双水相萃取在核酸的分离纯化中的应用
① 双水相萃取中,为什么要使目的蛋白质分配在上相核酸多糖分配在下相
1.根据分子大小不同进行分离纯化 蛋白质是一种大分子物质,并且不同内蛋白质的分子大小不同容,因此可以利用一些较简单的方法使蛋白 质和小分子物质分开,并使蛋白质混合物也得到分离.根据蛋白质分子大小不同进行分离的方法主要有透析
② 在双水相萃取系统中,如何确定加入系统的PEG用量
双水相萃取对于传统有机相-水相的溶剂萃取来说是个全新的替代品。当两种聚合物、一种聚合物与一种亲液盐或是两种盐(一种是离散盐且另一种是亲液盐)在适当的浓度或是在一个特定的温度下相混合在一起时就形成了双水相系统。萃取原理当萃取体系的性质不同时,物质进入双水相体系后,由于表面性质、电荷作用和各种力(如憎水键、氢键和离子键等) 的存在和环境因素的影响,使其在上、下相中的浓度不同。物质在双水相体系中分配系数K可用下式表示: K= C上/ C下其中K为分配系数,C上和C下分别为被分离物质在上、下相的浓度。分配系数K等于物质在两相的浓度比,由于各种物质的K值不同,可利用双水相萃取体系对物质进行分离。其分配情况服从分配定律,即,"在一定温度一定压强下,如果一个物质溶解在两个同时存在的互不相溶的液体里,达到平衡后,该物质在两相中浓度比等于常数",分离效果由分配系数来表征。由于溶质在双水相系统两相间的分配时至少有四类物质在两个不同相系统共存,要分配的物质和各相组分之间的相互作用是个复杂的现象,它涉及到氢键、电荷相互作用、范德华力、疏水性相互作用以及空间效应等,因此,可以预料到溶质在双水相系统中两相间的分配取决于许多因素,它既与构成双水相系统组成化合物的分子量和化学特性有关,也与要分配物质的大小、化学特性和生物特性相关。大量研究表明,生物分子在双水相系统中的实际分配是生物分子与双水相系统间静电作用、疏水作用、生物亲和作用等共同作用的结果,形式上可以将分配系数的对数值分解为几项: InK = InKm+InKe+In Kh+InKb+InKs+InKc 式中,Ke-----静电作用对溶质分配系数的贡献; Kh----- 疏水作用对溶质分配系数的贡献; Kb-----生物亲和作用对溶质分配系数的贡献; Ks----- 分子大小对溶质分配系数的贡献; Kc----- 分子构型影响对溶质分配系数的贡献; Km -----除上述因素外的其它因素影响对溶质分配系数的贡献。值得指出的是,这些因素中虽然没有一个因素完全独立于其它因素,但一般来说,这些不同的因素或多或少是独立存在的。影响待分离物质在双水相体系中分配行为的主要参数有成相聚合物的种类、成相聚合物的分子质量和总浓度、无机盐的种类和浓度、pH 值、温度等。双水相的优势 ATPE作为一种新型的分离技术,对生物物质、天然产物、抗生素等的提取、纯化表现出以下优势: (1)含水量高(70%--90%),在接近生理环境的体系中进行萃取,不会引起生物活性物质失活或变性; (2)可以直接从含有菌体的发酵液和培养液中提取所需的蛋白质(或者酶),还能不经过破碎直接提取细胞内酶,省略了破碎或过滤等步骤; (3)分相时间短,自然分相时间一般为5min~15 min; (4)界面张力小(10-7~ 10-4mN/m),有助于两相之间的质量传递,界面与试管壁形成的接触角几乎是直角; (5)不存在有机溶剂残留问题,高聚物一般是不挥发物质,对人体无害; (6)大量杂质可与固体物质一同除去; (7)易于工艺放大和连续操作,与后续提纯工序可直接相连接,无需进行特殊处理; (8)操作条件温和,整个操作过程在常温常压下进行; (9)亲和双水相萃取技术可以提高分配系数和萃取的选择性。虽然该技术在应用方面已经取得了很大的进展,但几乎都是建立在实验的基础上,到目前为止还没能完全清楚地从理论上解释双水相系统的形成机理以及生物分子在系统中的分配机理。
③ 为什么说双水相萃取适合胞内酶和蛋白的提取
普通的萃取通常是在水相和有机相间进行,但有机相易使蛋白质等生物活性物质变专性。最近,发现属有一些高分子水溶液(如分子量从几千到几万的聚乙二醇硫酸盐水溶液)可以分为两个水相,蛋白质在两个水相中的溶解度有很大的差别。故可以利用双水相萃取过程分离蛋白质等溶于水的生物产品。
④ 双水相萃取技术的萃取原理
当萃取体系的性质不同时,物质进入双水相体系后,由于表面性质、电荷作用和各种力(如憎水键、氢键和离子键等) 的存在和环境因素的影响,使其在上、下相中的浓度不同。物质在双水相体系中分配系数K可用下式表示:
K= C上/ C下
其中K为分配系数,C上和C下分别为被分离物质在上、下相的浓度。
分配系数K等于物质在两相的浓度比,由于各种物质的K值不同,可利用双水相萃取体系对物质进行分离。其分配情况服从分配定律,即,“在一定温度一定压强下,如果一个物质溶解在两个同时存在的互不相溶的液体里,达到平衡后,该物质在两相中浓度比等于常数”,分离效果由分配系数来表征。
由于溶质在双水相系统两相间的分配时至少有四类物质在两个不同相系统共存,要分配的物质和各相组分之间的相互作用是个复杂的现象,它涉及到氢键、电荷相互作用、范德华力、疏水性相互作用以及空间效应等,因此,可以预料到溶质在双水相系统中两相间的分配取决于许多因素,它既与构成双水相系统组成化合物的分子量和化学特性有关,也与要分配物质的大小、化学特性和生物特性相关。
大量研究表明,生物分子在双水相系统中的实际分配是生物分子与双水相系统间静电作用、疏水作用、生物亲和作用等共同作用的结果,形式上可以将分配系数的对数值分解为几项:
InK = InKm+InKe+In Kh+InKb+InKs+InKc
式中,Ke-----静电作用对溶质分配系数的贡献;
Kh----- 疏水作用对溶质分配系数的贡献;
Kb-----生物亲和作用对溶质分配系数的贡献;
Ks----- 分子大小对溶质分配系数的贡献;
Kc----- 分子构型影响对溶质分配系数的贡献;
Km -----除上述因素外的其它因素影响对溶质分配系数的贡献。
值得指出的是,这些因素中虽然没有一个因素完全独立于其它因素,但一般来说,这些不同的因素或多或少是独立存在的。
影响待分离物质在双水相体系中分配行为的主要参数有成相聚合物的种类、成相聚合物的分子质量和总浓度、无机盐的种类和浓度、pH 值、温度等。
双水相的优势
ATPE作为一种新型的分离技术,对生物物质、天然产物、抗生素等的提取、纯化表现出以下优势:
(1)含水量高(70%--90%),在接近生理环境的体系中进行萃取,不会引起生物活性物质失活或变性;
(2)可以直接从含有菌体的发酵液和培养液中提取所需的蛋白质(或者酶),还能不经过破碎直接提取细胞内酶,省略了破碎或过滤等步骤;
(3)分相时间短,自然分相时间一般为5min~15 min;
(4)界面张力小(10-7~ 10-4mN/m),有助于两相之间的质量传递,界面与试管壁形成的接触角几乎是直角;
(5)不存在有机溶剂残留问题,高聚物一般是不挥发物质,对人体无害;
(6)大量杂质可与固体物质一同除去;
(7)易于工艺放大和连续操作,与后续提纯工序可直接相连接,无需进行特殊处理;
(8)操作条件温和,整个操作过程在常温常压下进行;
(9)亲和双水相萃取技术可以提高分配系数和萃取的选择性。
虽然该技术在应用方面已经取得了很大的进展,但几乎都是建立在实验的基础上,到目前为止还没能完全清楚地从理论上解释双水相系统的形成机理以及生物分子在系统中的分配机理。
⑤ 影响双水相萃取的因素有哪些
双水相萃取原理:利用物质在互不相溶的两水相间分配系数的差异进行的分离操作。
影响因素:聚合物的分子量、聚合物的浓度、盐类、pH值、温度。
⑥ 双水相萃取技术的应用
双水相萃取复技术已广泛制应用于生物化学、细胞生物学、生物化工和食品化工等领域,并取得了许多成功的范例,主要是分离蛋白质 ,酶,病毒,脊髓病毒和线病毒的纯化,核酸,DNA的分离,干扰素,细胞组织,抗生素,多糖,色素,抗体等。
此外双水相还可用于稀有金属/贵金属分离,传统的稀有金属/贵金属溶剂萃取方法存在着溶剂污染环境,对人体有害,运行成本高,工艺复杂等缺点。双水相技术萃取技术引入到该领域,无疑是金属分离的一种新技术。
目前,用此法来提纯的酶已达数十种,其分离过程也达到相当规模,I-Horng Pan等人利用PEG1500/ NaH2PO4体系从Trichoderma koningii发酵液中分离纯化β-木糖苷酶,该酶主要分配在下相,下相酶活回收率96.3%,纯化倍数33;
⑦ 如何从双水相系统中回收分离产物
双水相萃取技术应用
摘要
:
双水相萃取技术作为一种新型的分离技术日益受到重视,
它与传统的
萃取方法相比有独特的优点。
本文总结了双水相萃取形成的原理,
萃取过程的基
本理论、萃取体系的特点,综述了双水相萃取技术在生化工业、分析检测、稀有
金属分离等方面的应用,
介绍了该技术的最新进展,
指出了该技术工业化存在的
问题,并对今后的发展作了展望。
双水相萃取分离_网络文库
http://wenku..com/link?url=qdayn2Ws_hZ7-BDv2lvxOXzVXj_tttojTMG53
请参考文库,非常详细
⑧ 什么是双水相萃取
一些高分子水溶液(如分子量从几千到几万的聚乙二醇硫酸盐水溶液)可以回分为两个水相,答蛋白质在两个水相中的溶解度有很大的差别。故可以利用双水相萃取过程分离蛋白质等溶于水的生物产品。
双水相的优势
ATPE作为一种新型的分离技术,对生物物质、天然产物、抗生素等的提取、纯化表现出以下优势:
(1)含水量高(70%--90%),在接近生理环境的体系中进行萃取,不会引起生物活性物质失活或变性;
(2)可以直接从含有菌体的发酵液和培养液中提取所需的蛋白质(或者酶),还能不经过破碎直接提取细胞内酶,省略了破碎或过滤等步骤;
(3)分相时间短,自然分相时间一般为5min~15 min;
(4)界面张力小(10-7~ 10-4mN/m),有助于两相之间的质量传递,界面与试管壁形成的接触角几乎是直角;
(5)不存在有机溶剂残留问题,高聚物一般是不挥发物质,对人体无害;
(6)大量杂质可与固体物质一同除去;
(7)易于工艺放大和连续操作,与后续提纯工序可直接相连接,无需进行特殊处理;
(8)操作条件温和,整个操作过程在常温常压下进行;
(9)亲和双水相萃取技术可以提高分配系数和萃取的选择性。
⑨ 如何从双水相系统中回收分离产物
某些亲水性高聚合物水溶液超定浓度形两相并且两相水均占比例即形双水相系统(aqueous two-phase system,ATPS)利用亲水性高聚合物水溶液形双水相性质Albertsson于20世纪50代期发双水相萃取(aqueous two-phase extraction)称双水相配20世纪70代,科家发展双水相萃取物离程应用蛋白质特别胞内蛋白质离纯化辟新途径
双水相萃取聚合物相容性:根据热力第二定律混合熵增程自发进行间存相互作用力种间作用力随相质量增增两种高聚合物间存相互排斥作用由于相质量较间排斥作用与混合熵相比占主导位即种聚合物周围聚集同种排斥异种达平衡即形别富含同聚合物两相种含聚合物溶液发相现象称聚合物相溶性
形双水相双聚合物体系聚乙二醇(PEG)/葡聚糖(Dx),聚丙二醇/聚乙二醇甲基纤维素/葡聚糖双水相萃取采用双聚合物系统PEG/Dx该双水相相富含PEG相富含Dx另外聚合物与机盐混合溶液形双水相例PEG/磷酸钾(KPi)、PEG/磷酸铵、PEG/硫酸钠等用于双水相萃取PEG/机盐系统相富含PEG,相富含机盐
物配系数取决与溶质于双水相系统间各种相互作用其主要静电作用、疏水作用物亲作用配系数各种相互作用
⑩ 聚合物/盐双水相体系的成相原因是什么
某些亲水性高分子聚合物的水溶液超过一定浓度后可以形成两相,并且在两相中水分均占很大比例,即形成双水相系统(aqueoustwo-phasesystem,ATPS)。利用亲水性高分子聚合物的水溶液可形成双水相的性质,Albertsson于20世纪50年代后期开发了双水相萃取法(aqueoustwo-phaseextraction),又称双水相分配法。20世纪70年代,科学家又发展了双水相萃取在生物分离过程中的应用,为蛋白质特别是胞内蛋白质的分离和纯化开辟了新的途径。
双水相萃取的聚合物不相容性:根据热力学第二定律,混合是熵增过程可以自发进行,但分子间存在相互作用力,这种分子间作用力随相对分子质量增大而增大。当两种高分子聚合物之间存在相互排斥作用时,由于相对分子质量较大的分子间的排斥作用与混合熵相比占主导地位,即一种聚合物分子的周围将聚集同种分子而排斥异种分子,当达到平衡时,即形成分别富含不同聚合物的两相。这种含有聚合物分子的溶液发生分相的现象称为聚合物的不相溶性。
可形成双水相的双聚合物体系很多,如聚乙二醇(PEG)/葡聚糖(Dx),聚丙二醇/聚乙二醇,甲基纤维素/葡聚糖。双水相萃取中采用的双聚合物系统是PEG/Dx,该双水相的上相富含PEG,下相富含Dx。另外,聚合物与无机盐的混合溶液也可以形成双水相,例如,PEG/磷酸钾(KPi)、PEG/磷酸铵、PEG/硫酸钠等常用于双水相萃取。PEG/无机盐系统的上相富含PEG,下相富含无机盐。
生物分子的分配系数取决与溶质于双水相系统间的各种相互作用,其中主要有静电作用、疏水作用和生物亲和作用。因此,分配系数是各种相互作用的和。