學氧化法雖然操作簡單,但由於其處理效果並非十分理想,而且由於其運行成本較高,因此,在城市生活污水處理應用中使用並不很多。為了達到提高處理效果,同時降低運行成本的目的,人們開發了一些其他的氧化技術。光催化氧化法設備簡單、運行條件溫和、氧化能力強、殺菌作用強、處理徹底,因此,在水的深度處理及對難生物降解的有機廢水的處理具有極好的應用前景,目前已成為國內外非常活躍的研究課題。
4、載入絮凝磁分離:工藝的變革
BFMS技術是在傳統的絮凝工藝中,加入磁粉,以增強絮凝的效果,形成高密度的絮體和加大絮體的比重,達到高效除污和快速沉降的目的。磁粉的離子極性和金屬特性,作為絮體的核體,大大地強化了對水中懸浮污染物的絮凝結合能力,減少絮凝劑用量,在去除懸浮物,特別是在去除磷、細菌、病毒、油、重金屬等方面的效果比傳統工藝要好。由於磁粉的比重高達5.0×10³kg/m³,大約是砂子的兩倍,混有磁粉的絮體比重增大,絮體快速沉降,速度可達20米/時以上,整個水處理從進水到出水可在10分鍾左右完成。污泥中的磁粉,利用磁粉本身的特性使用磁鼓進行分離後回收並在系統中循環使用。高梯度磁過濾器捕集流過水中的殘余微小顆粒,磁過濾器依照設定的要求被自動清洗,以達到高度凈化出水的目的。根據在美國採用BFMS作深度水處理的報告,磁過濾器可達到去除26納米病菌。磁粉的回收大大降低了處理成本,加上其本身設備的價格、靈活、廣泛性等優勢,雖然獲得專利不到一年,已經受到了污水行業的極大關注。
在當前水污染的嚴竣形勢和國家利好政策的共同作用下,如何使污水處理更加低能耗、高效率、低成本、簡單的操作、靈活的運行管理以及處理中水回用等則顯得尤為重要及迫切。就目前來說,磁分離技術是最經濟、效率最高、成本最低的工藝。如果結合其他工藝使其性能得到突破性發展,必將成為未來真正的主流。

⑹ 常用的污水處理葯劑有哪些

常用的有三種:復

1、絮凝劑:有時又制稱為混凝劑,可作為強化固液分離的手段,用於初沉池、二沉池、浮選池及三級處理或深度處理等工藝環節。

2、助凝劑:輔助絮凝劑發揮作用,加強混凝效果。

3、調理劑:又稱為脫水劑,用於對脫水前剩餘污泥的調理,其品種包括上述的部分絮凝劑和助凝劑。

⑺ 污水處理站怎樣處理含氰廢水

處理含氰廢水的方法
除了氯氧化法、二氧化硫-空氣氧化法、過氧化氫氧化法、酸化回收法、萃取法已獨立或幾種方法聯合使用於黃金氰化廠外,生物化學法、離子交換法、吸附法、自然凈化法在國內外也有工業應用,由於報道較少,工業實踐時間短,資料數據有限,本章僅對這些方法的原理、特點、處理效果進行簡要介紹。
一、生物化學法
1、生物法原理
生物法處理含氰廢水分兩個階段,第一階段是革蘭氏桿菌以氰化物、硫氰化物中的碳、氮為食物源,將氰化物和硫氰化物分解成碳酸鹽和氨:
微生物
Mn(CN)n(n-m)-+4H2O+O2─→Me-生物膜+2HCO3-+2NH3
對金屬氰絡物的分解順序是Zn、Ni、Cu、Fe對硫氰化物的分解與此類似,而且迅速,最佳pH值6.7~7.2。
細菌
SCN-+2.5O2+2H2O→SO42-+HCO3-+NH3
第二階段為硝化階段,利用嗜氧自養細菌把NH3分解:
細菌
NH3+1.5O2→NO2-+2H++H2O
細菌
NO2-+0.5O2→NO3-
氰化物和硫氰化物經過以上兩個階段,分解成無毒物以達到廢水處理目的。
生物化學法根據使用的設備和工藝不可又分為活性污泥法、生物過濾法、生物接觸法和生物流化床法等等,國內外利用生物化學法處理焦化、化肥廠含氰廢水的報導較多。
據報道,從1984年開始,美國霍姆斯特克(Homestake)金礦用生物法處理氰化廠廢水,英國將一種菌種固化後用於處理2500ppm的廢水,出水CN-可降低到1ppm,是今後發展的方向。
微生物法進入工業化階段並非易事,自然界的菌種遠不能適應每升數毫克濃度的氰化物廢水,因此必須對菌種進行馴化,使其逐步適應,生物化學法工藝較長,包括菌種的培養,加入營養物等,其處理時間相對較長,操作條件嚴格。如溫度、廢水組成等必須嚴格控制在一定范圍內,否則,微生物的代謝作用就會受到抑制甚至死亡。設備復雜、投資很大,因此在黃金氰化廠它的應用受到了限制。但生物化學法能分解硫氰化物,使重金屬形成污泥從廢水中去除,出水水質很好,故對於排水水質要求很高、地處溫帶的氰化廠,使用生物法比較合適。
2、生物法的應用情況
國外某金礦採用生物化學法處理氰化廠含氰廢水。首先,含氰廢水通過其它廢水稀釋,氰化物含量降低到生化法要求的濃度(CN-<10.0mg/L)、溫度(10℃~18℃,必要時設空調),pH值(7~8.5)然後加入營養基(磷酸鹽和碳酸鈉),廢水的處理分兩段進行,兩段均採用Φ3.6×6m的生物轉盤,30%浸入廢水中以使細菌與廢水和空氣接觸,第一段用微生物把氰化物和硫氰化物氧化成二氧化碳、硫酸鹽和氨,同時重金屬被細菌吸附而從廢水中除去,第二段包括氨的細菌硝化作用,首先轉化為亞硝酸鹽,然後被轉化為硝酸鹽,第一段採用事先經過馴化的,微生物從工藝水中以兩種適應較高的氰化物和硫氰化物的濃度。第二段採用分離出來的普通的亞硝化細菌和硝化細菌,被附著在轉盤上的細菌的浮生物膜吸附重金屬並隨生產膜脫落而被除去,通過加入絮凝劑使液固兩相分開,清液達標排放,污泥排放尾礦庫。該處理裝置處理廢水(包括其它廢水)800m3/h,每個生物轉盤直徑3.6m,長6m。由波紋狀塑料板組成。該處理廠總投資約1000萬美元,其處理指標見表10-1。
表10-1 生物化學法處理含氰廢水效果
廢水名稱 廢水各組份含量(mg/L)
總CN- CN- SCN- Cu
處理前 3.67 2.30 61.5 0.56
處理後 0.33 0.05 0.50 0.04
3、生物化學法的特點
(一)優點
生物法處理的廢水,水質比較好,CN-、SCN-、CNO-、NH3、重金屬包括Fe(CN)64-均有較高的去除率,排水無毒,尤其是能徹底去除SCN-,是二氧化硫-空氣法、過氧化氫氧化法、酸化回收法等無法做到的。
(二)缺點
1)適應性差,僅能處理極低濃度而且濃度波動小的含氰廢水,故氰化廠廢水應稀釋數百倍才能處理,這就擴大了處理裝置的處理規模,大大增加了基建投資。
2)溫度范圍窄,寒冷地方必須有溫室才能使用。
3)只能處理澄清水,不能處理礦漿。
二、離子交換法
1950年南非開始研究使用離子交換法處理黃金行業含氰廢水。1960年蘇聯也開始研究,並在傑良諾夫斯克浮選廠處理含氰廢水並回收氰化物和金。
1970年工業裝置投入運行,取得了較好的效果,1985年加拿大的威蒂克(Witteck)科技開發公司開發了一種處理含氰廢水的離子交換法,不久又成立了一個專門推廣該技術的公司,叫Cy-tech公司,離子交換法處理進行研究,取得了許多試驗數據,並已達到了工業應用的水平。
1、離子交換法的基本原理
離子交換法就是用離子交換樹脂吸附廢水中以陰離子形式存在的各種氰化物:
R2SO4+2CN-→2R(CN)2+SO42-
R2SO4+Zn(CN)42-→R2Zn(CN)4+SO42-
R2SO4+Cu(CN)32-→R2Cu(CN)3+SO42-
2R2SO4+Fe(CN)64-→R4Fe(CN)6+2SO42-
Pb(CN)42-、Ni(CN)42-、Au(CN)2-、Ag(CN) 2-、Cu(CN)2-等的吸附與上述類似,硫氰化物陰離子在樹脂上的吸附力比CN-更大,更易被吸附在樹脂上。
R2SO4+2SCN-→2RSCN
在強鹼性陰離子交換樹脂上,黃金氰化廠廢水中主要的幾種陰離子的吸附能力如下:
Zn(CN)42->Cu(CN)32->SCN->CN->SO42-
樹脂飽和時,如果繼續處理廢水,新進入樹脂層的Zn(CN)42-就會將其它離子從樹脂上排擠下來,使它們重新進入溶液,但即使繼續進行這一過程,樹脂上已吸附的各種離子也不會全部被排擠下來,各種離子在樹脂上的吸附量根據各種離子在樹脂上的吸附能力以及在廢水中的濃度不同有一部分配比。對於強鹼性樹脂來說,這種現象十分明顯,具體表現在流出液的組成隨處理量的變化特性曲線上。各組分當被吸附力強於它的組分從樹脂上排擠下來時,其流出液濃度會出現峰值。
不同的弱鹼樹脂具有不同的吸附特性。因此,對不同離子的吸附力也有很大差別,研究用離子交換法處理含氰廢水的一個重要任務就是去選擇甚至專門合成適用於我們要處理的廢水特點的樹脂,否則樹脂處理廢水的效果或洗脫問題將難以滿足我們的需要。難以工業化應用。
2、離子交換法存在的問題及解決途徑
離子交換法存在的問題主要是樹脂的中毒問題,主要是吸附能力強於氰化物離子的硫氰化物、銅氰絡合物和鐵氰絡合物。由於上述物質吸附到樹脂上,使樹脂的洗脫變得較為復雜甚至非常困難。
(一)硫氰化物
對於大部分金氰化廠來說,廢水中含有100mg/L以上的SCN-,其中金精礦氰化廠廢水SCN-高達800mg/L以上,由於強鹼性陰離子交換樹脂對SCN-的吸附力較大,而且SCN-的濃度如此之高,使樹脂對其它應吸附而從廢水中除去的組分的吸附量大為降低,如Zn(CN)42-、Cu(CN)32-,同時,由於SCN-的飽和,會使CN-過早泄漏,導致離子交換樹脂的工作飽和容量過低。例如,當廢水中SCN-350mg/L時,其工作飽和容量(指流出液中CN-≤0.5mg/L條件)僅20倍樹脂體積,而且SCN-難以從樹脂上通過簡單的方法洗脫下來,這就限制了具有大飽和容量的強鹼性陰離子交換樹脂的應用,而弱鹼性陰離子交換樹脂飽和容量最高不過強鹼性樹脂的一半,從處理洗脫成本考慮,也不易使用,可見較高的SCN-濃度給離子交換樹脂帶來很大麻煩。如果從樹脂上不洗脫SCN-,那麼流出液CN-不能達標,即使不考慮CN-的泄漏,樹脂對其它離子的工作容量也減少。
(二)銅
盡管樹脂對Cu(CN)32-的吸附力不如Zn(CN)42-大,但它的濃度往往較高,在強鹼樹脂上的飽和容量約8~35kg/m3,甚至更高,但用酸洗脫樹脂上的氰化物時,銅並不能被洗脫下來,而是在樹脂上形成CuCN沉澱,為了洗脫強鹼樹脂上的銅,必須採用含氨洗脫液洗脫,使銅溶解,形成Cu(NH3)42-或Cu(NH3)2+而洗脫下來,這就使工藝復雜化,尤其是洗脫液的再生也不夠簡便。
(三)亞鐵氰化物離子
Fe(CN)64-盡管在樹脂上吸附量不大,但在用酸洗脫樹脂上氰化物和鋅時,會生成Zn2Fe(CN)6、Fe2Fe(CN)6、Cu2Fe(CN)6沉澱物,而使樹脂呈深綠至棕黑色,影響樹脂的再生效果,如果專門洗脫Fe(CN)64-,盡管效果好,可是,洗脫液再生等問題均使工藝變得更長,操作更復雜。
3、技術現狀
根據國產強鹼樹脂的上述特點,提出二種工藝:一是用強鹼性陰離子處理高、中濃度含氰廢水,旨在去除廢水中的Cu、Zn,廢水不達標但由於Cu、Zn的大為減少而有宜於循環使用。二是用強鹼性樹脂處理不含SCN-或SCN-濃度100mg/L以下的廢水,回收氰化物為主,處理後廢水達標外排。例如,在金精礦燒渣為原料的氰化廠用離子交換法處理貧液。把離子交換法用於這兩方面在技術和經濟上估計比用酸化回收法優越。最好的辦法是開發易洗脫再生的新型樹脂,國外的許多開發新型樹脂的報導介紹了吸附廢水中Fe(CN)64-、而且較容易被洗脫下來的樹脂,近年來,由於越來越重視三廢的回收,使人們十分重視使用離子交換法處理廢水使其達到排放標准同時使大多數氰化物得以回收並重新使用這類課題。
加拿大Witteck開發公司開發出的一種氰化物再循環工藝就是其中比較有代表性的一例,該公司為此成立了一個Cy-tech公司專門推銷這種工藝裝置。一份報導介紹,該工藝用於處理鋅粉置換工藝產生的貧液,使用強鹼性陰離子交換樹脂吸附重金屬氰化物,當流出液CN-超標時對樹脂進行酸洗,使用硫酸自下而上通過樹脂床即可使樹脂上的重金屬和氰化物被洗脫下來,其重金屬以陽離子形式存在於洗脫液中,洗脫液用類似於酸化回收法的裝置回收HCN,然後大部分洗脫液進行再生並重復用於洗脫。回收的NaCN用於氰化工段,少量洗脫液經過中和沉澱出重金屬離子後外排。據稱這種方法也可用於處理炭漿廠的尾漿,其工藝和樹脂礦漿法十分類似。Cy-tech公司認為該工藝經改進後也可消除尾礦庫排水中殘余氰化物及其它重金屬,該報導無詳細數據、資料以及樹脂的型號。
另一報導稱,這項工藝的關鍵是在廢水進入離子交換柱前,先完成一個化學反應(使游離CN-形成Zn(CN)42-),並在化學反應中應用一種催化劑,有關人士解釋說,如果沒有這個反應,廢水就不得不通過若干個交換柱提出那些無用的分子,從而增加了系統的成本和復雜性。
採用一段順流吸附裝置處理效果是CN-<0.5mg/L、各種重金屬的總和小於1mg/L,處理能力約720加侖/h,樹脂量約36加侖。
該試驗裝置大約需要處理3500加侖廢水才能使一個交換柱飽和,每隔一天對交換柱進行一次解吸,每月最大產渣量(重金屬沉澱物)也可裝入1隻45加侖的桶中,其廢水按所給數據估算重金屬總含量不大於50mg/L,估計重金屬絕大部分是鋅粉置換產生的Zn(CN)42-,該工藝裝置的投資與其它處理裝置相當。能在一年多的時間里靠回收氰化物而收回全部投資,該工藝由Cy-tech公司開始轉讓。但無工業應用的詳細報導。
我國對離子交換法處理氰化廠含氰廢水的研究主要有兩個目的,一是解決氰化—鋅粉置換工藝產生貧液的全循環問題,即從貧液中除去銅和鋅,為了達到較高的吸附容量,通常使用強鹼性陰離子交換樹脂, 當廢水中銅、鋅含量分別為140、100mg/L時,強鹼樹脂的工作吸附容量不小於15kg/m3和6.5kg/m3。飽和樹脂經酸洗回收氰化物並能洗脫部分鋅,然後用另一種洗脫劑洗脫銅,樹脂即可再生,而銅的洗脫劑需經再生方可重復使用,由於工藝較長目前尚無工業應用。
含氰廢水→過濾→離 子 交 換→(低濃度含氰廢水)返回浸出或處理

(飽和樹脂)回收氰化物
↓ 再生樹脂返回使用
洗脫重金屬

重金屬回收

圖11-1離子交換法回收氰化物工藝

當然如果廢水中銅和SCN-極低時,樹脂的再生僅通過酸洗就
可完成,此條件下可保證離子交換工藝出水達標。無論是國內還是國外,其離子交換工藝原則流程大致相同,見圖11-1。
4、離子交換法的特點
(一)優點:
1)當廢水中CN-低於酸化回收法的經濟效益下限時,採用離子交換法由於氰化物和貴金屬具有較好的經濟效益,其處理效果優於酸化法,當廢水組成簡單時可排放。
2)投資小於酸化回收法
3)與酸化回收法相比,該方法葯耗、電耗小,金回收率高。
(二)缺點:
1)當廢水中SCN-含量高時,洗脫困難,樹脂的容量受到影響,處理效果變差,離子交換法的應用范圍受SCN-很大影響。
2)在洗脫氰化物過程中,很難洗脫銅,故需專門的洗脫方法和步驟,使工藝復雜化。
3)在酸洗過程中,Fe(CN)64-會在樹脂顆粒內形成重金屬沉澱物而使樹脂中毒。
4)對操作者的素質要求高。
三、吸附—回收法
前面已談過,離子交換為化學吸附,吸附力較強,故解吸困難,解吸成本高。近來,國外開發了用吸附樹脂、活性炭做吸附劑,從含氰礦漿或廢水中回收銅和氰化物的技術,已完成了半工業試驗。
1、吸附樹脂吸附—回收法
西澳大利亞一炭浸廠對液相中銅、氰化鈉濃度分別為85、158mg/L之氰尾進行了吸附─回收法半工業試驗,採用法國地質科學研究所開發的V912吸附樹脂,處理能力為10m3/d,處理後尾漿液相中游離氰化物(CN-)濃度小於0.5mg/L。飽和樹脂分兩級洗脫再返回使用,用金屬洗脫劑洗重金屬,用硫酸洗脫氰化物,洗脫液用與酸化回收法類似的方法回收氰化物。
試驗表明,當銅濃度增加時,處理成本增加較大。
以半工業試驗結果推算,建一座年處理能力100萬噸的裝置,在銅、氰化鈉濃度分別為100、300mg/L條件下,設備費為250萬加元。年回收銅122t,氰化鈉377t,年洗脫樹脂1700t次,洗脫每噸樹脂的消耗如下(單位:t):

H2SO4攭NaOH Na2S 水 動力
0.5 0.453 0.048 17.5m3 12.3kwh
2、活性炭吸附—回收法
活性炭具有吸附廢水中重金屬和氰化物的特性,這早已人所共知,國外早在十年前就有金礦試驗用來處理貧液中銅等雜質,使貧液全循環,但沒能解決洗脫再生問題。
近年來,西澳大利亞一個炭漿廠完成了用洗性炭從浸出礦漿中回收銅和氰化物的半工業試驗,採用加溫解吸法選擇性解吸銅,含銅解吸液在酸性條件下沉澱氰化銅,再把氰化銅用硫酸氧化為硫酸銅出售。酸性水中的HCN用鹼性解吸液吸收再用於解吸工藝中。
銅是氰化過程增加氰化物耗量的一個較大因素,從浸出礦漿中回收銅和氰化物不但避免了銅對浸出的影響,提高了金的浸出率,而且減少了氰化物的消耗,具有一定的經濟效益,這一技術在特定的條件下可用來做為貧液全循環工藝中的去除銅措施。
四、自然凈化法
黃金氰化廠除少數收購金精礦進行提金然後把氰渣做硫精礦出售而不設尾礦庫外,絕大部分礦山建有較大容量的尾礦庫(池)。氰化廠廢水在其內停留時間一般在1~3天,有個別尾礦庫,廢水可停留十天以上。由於曝氣、光化學反應,共沉澱和生物作用,氰化物的濃度逐漸降低,這種靠尾礦庫(池),降低氰化物含量的方法稱為自然凈化法。目前絕大部分氰化廠都把尾礦庫自然凈化法做為除氰的一種輔助手段,經廢水處理裝置處理後的廢水再經尾礦庫進行二級處理,排水氰含量進一步降低,由於這種方法沒有處理成本問題(尾礦庫的建設是為了沉降懸浮物和貯有尾礦),故對人們有很大的吸引力,甚至有些氰化廠建立了專門的自然凈化池以期使自然凈化法的處理效果更好,如何提高自然凈化法的處理效果,把目前做為輔助處理方法的自然凈化法單獨用來處理含氰廢水?這是一項很有意義的科研工作,許多科研人員都在深入研究這一課題。
1、自然凈化法的特點
由於使用自然凈化法的氰化廠不多,可靠的數據有限,其特點尚未充分暴露出來。
(一)優點
1)不使用葯劑,處理成本低。
2)與其它方法配合,可做為一級處理方法也可做為二級處理方法,可靈活使用。
3)無二次污染。
(二)缺點
1)對尾礦庫要求高,必須不滲漏,匯水面積要大。
2)受季節、氣候影響大,在寒冷地區效果差。
2、自然凈化法原理
已完成的研究表明,自然凈化法至少是曝氣、光化學反應、共沉澱和生物分解四種作用的疊加。自然,影響自然凈化法效果的因素也就是上述四種作用之影響因素的疊加。
(一)曝氣
含氰廢水與大氣接觸,大氣中的SO2、NOx、CO2就會被廢吸收,使廢崐水pH值下降。
CO2+OH-→HCO3-
SO2+OH攩-攪→HSO3-
隨著廢水pH值的下降,廢水中的氰化物趨於形成HCN:
CN-+H+→HCN(aq)
亞鐵氰化物會與重金屬離子形成沉澱物這一反應促使重金屬氰化物的解離,以Zn(CN)42-為例:
Zn(CN)42-+Fe(CN)64-+4H+→Zn2Fe(CN)6↓+4HCN(aq)
由於空氣中HCN極微,廢水中的HCN將傾向於全部逸入大氣中,從動力學角度考慮,HCN的逸出速度受如下因素影響:
1)廢水溫度,廢水溫度高,HCN蒸氣分壓高,有利於HCN逸出,而且水溫高,水的粘度小,液膜阻力減少。
2)風力,尾礦庫上方風力大,水的擾動劇烈,氣—液接觸面積增大,酸性氣體和HCN在氣相擴散速度加快,水體內HCN的液相擴散也加快,酸性氣體與水的反應加快。
3)尾礦庫匯水特性
尾礦庫匯水面積大,水層淺,使單位體積廢水與空氣接觸表面增大,風力對水體的攪動效果增大,有利於HCN的逸出和酸性氣體的吸收。
4)廢水組成
廢水中重金屬含量高時,HCN的形成和逸出由於受絡合物解離平衡的限制,速度明顯變慢。
5)廢水pH值
廢水pH值低,有利於重金屬氰絡物的解離和HCN的形成。
HCN全部從水中逸出需要較長時間,其道理與酸化回收相似,在1m深的水層條件下,表層氰化物濃度為0.5mg/L時,底層氰化物濃度15mg/L,可見HCN逸出之難度。
在曝氣過程中,空氣中的氧不斷地溶於廢水中,其傳質速率也受液相擴散阻力的影響,表層溶解氧濃度高,底部濃度低,溶解氧進入液相後,與氰化物發生氧化反應:
2Cu(CN)2-+0.5O2+3H2O+2H+→2Cu(OH)2↓+4HCN
2CN-+O2→2CNO-
CNO-+2H2O→CO32-+NH4+
含氰廢水在尾礦庫內,還會發生水解反應,生成甲酸銨,廢水溫度越高,反應速度越快:
HCN+H2O=HCO-ONH4
這些反應的總和就是曝氣的效果,為了提高曝氣效果,必須提高廢水溫度,廢水與空氣的接觸表面積,增大水體的攪動程度,這樣才能保證HCN迅速逸入空氣而氧迅速溶解於廢水中並和氰化物反應,曝氣法受季節地域影響較大。
(二)光化學反應
廢水中的各種氰化物在陽光紫外線的照射下,發生如下反應:
Fe(CN)64-+H2O→Fe(CN)53-·H2O+CN-
4Fe(CN)64-+O2+2H2O→4Fe(CN)63-+4OH-
4Fe(CN)64-+12H2O→4Fe(OH)3↓+12HCN+12CN-
亞鐵氰化物和鐵氰化物離子在光照下分解出遊離氰化物,文獻介紹在3~5小時的光照時間里,60%~70%的鐵氰化物分解、80%~90%的亞鐵氰化物分解。由於分解出的氰化物不會很快地被氧化,因而會造成水體氰化物含量增高,這就是地表水水質指標中要求用總氰濃度的原因之一。
分解出的游離氰化物不斷地被氧化,水解以及逸入空氣中,達到了降低廢水中氰化物濃度的目的。
逸入空氣中的HCN,在陽光紫外線作用下,與氧發生反應。
HCN+0.5O2→HCNO
夏季,反應時間約10分鍾,冬季約1小時,從這點看,HCN的逸出不會影響大氣的質量,許多焦化廠利用曝氣法處理含氰廢水,其氰化物揮發量比黃金行業多,而且大部分工廠位於城市,並未聞發生污染事故。
光化學反應與氣溫和光照強度有關,因此,夏季除氰效果遠比冬季好。
(三)共沉澱作用
廢水中亞鐵氰化物還會形成Zn2Fe(CN)6、Pb2Fe(CN)6之類的沉澱,與Cu(OH)2、Fe(OH)3、CaCO3、CaSO4等凝聚在一起,沉於水底從而達到了去除重金屬和氰化物的效果,沉澱效果受pH值和廢崐水組成的制約,pH值低時效果好。
(四)生物化學反應
當尾礦庫廢水氰化物濃度很低時,廢水中的破壞氰化物的微生物將逐漸繁殖起來,並以氰化物為碳、氮源,把氰化物分解成碳酸鹽和硝酸鹽。
生物化學作用受廢水組成和溫度影響,如果氰化物濃度高達100mg/L,那麼微生物就會中毒死亡,如果溫度低於10℃,則微生物不能繁殖,生化反應也不能進行。
綜上所述,自然凈化法的效果受地理位置(南、北方、高原、平原)、天氣(陰、晴、氣溫、風力)、尾礦庫(匯水面積、水深、水流速度)微生物,廢水組成(pH、氰化物濃度、重金屬濃度)廢水在尾礦庫內停留時間等諸因素的影響。至崐於上述因素對曝氣、光化學反應,共沉澱以及生化反應的影響程度,以及這四種除氰途徑哪個作用大,目前尚無定量的數據可供參考。某研究所提出的氰化物自凈數學模型如下:
C=C0e-kt
其中,k為常數,單位:小時;t為自然凈化時間(小時),C、C0分別為某時某刻氰化物濃度和原始氰化物濃度。當溫度在10~30℃范圍內時,式中k值在0.005~0.01范圍,由於k值僅反應了溫度,沒有反應其它眾多的因素,故無多大應用價值。
正因為自然凈化法受許多因素制約,其處理效果並不穩定,如果進入尾礦庫的崐廢水氰化物濃度低(<10mg/L)、廢水在尾礦庫停留時間長,排水有可能達標,大部分氰化廠把尾礦庫做為二級處理設施。然而近年來,由於氰化物處理費用增高,一些氰化廠正探索用尾礦庫做為氰化物的一級處理設施。
3、自然凈化法的實踐
某全泥氰化廠尾礦庫建在較厚(2~5m),黃土層的溝內,廢水無滲入地下水的可能,該地區乾燥少雨,年蒸發水量大於降雨量,故尾礦庫無排水,氰化物在尾礦庫內自然凈化,不再採用其它方法處理,節省了大量葯劑、費用,降低了選礦成本。
某全泥氰化廠尾礦庫不滲漏,含氰化物尾礦漿直接排入尾礦庫,經自然凈化再進行二級處理,使其達標排放,由於二級處理的是澄清水,而且氰化物濃度有較大的降低,故處理成本大幅度下降,處理效果好。
某浮選—氰化—鋅粉置換工藝裝置,其貧液用酸化回收法處理後,殘氰在5~20mg/L經浮選廢水(漿)稀釋後,氰化物含量在0.5~2范圍,進入尾礦庫自然凈化,外排水CN-<0.5mg/L。
某氰化廠採用酸化回收法處理貧液,其酸性廢水含氰5~10mg/L,在2m深的廢水池內,經20天的自然凈化,氰化物降低到0.5mg/L。

⑻ 污水處理中用的消毒液、凈化劑是什麼

一般是含氯消毒劑

⑼ 污水和廢水有什麼區別

(1)含義不同:

1、廢水(wastewater)是指居民活動過程中排出的水及徑流雨水的總稱。它包括生活污水、工業廢水和初雨徑流入排水管渠等其它無用水,一般指經過一定技術處理後不能再循環利用或者一級污染後制純處理難度達不到一定標準的水。

2、污水是指受一定污染的來自生活和生產的排出水。喪失了原來使用功能的水簡稱為污水。主要是生活上使用後的水,其含有有機物較多,處理較易。

(2)污染不同:

1、工業廢水對環境的破壞是相當大的,20世紀的「八大公害事件」中的「水俁事件」和「富山事件」就是由於工業廢水的污染。

2、工業廢水來自製造采礦和工業生產活動的污水,包括來自與工業或者商業儲藏、加工的徑流活滲瀝液,以及其它不是生活污水的廢水。

(9)污水主課液擴展閱讀:

自然界三大公害:廢水廢氣、雜訊污染

1、工業廢水直接流入渠道,江河,湖泊污染地表水,如果毒性較大會導致水生動植物的死亡甚至絕跡

2、工業廢水還可能滲透到地下水,污染地下水;如果周邊居民採用被污染的地表水或地下水作為生活用水,會危害身體健康,重者死亡;

3、工業廢水滲入土壤,造成土壤污染。影響植物和土壤中微生物的生長。

4、有些工業廢水還帶有難聞的惡臭,污染空氣。

5、工業廢水中的有毒有害物質會被動植物的攝食和吸收作用殘留在體內,而後通過食物鏈到達人體內,對人體造成危害。

工業廢水對環境的破壞是相當大的,20世紀的「八大公害事件」中的「水俁事件」和「富山事件」就是由於工業廢水的污染。

⑽ 污水處理中混合液要迴流,那迴流比定義是什麼

這個是根據迴流量/處理流量來計算的。
1、污泥迴流比是為了維持生化池內污回泥的數量(濃答度)而從二沉池沉澱污泥迴流的,迴流比是根據你生化池要維持的濃度和二沉池底泥濃度確定的,經驗數據是50%-100%。 污泥迴流比計算 是指沉澱池迴流到生化池A池的污泥流量與進入A池污水流量的比例
2、混合液迴流比由曝氣池混合液迴流至厭氧池或者是缺氧池,主要作用是脫氮除磷。迴流比大約是100%-400%

熱點內容
丁度巴拉斯情人電影推薦 發布:2024-08-19 09:13:07 瀏覽:886
類似深水的露點電影 發布:2024-08-19 09:10:12 瀏覽:80
《消失的眼角膜》2電影 發布:2024-08-19 08:34:43 瀏覽:878
私人影院什麼電影好看 發布:2024-08-19 08:33:32 瀏覽:593
干 B 發布:2024-08-19 08:30:21 瀏覽:910
夜晚看片網站 發布:2024-08-19 08:20:59 瀏覽:440
台灣男同電影《越界》 發布:2024-08-19 08:04:35 瀏覽:290
看電影選座位追女孩 發布:2024-08-19 07:54:42 瀏覽:975
日本a級愛情 發布:2024-08-19 07:30:38 瀏覽:832
生活中的瑪麗類似電影 發布:2024-08-19 07:26:46 瀏覽:239