当前位置:首页 » 纯水软水 » 软水铝石的制备方法

软水铝石的制备方法

发布时间: 2021-03-23 08:35:57

A. 怎么鉴别铝土矿的类型三水铝石,一水硬铝石,一水软铝石

一水硬铝石又名水铝石,结构式和分子式分别为AlO(OH)和Al2O3•H2O.斜方晶系,结晶完好者呈柱状、板状、鳞片状、针状、棱状等.矿石中的水铝石一般均含有TiO2、SiO2、Fe2O3、Ga2O3、Nb2O5、Ta2O5、TR2O3等不同量类质同象混入物.水铝石溶于酸和碱,但在常温常压下溶解甚弱,需在高温高压和强酸或强碱浓度下才能完全分解.一水硬铝石形成于酸性介质,与一水软铝石、赤铁矿、针铁矿、高岭石、绿泥石、黄铁矿等共生.其水化可变成三水铝石,脱水可变成α刚玉,可被高岭石、黄铁矿、菱铁矿、绿泥石等交代.
一水软铝石又名勃姆石、软水铝石,结构式为AlO(OH),分子式为Al2O3•H2O.斜方晶系,结晶完好者呈菱形体、棱面状、棱状、针状、纤维状和六角板状.矿石中的一水软铝石常含Fe2O3、TiO2、Cr2O、Ga2O3等类质同象.一水软铝石可溶于酸和碱.该矿物形成于酸性介质,主要产在沉积铝土矿中,其特征是与菱铁矿共生.它可被一水硬铝石、三水铝石、高岭石等交代,脱水可转变成一水硬铝石和α刚玉,水化可变成三水铝石.
三水铝石又名水铝氧石、氢氧铝石,结构式Al(OH)3,分子式为Al2O3•3H2O.单斜晶系,结晶完好者呈六角板状、棱镜状,常有呈细晶状集合体或双晶,矿石中三水铝石多呈不规则状集合体,均含有不同量的TiO2、SiO2、Fe2O3、Nb2O5、Ta2O5、Ga2O3等类质同象或机械混入物.三水铝石溶于酸和碱,其粉末加热到100℃经2h即可完全溶解.该矿物形成于酸性介质,在风化壳矿床中三水铝石是原生矿物,也是主要矿石矿物,与高岭石、针铁矿、赤铁矿、伊利石等共生.三水铝石脱水可变成一水软铝石、一水硬铝石和α刚玉,可被高岭石、多水高岭石等交代.

B. 铝石的主要成分是什么

三水铝石(Gibbsite) Al(OH)3 三水铝石是铝的氢氧化物矿物,在铝土矿床中它是主要的成分。三水铝石的晶体极细小,晶体聚集在一起成结核状、豆状或土状,一般为白色,有玻璃光泽,如果含有杂质则发红色。它们主要是长石等含铝矿物风化后产生的次生矿物。
化学组成为Al(OH)3﹑晶体属单斜晶系 P21/n空间群的氢氧化物矿物。与拜三水铝石(bayerite)和诺三水铝石 (nordstrandite)成同质多象。旧称三水铝矿或水铝氧石。以矿物收藏家C.G.吉布斯 (Gibbs)的姓于1822年命名。晶体结构与水镁石相似﹐由夹心饼干式的(OH)-Al-(OH)配位八面体层平行叠置而成﹐只是Al3+不占满夹层中的全部八面体空隙﹐仅占据其中的2/3。三水铝石的晶体一般极为细小﹐呈假六方片状﹐并常成双晶﹔通常以结核状﹑豆状﹑土状集合体产出。白色﹐或因杂质染色而呈淡红至红色。玻璃光泽﹐解理面显珍珠光泽。底面解理极完全。摩斯硬度2.5~3.5﹐比重2.40。三水铝石主要是长石等含铝矿物化学风化的次生产物﹐是红土型铝土矿的主要矿物成分。但也可为低温热液成因。俄罗斯南乌拉尔的兹拉托乌斯托夫斯克的热液脉中产出有达5厘米大小的晶体。用途见铝土矿。
三水铝石[晶体化学] 理论组成(wB%):Al2O3 65.4,H2O 34.6。常见类质同像替代有Fe和Ga,Fe2O3可达2%,Ga2O3可达0.006%。此外,常含杂质CaO、MgO、SiO2等。[结构与形态] 单斜晶系,a0=0.864nm,b0=0.507nm,c0=0.972nm;Z=8。晶体结构与水镁石相似,属典型的层状结构。不同者是Al3 仅充填由OH-呈六方最紧密堆积层(∥(001))相间的两层OH-中2/3的八面体空隙,因为Al3 具有比Mg2 高的电荷,故以较少的Al3 数即可平衡OH-的电荷。
斜方柱晶类,C2h-2/m(L2PC)。晶体呈假六方板状,极少见。主要单形:平行双面a、c,斜方柱m。常依(100)和(110)成双晶。常见聚片双晶。集合体呈放射纤维状、鳞片状、皮壳状、钟乳状或鲕状、豆状、球粒状结核或呈细粒土状块体。主要呈胶态非晶质或细粒晶质。
[物理性质] 白色或因杂质呈浅灰、浅绿、浅红色调。玻璃光泽,解理面珍珠光泽。透明至半透明。解理极完全。硬度2.5~3.5。相对密度2.30~2.43。具泥土臭味。
偏光镜下:无色。二轴晶。Ng=1.587,Nm=Np=1.566。[产状与组合] 主要由含铝硅酸盐经分解和水解而成。热带和**带气候有利于三水铝石的形成。在区域变质作用中,经脱水可转变为软水铝石、硬水铝石(140~200℃);随着变质程度的增高,可转变为刚玉。

C. 现在铝溶胶最佳的制备方案是什么

别以氯化铝、氧化铝、氢氧化铝和拟薄水铝石为原料制备了铝溶胶, 并对铝溶胶的粘接强度和稳定性进行了检测与评价。结果表明, 以氯化铝为原料制备的铝溶胶理化特性最好, 但容易引入有毒害作用的氯离子; 以氧化铝粉和氢氧化铝为原料制备的铝溶胶稳定性和粘接强度不能满足金属载体催化剂涂层的制备要求; 以拟薄水铝石为原料制备的铝溶胶不仅能满足金属载体催化剂涂层制备的要求, 且不会向催化剂中引入有毒害作用的氯离子,是制备铝溶胶的最佳材料。 1 前言 随着对汽车排放法规要求的不断严格, 要求车用催化剂载体的孔密度更高、壁厚更薄, 同时为提供更大的开口面积和几何表面积, 要求载体的压降越低越好。与陶瓷载体相比, 金属载体具有热容小、压降低、机械强度高等优点[1], 已被广泛用于各种车用催化剂的制备。金属载体没有吸水性, 不易涂覆氧化铝涂层, 因此涂层制备是制备金属载体催化剂的关键技术。铝溶胶性能的好坏直接影响涂层的粘接强度和稳定性。为此, 本文以不同原料进行了铝溶胶制备试验, 并对所制备的铝溶胶粘接强度和稳定性等理化性能进行了检测与评价。 2 试验研究 2.1 铝溶胶制备试验 2.1.1 用铝粉和三氯化铝制备铝溶胶 首先将 400gAlCl3·6H2O 搅拌溶于 1000mL 的去离子水中, 搅拌转速控制在 300r/min, 待完全溶解并冷却后静置约 30min。然后将 200 目的铝粉100g 搅拌溶入 AlCl3 溶液中, 同时加热至 80~90 ℃使铝粉完全溶解形成溶胶。将自制的 HMT 溶液(起分散 /稳定溶胶和改性氧化铝涂层的作用)与制成的溶胶按 1∶ 的比例搅拌混合形成均匀的铝溶胶。控1.6制铝溶胶的 pH 值为 2.0~3.0、相对密度为 1.20±0.5。该方法称为溶胶—凝胶法(Sol-Gel)。 试验中采用的试剂均为分析纯。pH 值采用Delta320pH 酸度计测定, 粘度采用 NDJ-1 旋转粘度计测定。 2.1.2用γ-Al2O3或α-Al2O3 粉制备铝溶胶 将150ml去离子水边搅拌边缓慢加入 40g 浓硝酸中, 待硝酸完全溶解冷却后, 再边搅拌边缓慢倒入 10gAl2O3(α-Al2O3或γ-Al2O3)粉( 市售, 325目, 工业纯)。将溶液加热至 90℃, 搅拌至溶液完全溶解后形成铝溶胶。 加热搅拌过程在装有加热恒温装置的磁力搅拌器内进行。在加热过程中不断向反应器中补充去离子水, 控制相对密度在 1.18 左右, 控制 pH值<2。 2.1.3 用氢氧化铝制备铝溶胶 将Al(OH)3、浓硝酸和去离子水按质量比为 1∶4∶95 的比例混合, 边搅拌边加热至 90℃。在加热过程中, 控制 pH值<2。 2.1.4 用拟薄水铝石制备铝溶胶 首先将 20g 拟薄水铝石粉加入 285mL 去离子水中, 在搅拌的同时滴加约 10g 浓硝酸。然后加热至 80℃, 再滴加硝酸至完全解胶, 控制铝溶胶的 pH值<2, 相对密度为 1.15~1.20。 2.2 铝溶胶性能分析测试 评价铝溶胶性能的指标为粘接强度和稳定性。在催化剂制备过程中, 催化剂涂层是通过铝溶胶与涂层和金属载体相结合的。作为粘接剂的铝溶胶对涂层与金属载体的粘接强度起着决定性作用。 催化剂制备浆料的稳定性主要受铝溶胶稳定性的影响。若铝溶胶不稳定, 则其 pH 值和粘度等会随时间而变化, 这将影响催化剂浆料的稳定性及其涂覆性能, 从而对催化剂的活性产生影响。 2.2.1 金属载体的预处理 为提高铝溶胶与金属载体的结合强度, 一般在进行铝溶胶涂覆前, 需对金属载体进行预处理[2]。本文采用的金属载体材质为 0CrAl15。预处理工艺为:将金属载体用 1 %的稀硝酸清洗 1min后, 用10 %的氨水浸泡 5min,然后放入马弗炉中, 在流动空气中加热至 950 ℃并保持 1.5h。 2.2.2 铝溶胶粘接强度评价试验 铝溶胶与金属载体的粘接强度通过水激冷法检测。将4 片金属载体波纹片(30mm×40mm) 浸入已制备的铝溶胶中几分种后提出, 提出速度控制为3 cm/min, 然后用高压空气吹去残留的铝溶胶残液,晾干后放入烘箱中(120℃) 快速烘干, 再放入马弗炉中(650℃) 焙烧 3h, 制得负载有氧化铝涂层的金属波纹片。同时控制涂层的增重在 1 %左右、涂层的厚度<10mm。 将负载有涂层的波纹片加热至 650℃, 然后快速浸入冷水中。重复 6次, 称重, 检测试验前、后涂层质量变化及涂层脱落情况。涂层完全不脱落( 水激冷试验后质量未变化) 的记为 5D, 涂层全部脱落的记 0D, 以此评价涂层与金属载体的粘接强度及铝溶胶的粘接能力。测试结果见表 1。 2.2.3 铝溶胶稳定性试验 铝溶胶的稳定性是指其 pH 值和粘度随时间的变化情况。试验制备的不同铝溶胶的 pH 值及动力粘度随时间的变化曲线如图 1 和图 2 所示。在制备铝溶胶终了时将所有铝溶胶的 pH 值均调至 2.0, 但粘度随不同的制备方法有所差别。 铝溶胶稳定性的另一个评价指标是铝溶胶的分层。试验中以出现明显分层所需的时间为指标来进行评价, 观察时间为 90天, 测试结果见表 2。对于已分层的铝溶胶, 在测试动力粘度时, 先以 400r/min 的速度对铝溶胶进行高速搅拌, 使其具有流动性, 然后进行测试。测试时旋转粘度计的转速固定在 30r/min。 3 试验结果分析与讨论 3.1 溶胶- 凝胶法试验过程分析 以溶胶- 凝胶法制备的铝溶胶呈透明状, 物理性能接近真溶液, 能稳定放置 1 年以上。由表 1 也可看出, 以该法制备的铝溶胶的粘接性能最好, 涂层粘接强度最高, 经水激冷试验后基本不脱落。其流动性、浸润性及可涂覆性比其它几种方法制得的铝溶胶都要优越, 且铝溶胶分子间的作用力也相对较强, 所以涂覆后能与金属载体形成更好的结合[3]。又由于其流动性好, 所以涂层均匀性也比其它铝溶胶要好很多。因此, 用该法制得涂层的稳定性及与金属载体的结合强度相对较高。 但采用氯化铝为原料制备铝溶胶时, 很容易将氯离子引入到铝溶胶及催化剂中。在催化剂的使用条件(反复升温、降温)下, 氯离子的存在可能会对金属载体的抗高温蠕变性能产生影响。所以, 在使用前必须对溶胶—凝胶法制备的铝溶胶进行化学洗涤,尽可能除去溶胶中残留的氯离子。 3.2 (氢)氧化铝解胶法试验过程分析 以两种 Al2O3 粉为原料制得的铝溶胶性质相差不大。 由图1、图2 可看出, 在以 Al2O3 粉为原料制备铝溶胶的过程中, 铝溶胶呈悬浮状态, 放置一段时间后很快出现明显分层( 表2), 且无论如何调节酸度,总无法制得透明的溶胶。在此制备条件下制备的铝 溶胶稳定性较差, 其pH 值随放置时间的延长而变化较大, 尤其是放置初期变化速度较快, 这可能与Al2O3 粉比较难以解胶有关。另外, 铝溶胶在放置过程中继续缓慢解胶, 不断消耗溶液中的 H+, 从而导致溶胶 pH 值不断增加, 进而引起溶胶粘度发生变化。由此法制备的铝溶胶粘接强度已不能满足催化剂涂层负载的要求。 由表2和图1、图2还可知, 在本文制备条件下,由Al(OH)3 为原料制备的铝溶胶无论是稳定性和粘接强度都相对最差。 3.3 拟薄水铝石解胶法试验过程分析 采用拟薄水铝石制备的铝溶胶理化特性相对较稳定, 虽经一定时间老化后会发生分层现象( 表2),但搅拌后重又变成均匀的溶胶。其pH 值在测试时间内也基本不变化, 动力粘度和流变特性基本不变。尽管以拟薄水铝石为原料制备的铝溶胶与金属载体的结合强度不如溶胶- 凝胶法制备的铝溶胶, 理化 特性也比之稍差, 但是在制备过程中不会向溶胶中引入氯离子, 所制得溶胶的理化特性基本满足金属载体催化剂氧化铝涂层的制备要求。另外, 试验采用的拟薄水铝石粉为市售商用产品, 具有原料易得、价格低廉等优点。因此, 以拟薄水铝石为原料制备铝溶胶比较适宜。 4 结束语 铝溶胶制备过程是车用金属蜂窝载体催化剂制备的关键。以AlCl3 为原料制备的铝溶胶稳定性和粘接强度等理化特性最好; 以拟薄水铝石为原料制 备的铝溶胶较之稍差, 但能满足催化剂涂层制备要求, 且不会向催化剂中引入有毒害作用的氯离子。而以 Al2O3 粉和 Al(OH)3 为原料制备的溶胶稳定性和粘接强度已不能满足催化剂涂层的制备要求。因此,最终选择拟薄水铝石为原料制备铝溶胶。

D. 三水铝石、一水软铝石或一水硬铝石,这集中矿的区别

一水硬铝石又名水铝石,结构式和分子式分别为AlO(OH)和Al2O3·H2O。
一水软铝石又名勃姆石、软水铝石,结构式为AlO(OH),分子式为Al2O3·H2O。
三水铝石又名水铝氧石、氢氧铝石,结构式Al(OH),分子式为Al2O3·3H2O。
三水铝石脱水可变成一水软铝石、一水硬铝石和α刚玉。在广西桂中地区储藏有大量三水铝,属高铁高锰型,且品位较低,不适合开采。但因为同时含铝,锰,铁,刚好之制水泥的良好添加剂。

铝土矿实际上是指工业上能利用的,以三水铝石、一水软铝石或一水硬铝石为主要矿物所组成的矿石的统称。它的应用领域有金属和非金属两个方面。,通常我们开采的铝土矿都是指一水铝,Al2O3含量要求在51至86,通常以60的含量作为计价基准。三水铝目前在技术上还不能算很成熟,我国目前少部分地区在做小规模生产,大规模生产的主要都是以一水铝为主。

E. 铝石是怎么形成的

哈达

F. 三水铝石的形成

三水铝石主要由含铝硅酸盐经分解和水解而成。热带和亚热带气候有利于三水铝石的形成。在区域变质作用中,经脱水可转变为软水铝石、硬水铝石(140~200℃);随着变质程度的增高,可转变为刚玉。

G. 软水铝石

又称一水软铝石、薄水铝石、勃姆石。
成分为γ AlO(OH),化学式Al2O3.H2O,含专Al2O3 85%,常含铁和镓。
斜方晶系。属晶体极少见,常呈隐晶质块体或胶态。白色或微带黄色。玻璃光泽。硬度3.5。解理平行{010}完全。密度3.01~3.06克/厘米^3,主要在外生作用中形成,是铝土矿的主要矿物成分。也偶见有热液成因的。
是炼铝的重要矿石矿物,同时镓可综合利用。[1]
化学组成为 AlO(OH)、晶体属正交(斜方)晶系并结晶成γ相的氢氧化物矿物。与结晶成 α相的硬水铝石成同质多象。旧称一水软铝石、薄水铝矿或勃姆铝矿。以首先认识γ-AlO(OH)物质的德国化学家J.博姆(B╂hm)的姓命名。晶体呈极细小的透镜状。通常以松散状或豆状集合体产出。白色,玻璃光泽,具完全的板面解理,摩斯硬度3.5~4,比重3.11。软水铝石主要为外生成因,是组成铝土矿的主要矿物成分,也作为热液作用的产物见于碱性伟晶岩中。

H. 如何用铝制备氢氧化铝

氧化铝制备及应用专利技术
1、α型晶体结构为主体的氧化铝被膜制造方法、α型晶体结构为主体的氧化铝被膜和含该被膜
2、α型氧化铝粉末的制造方法
3、α-氧化铝粉末的制造方法及其由该方法得到的α-氧化铝粉末
4、α-氧化铝粉末及其生产方法
5、α-氧化铝粉末及其制造方法
6、α-氧化铝及其制造方法
7、α-氧化铝粒料的制备方法
8、α-氧化铝纳米粉的制备方法
9、α-氧化铝细粉及其制造方法
10、α一氧化铝粉末的制造方法
11、β-氧化铝的制备方法
12、γ-氧化铝的制备方法
13、θ-氧化铝就地涂覆的整体式催化剂载体
14、拜尔法联合生产氧化铝和铝酸钙水泥的方法
15、拜尔法生产氧化铝过程中红泥水悬浮液的流体化工艺
16、拜尔法生产氧化铝强化溶出的方法
17、半透明氧化铝烧结体及其生产
18、不同整比性vo_2纳米粉体的合成.caj
19、超纯纳米级氧化铝粉体的制备方法
20、超高纯超细氧化铝粉体制备方法
21、超微细高纯氧化铝的制备方法
22、尺寸可控、形态松散的超细氧化铝粉体材料的制备技术
23、尺寸可控纳米、亚微米级氧化铝粉的制备方法
24、处理富含氧化铝一水合物铝土矿的改进方法
25、处理铝土矿生产氧化铝的方法
26、醇铝气相法制取纳米高纯氧化铝的方法
27、醇铝水解法制备高纯超细氧化铝粉体技术
28、从低品位含铝矿石中提取氧化铝的方法
29、从废钒触媒中提取五氧化二钒.caj
30、从废钒催化剂中回收精制五氧化二钒的试验研究.caj
31、从废钒催化剂中回收五氧化二钒.caj
32、从废旧氧化锌压敏电阻片中提取及制备氧化钴.caj
33、从粉煤灰提氧化铝和生成β-cs胶凝材料法
34、从苛性母液制备含水合氧化铝的晶体的方法
35、从铝基含镍废渣中回收氧化铝的方法
36、从铝土矿生产氧化铝的改进方法
37、从氧化铝生产过程的循环母液中萃取镓的工艺
38、大孔径α--氧化铝及其制法和应用
39、单晶氧化铝瓷高强度气体放电灯管
40、单晶氧化铝瓷高强度气体放电灯管 2
41、单晶氧化铝颗粒的制造方法
42、氮化二铬-氧化铝复合材料及其制备方法
43、低玻粉用α-氧化铝粉
44、低密度大孔容球形氧化铝的制备工艺
45、低纳超细α型氧化铝的制造方法
46、低碳烷氧基铝水解制备氧化铝方法
47、低碳烷氧基铝水解制备氧化铝方法的改进
48、低温烧结的99氧化铝陶瓷及其制造方法和用途
49、电镀氧化铝的新工艺
50、电子陶瓷流延成型专用α-氧化铝粉
51、多孔阳极氧化铝膜的自润滑处理方法
52、二氧化钒薄膜的光学特性及应用前景.caj
53、复合氧化铝的制备方法
54、改良盐析法制备亚微米氧化铝工艺方法
55、改性的α氧化铝颗粒
56、改性溶胶-凝胶氧化铝
57、高纯超细氧化铝粉体的制备方法
58、高纯超细氧化铝生产工艺及装置
59、高纯纳米级氧化铝的制备方法
60、高纯纳米氧化铝纤维粉体制备方法
61、高纯氧化铝的制备方法
62、高纯氧化铝粉体的制备方法
63、高铝硅比烧结法生产氧化铝工艺
64、高挠曲强度烧结氧化铝制品及其制备工艺
65、高强度氧化铝 氧化锆 铝酸镧复相陶瓷及制备方法
66、高热稳定性氧化铝及其制备方法
67、高四方相氧化锆-氧化铝复合粉料及其制备方法
68、高温下保持高比表面氧化铝及其制备方法
69、高压放电灯用发光容器及多晶透明氧化铝烧结体的制造方法
70、隔板式氧化铝风动溜槽卸料装置
71、工业化用层析氧化铝
72、硅改性的氧化铝及制备与在负载茂金属催化剂中的应用
73、硅增强的新型结晶氧化铝
74、含工业氧化铝废渣的提纯方法
75、含锂氧化铝的生产工艺
76、含铝酸钙的物料提取氧化铝工艺
77、含铁铝土矿生产氧化铝工艺
78、回收废钯 氧化铝催化剂中金属钯的方法
79、回收氧化铝和二氧化硅的方法
80、活性氧化铝的制备方法
81、减少拜耳法三水合氧化铝中的杂质
82、将硅渣开发为助洗剂的氧化铝生产工艺
83、胶冻切割成型法生产高性能氧化铝系陶瓷基片的生产工艺
84、净化氧化铝粉末的方法和设备
85、具有拟薄水铝石结构的氧化硅-氧化铝及其制备方法
86、具有氧化铪与氧化铝合成介电层的电容器及其制造方法
87、利用粉煤灰和石灰石联合生产氧化铝和水泥的方法
88、利用高岭岩(土)生产超纯氧化铝的工艺
89、利用铝型材厂工业污泥制备活性氧化铝的方法
90、连续种子搅拌分解生产砂状氧化铝工艺
91、两组份烧结法氧化铝制备工艺
92、磷化铝熏蒸残渣的无害化处理并回收氧化铝的方法
93、铝生产电解槽中氧化铝成份的精确调节方法
94、铝酸钠碳酸化法制备活性氧化铝的方法
95、纳米尺寸的均匀介孔氧化铝球分离剂的合成方法
96、纳米级氧化铝的生产工艺
97、纳米添加氧化铝陶瓷的改性方法
98、纳米氧化铝材料的制造方法
99、纳米氧化铝粉的电弧喷涂反应合成系统及其制备方法
100、纳米氧化铝浆组合物及其制备方法
101、纳米氧化铝胶体功能陶瓷涂料生产方法
102、纳米氧化铝铜基体触头材料
103、拟薄水铝石和γ-氧化铝的制备方法
104、片状氧化铝
105、强发光氧化铝模板及制法
106、强化烧结法氧化铝生产工艺
107、强化脱硅及溶出氧化铝的生产方法
108、热解生产的氧化铝
109、溶胶、凝胶法制备超细氧化铝工艺方法
110、溶胶-凝胶氧化铝磨粒
111、砂状氧化铝分解新工艺
112、烧结α-氧化铝 聚偏氟乙烯共混中空纤维膜的制法及制品
113、烧结法精液制取砂状氧化铝的方法
114、烧结法生产氧化铝提高熟料氧化铝溶出率的方法
115、烧结法氧化铝生产工艺的熟料制备方法
116、烧结法氧化铝生产过程中赤泥分离方法
117、生产低碱氧化铝的方法、由该方法生产的低碱氧化铝以及生产陶瓷的方法
118、生产硅藻土助滤剂及回收硫酸铝和氧化铝的方法
119、石灰一拜耳法处理一水型铝土矿生产氧化铝的工艺
120、水合氧化铝的制备方法
121、塑胶地砖表面涂布氧化铝的方法
122、酸析法氧化铝改进工艺
123、随氧化铝加料量变化即时调整铝电解槽能量平衡的方法
124、隧道窑烧结生产氧化铝的方法及专用隧道窑
125、碳酸化分解生产砂状氧化铝工艺
126、碳酸化分解生产氧化铝工艺
127、提高氧化铝生产中蒸发效率的方法
128、天然铝矾土矿用于制备精细氧化铝陶瓷的方法
129、铁铝复合矿生产生铁及提取氧化铝的铝酸钙渣工艺
130、通过化学气相淀积产生的增强氧化铝层
131、透光多晶氧化铝
132、透光性氧化铝陶瓷及其制造方法、高压放电灯用发光容器、造粒粉末和成形体
133、透明的多晶氧化铝
134、微球状γ-氧化铝的制备方法
135、无搅拌情况下分解铝酸钠溶液制造氧化铝的方法和设备
136、稀土补强氧化铝系陶瓷复合材料及其生产方法
137、细粒状活性氧化铝的制备方法
138、亚球形氧化铝粉末、其制备方法及应用
139、亚微米高纯透明氧化铝陶瓷材料的制备方法
140、烟气干法净化中氧化铝量的均匀分配方法及装置
141、盐酸联碱法生产氧化铝工艺
142、阳极氧化铝模板中一维硅纳米结构的制备方法
143、氧化锆增韧氧化铝陶瓷纺织瓷件的制造方法
144、氧化铬及氧化铝合成介电层及其制造方法
145、氧化铝焙烧工序的余热利用方法
146、氧化铝薄膜的制备方法
147、氧化铝超浓相输送滤沙装置
148、氧化铝赤泥洗涤直接加热及分解板式换热工艺
149、氧化铝的常压低温溶出生产方法
150、氧化铝的生产方法
151、氧化铝废水处理后得到的再生水回用方法
152、氧化铝废水处理系统的污泥处置新工艺
153、氧化铝高压釜溶出系统的排料及填料装置
154、氧化铝高压釜溶出系统的闪蒸器注水方法
155、氧化铝高压釜溶出系统的稀释槽乏汽排放装置
156、氧化铝颗粒及其生产方法
157、氧化铝矿浆制备的二段磨磨矿--分级工艺
158、氧化铝纳米纤维的制备方法
159、氧化铝生产分解分级新工艺
160、氧化铝生产烧结法赤泥分离方法
161、氧化铝生产烧结法赤泥分离设备
162、氧化铝生产中产生的废物的加工方法
163、氧化铝生产中浮游物处理方法
164、氧化铝生产中卸泥辊的刮泥装置
165、氧化铝输送过程中气流隔断及杂质清除装置
166、氧化铝熟料烧结回转窑智能控制方法
167、氧化铝陶瓷及其制备方法
168、氧化铝涂覆的碳化硅晶须-氧化铝
169、氧化铝系多相复合结构陶瓷材料及其生产方法
170、氧化铝细粒的制备方法
171、氧化铝下料秤下料静态逻辑控制器
172、氧化铝载钌的制备方法和使醇氧化的方法
173、一水型铝土矿石灰拜耳法生产氧化铝工艺
174、一水硬铝石型铝土矿精矿生产氧化铝方法
175、一种fe基氧化铝复合材料铝电解惰性阳极及其制备方法
176、一种mcm-41 氧化铝复合材料的制备方法
177、一种α-氧化铝载体及其制备方法
178、一种拜尔法生产氧化铝的方法
179、一种拜尔法生产氧化铝的原矿浆制备方法
180、一种表面包膜氧化铝的纳米二氧化钛颗粒的制备方法
181、一种掺铒 铒、镱共掺氧化铝光波导放大器的制备方法
182、一种大孔氧化铝载体及其制备方法1
183、一种大孔氧化铝载体及其制备方法 2
184、一种氮氧化铝镁 氮化硼复相耐火材料及其制备工艺
185、一种分离氧化铝蒸发母液中碳酸钠的方法
186、一种高比表面积氧化铝
187、一种高烧结活性氧化铝粉体的制备方法
188、一种高性能低成本氧化铝复合微晶陶瓷的制备方法
189、一种含锂的球形氧化铝
190、一种含氧化硅-氧化铝的加氢裂化催化剂
191、一种含有改性纳米级氧化铝的半合成烃类转化催化剂
192、一种活性氧化铝催化剂及其制备方法和应用
193、一种活性氧化铝的制备方法
194、一种基于多孔氧化铝模板纳米掩膜法制备纳米材料阵列体系的方法
195、一种晶种分解生产砂状氧化铝的方法
196、一种利用粉煤灰制备氧化铝联产水泥熟料的方法
197、一种连续碳分生产砂状氧化铝的方法
198、一种联合法生产氧化铝降低拜耳法精液αk的方法
199、一种铝电解用硼化钛/氧化铝阴极涂层及制备方法
200、一种纳米晶添加氧化铝陶瓷材料及低温液相烧结方法
201、一种纳米孔氧化铝模板的生产工艺
202、一种偏铝酸钠-二氧化碳法制备活性氧化铝的方法
203、一种球形氧化铝颗粒的制备方法
204、一种烧结法生产砂状氧化铝的方法
205、一种生产超微细氧化铝粉的方法
206、一种生产含有少量氧化钠的氧化铝的方法
207、一种生产氧化铝的粗液脱硅方法
208、一种生产氧化铝的方法
209、一种生产氧化铝工艺过程的补碱方法
210、一种生产氧化铝新工艺
211、一种吸附用活性氧化铝球生产方法
212、一种形态松散的纳米、亚微米级高纯氧化铝的制备方法
213、一种盐析法生产氧化铝及氧化铝微粉的工艺方法
214、一种氧化铝的制备方法1
215、一种氧化铝的制备方法 2
216、一种氧化铝镀膜的方法
217、一种氧化铝基陶瓷复合材料的制备方法
218、一种氧化铝及其制备方法
219、一种氧化铝及其制备方法和用途
220、一种氧化铝-金刚石复合材料的制备方法
221、一种氧化铝蜡吸附剂的再生方法
222、一种氧化铝弥散强化铜引线框架材料及制备方法
223、一种氧化铝磨损指数测定仪
224、一种氧化铝纳米纤维的制备方法
225、一种氧化铝溶出料浆分离赤泥的方法
226、一种氧化铝生产过程中补碱的方法
227、一种氧化铝陶瓷的制备方法
228、一种氧化铝吸附剂的制备方法
229、一种氧化铝载体的制备方法1
230、一种氧化铝载体的制备方法 2
231、一种氧化铝载体及其制备方法
232、一种一水型铝土矿生产氧化铝的母液处理方法
233、一种以湿化学法为基础的氧化铝空心球的制备方法
234、一种用铝土矿提纯氧化铝的方法
235、一种制备高纯超细活性氧化铝的方法
236、一种制备高纯氧化铝的方法
237、一种制备耐高温高表面积氧化铝及含铝复合氧化物的方法
238、一种制备轻质高强氧化铝空心球陶瓷的制备方法
239、一种制备小粒径氧化铝粉的方法
240、一种制备氧化铝载体的方法
241、一种制造高纯超细氧化铝粉的方法
242、一种制造氧化铝提炼厂用的助滤剂的改进方法
243、一种作催化剂载体用的纳米级氧化铝及其制备方法
244、一种作催化剂载体用氧化铝的制备方法
245、以磷化铝制备活性氧化铝的方法
246、应用拜尔法从含-水合物的铝土矿连续生产氧化铝的工艺
247、用冰晶石——氧化铝熔盐电解法生产精铝的方法
248、用铒离子注入勃姆石方法制备掺铒氧化铝光波导薄膜
249、用废铝灰生产氧化铝的方法
250、用浮选法生产再生氧化铝的工艺
251、用高硫铝土矿生产氧化铝的除硫方法
252、用铝电解废弃物制取再生氟化盐、氧化铝的装置
253、用凝胶注模法制备用于齿科修复的氧化铝预制块
254、用氧化铝生产中的副产品钠硅渣生产洗涤用4a沸石的方法
255、用于半导体处理设备中的抗卤素的阳极氧化铝
256、用于改进氧化铝工艺特性的进料处理
257、用于合成二甲醚的改性氧化铝催化剂
258、用于微波诱导氧化工艺的改性氧化铝催化剂的制备方法
259、用于氧化铝生产过程中加入石灰的方法
260、用于制备碳纳米管的氧化铝载体金属氧化物催化剂及其制备方法
261、用再生氧化铝电解法生产铝锭的工艺
262、用在半导体处理设备中的抗卤素的阳极氧化铝
263、用蒸汽流化反应器生产α型氧化铝的方法
264、由分解铝酸钠溶液生产氧化铝的工艺和装置
265、由含少量反应性硅石的三水铝土矿生产氧化铝
266、由氢氧化铝制备氧化铝的方法
267、油墨用氧化铝的制造方法
268、有序多孔阳极氧化铝模板的制备方法
269、预防加热管结垢提高氧化铝厂蒸发效率和节能的方法
270、在两种状态引入晶种以生产大颗粒氧化铝的工艺
271、在氧化铝陶瓷上进行金刚石薄膜定向生长的方法
272、直流电弧矿热炉生产氧化铝空心球的方法
273、制备α-氧化铝粉末的方法
274、制备α-氧化铝粒子的方法
275、制备α-氧化铝粒子的方法 2
276、制备无定形、催化活性氧化硅-氧化铝的方法
277、制取氧化铝过程中的赤泥分离技术
278、制造可控制钠含量和颗粒尺寸的三水氧化铝的方法
279、种含氧化硅-氧化铝的加氢裂化催化剂
280、自支撑有序通孔氧化铝膜的制备方法
281、综合利用煤矸石生产氧化铝和电解铝
282、最终冷却无水氧化铝的方法

I. 高中化学常见铁、铜、铝矿石

磁铁矿(Fe3O4,黑色)、赤铁矿(Fe2O3,红色)和菱铁矿(FeCO3,颜色一般为灰白或黄白,风化后可变成褐色或褐黑色)等。
黄铜矿(CuFeS2,黄铜黄色)、斑铜矿(Cu5FeS4,新鲜断面呈暗铜红色)、辉铜矿(Cu2S,暗铅灰色)、蓝铜矿(Cu3(CO3)2(OH)2,深蓝色有玻璃光泽)、铜蓝(CuS,蓝色,具有金属光泽)等。
铝矿石主要有一水硬铝石(一水硬铝石又名水铝石,结构式和分子式分别为AlO(OH)和Al2O3·H2O)、一水软铝石(一水软铝石又名勃姆石、软水铝石,结构式为AlO(OH),分子式为Al2O3·H2O)、三水铝石(三水铝石又名水铝氧石、氢氧铝石,结构式Al(OH),分子式为Al2O3·3H2O),均为白色。

J. 一方铝矿石是多少吨

铝矿石密度相对密度2.30~2.43。一方铝矿石的重量是2.3-2.43吨。

铝矿石主要有一水硬铝石、一水软铝石和三水铝石,都是炼铝的矿石。白色或因杂质呈浅灰、浅绿、浅红色调,解理面珍珠光泽。

一水硬铝石又名水铝石,水铝石溶于酸和碱,但在常温常压下溶解甚弱,需在高温高压和强酸或强碱浓度下才能完全分解。

一水软铝石又名勃姆石、软水铝石,该矿物形成于酸性介质,主要产在沉积铝土矿中,其特征是与菱铁矿共生。

三水铝石又名水铝氧石、氢氧铝石该矿物形成于酸性介质。

(10)软水铝石的制备方法扩展阅读:

铝矿石的主要用途:

1、炼铝工业

用于国防、航空、汽车、电器、化工。

2、硅酸铝耐火纤维

用于军工、航天、通讯、仪表、机械及医疗器械部门。

3、精密铸造。矾土熟料加工成细粉做成铸模后精铸。

用于军工、航天、通讯、仪表、机械及医疗器械部门。

热点内容
丁度巴拉斯情人电影推荐 发布:2024-08-19 09:13:07 浏览:886
类似深水的露点电影 发布:2024-08-19 09:10:12 浏览:80
《消失的眼角膜》2电影 发布:2024-08-19 08:34:43 浏览:878
私人影院什么电影好看 发布:2024-08-19 08:33:32 浏览:593
干 B 发布:2024-08-19 08:30:21 浏览:910
夜晚看片网站 发布:2024-08-19 08:20:59 浏览:440
台湾男同电影《越界》 发布:2024-08-19 08:04:35 浏览:290
看电影选座位追女孩 发布:2024-08-19 07:54:42 浏览:975
日本a级爱情 发布:2024-08-19 07:30:38 浏览:832
生活中的玛丽类似电影 发布:2024-08-19 07:26:46 浏览:239