当前位置:首页 » 净水方式 » 氟化物离子交换树脂

氟化物离子交换树脂

发布时间: 2021-01-13 10:40:51

❶ 离子色谱法测定氟化物、氯化物、硝酸盐和硫酸盐

方法提要

水样中待测阴离子随碳酸盐-重碳酸盐淋洗液进入离子交换柱系统(由保护柱和分离柱组成),根据分离柱对各阴离子的不同的亲和度进行分离,已分离的阴离子流经阳离子交换柱或抑制器系统转换成具高电导度的强酸,淋洗液则转变为弱电导度的碳酸。由电导检测器测量各阴离子组分的电导率,以相对保留时间和峰高或面积定性和定量。

本法适用于水源水中可溶性氟化物、氯化物、硝酸盐和硫酸盐的测定。

本法最低检测质量浓度决定于不同进样量和检测器灵敏度。一般情况下,进样50μL,电导检测器量程为10μs时适宜的检测范围为:0.1~1.5mg/L(以F-计),0.15~2.5mg/L(以Cl-和NO-3-N计),0.75~12mg/L(以SO2-4计)。

仪器和装置

离子色谱仪包括进样系统,分离柱及保护柱,抑制器(交换柱抑制器、膜抑制器或自动电解抑制器)等。

过滤器及滤膜0.2μm。

阳离子交换柱(图81.3)装入磺化聚苯乙烯强酸性阳离子交换树脂

试剂

图81.3 离子交换柱

纯水(去离子蒸馏水)待测阴离子含量应低于仪器的检测限,并经0.2μm滤膜过滤。

淋洗液[碳酸氢钠(1.7mmol/L)-碳酸钠(1.8mmol/L)溶液]称取0.5712g碳酸氢钠(NaHCO3)和0.7632g碳酸钠(Na2CO3)溶于纯水中,稀释至4000mL。

再生液Ⅰ(适用于非连续式再生的抑制器)0.5mol/LH2SO4介质。

再生液Ⅱ(适用于连续式再生的抑制器)25mmol/LH2SO4介质。

氟化物(F-)标准储备溶液ρ(F-)=1mg/mL见81.14.1。

图81.4 离子色谱图

氯化物(Cl-)标准储备溶液ρ(Cl-)=1mg/mL称取1.6485g经105℃干燥至恒量的氯化钠(NaCl)溶于纯水中,稀释至1000mL。

硝酸盐(NO-3)标准储备溶液ρ(NO-3)=1mg/mL称取7.218g经105℃干燥至恒量的硝酸钾(KNO3)溶于纯水中,稀释至1000mL。

硫酸盐(SO24-)标准储备溶液ρ(SO24-)=1mg/mL称取1.814g经105℃干燥至恒量的硫酸钾(K2SO4)溶于纯水中,稀释至1000mL。

混合阴离子标准溶液(含F-5mg/L,Cl-8mg/L,NO-3-N8mg/L,SO2-440mg/L)分别吸取5.00mL、8.00mL、40.0mL上述单离子标准储备溶液于1000mL容量瓶中,加纯水至刻度,混匀。此溶液适合进样50μL,检测器为30μS量程图81.4)。

分析步骤

开启离子色谱仪,调节淋洗液及再生液流速,使仪器达到平衡,并指示稳定的基线。

根据所用的量程,将混合阴离子标准溶液及两次等比稀释的3种不同浓度标准溶液,依次注入进样系统。将峰值或者峰面积绘制校准曲线。

将水样经0.2μm滤膜过滤除去浑浊物质。对硬度高的水样,必要时可先经过阳离子交换树脂柱,然后再经0.2μm滤膜过滤。对含有机物水样可先经过C18柱过滤除去。

将预处理后的水样注入色谱仪进样系统,记录峰高或峰面积,直接在校准曲线上查得各种阴离子的质量浓度(mg/L)。

注意事项

1)水样中存在较高浓度的低相对分子质量有机酸时,由于其保留时间与被测组分相似而干扰测定,用加标后测量可以帮助鉴别此类干扰。水样中某一阴离子含量过高时,影响其他被测离子的分析,稀释可以减弱此类干扰。

2)由于进样量很少,操作中必须严格防止纯水、器皿以及水样预处理过程中的污染,以确保分析的准确性。

3)为了防止保护柱和分离柱系统堵塞,水样必须经过0.2μm滤膜过滤。为了防止高浓度钙、镁离子在碳酸盐淋洗液中沉淀,可将水样先经过强酸性阳离子交换树脂柱。

4)不同浓度离子同时分析时的相互干扰,或存在其他组分干扰时可采取水样预浓缩、梯度淋洗或将流出液分部收集后再进样的方法消除干扰,但必须对所采取的方法的精密度及准确性进行确认。

❷ 全氟离子树脂反应会产生什么气体

什么叫离子抄交换树脂的选择性?与什么因素有关? 水中各种离子在与离子交换树脂交换时,其能力是不一样的:有的离子很容易被树脂吸附,但很难被“置换"下来;有的则很难被树脂吸附,但很容易被“置换”下来。
这种性能就称为离子交换树脂的“选择性”。

❸ 煤化工除氟剂,液体除氟剂,固体除氟剂......这些除氟剂效果如何呢

1,水处理净化剂
本品用作高氟水的除氟剂,使一种具有巨大比表面积的分子吸附剂。当原水的PH值和碱度较低时,除氟容量较高,除氟类似于阴离子交换树脂,但对氟离子的选择性阴离子树脂大,大于2.1mg/g,价格比合成树脂还低,还可用于饮水除砷。
本产品的比表面积较大,常用规格一般为3-5mm,使用时与水有较大的接触面积,比表面积指标高达260㎡/g以上,微孔数量巨大,可保证对水中的氟离子有很强的吸附能力和较高的除氟,脱砷容量。每立方米活性氧化铝吸氟6400克。活性氧化铝除氟剂,可与家用除氟缸配套使用,内装除氟剂1.6公斤,水从下面进,上面出,除氟缸操作简单,使用方便,是家庭中理想的饮水除氟装置。除氟剂也可与自来水厂除氟,脱砷装置或工业用除氟,脱砷装置配套使用。家用除氟装置除氟剂的活化:配置硫酸铝溶液(3升水、0.3kg固体硫酸铝),净氧化铝除氟剂放入上述溶液中,浸泡5-10小时弃去浸液(浸泡时要适当搅拌)而后再用清水洗涤3-5次,每次用水2升。家用除氟剂的再生:配硫酸铝溶液与活化用的溶液相同,将再生氧化铝除氟剂放入上述溶液中浸泡30小时,弃去浸液(浸泡时要适当搅拌)而后再用清水洗涤3-5次,每次用水2升左右。或者用调PH法再生,PH控制在5.5。
2,活性氧化铝除氟剂
将活性氧化铝放置于柱状装置中,当水通过填塞在柱状容器中的活性氧化铝时,污染物和水中的其它物质就被吸附在颗粒的表面,最初柱的上游变饱和,随着更多的水流通过,饱和带向下移动,最终达到全部饱和。
活性氧化铝的除氟能力与原水的PH值有密切关系,在PH值=5.5时,吸附容量最大,因此如将原水的PH值调节到5.5左右,可以增加活性氧化铝的吸附效率。原水采用投加二氧化碳气体降低原水的PH值,可提高活性氧化铝的吸附容量,活性氧化铝的颗粒大小与吸附容量成线性关系,颗粒小则吸附量大,一般为1.2—4.5mg。但小颗粒会在反复冲洗时流失,并且容易被再生剂NaOH溶解。所以国内常用的粒径一般是1-3mm,2-4mm,3-5mm。可广泛用于石油裂解气,乙烯丙烯气的干燥,粘性树脂脱氯,制氢,双氧水中氟化物的处理,烷基苯生产中的除氟剂,还可以去除废气中的硫气氢,二氧化硫,氟化氢,烃类等污染物质

❹ 请问哪里有卖全氟磺酸型离子交换树脂最好用的氟磺酸型离子交换树脂

东莞市樟木头华心塑胶原料有限公司找唐先生

❺ 离子交换分离

离子交换分离法的基础,几乎都是在氢氟酸介质中使金属氟化物被离子交换树回脂或纤维素所吸附,答然后用含有不同浓度氢氟酸的酮类溶液从离子交换树脂柱上将铌、钽有选择地淋洗出来。此方法不仅可以使铌、钽和其他元素分离,也可以使铌、钽互相分离。

❻ 净水技术之离子交换树脂,家用净水器排名

离子交换树脂的全名称由分类名称、骨架(或基因)名称、基本名称组成。孔隙结构分凝胶型和大专孔型两种,凡属具有物理孔结构的称大孔型树脂,在全名称前加“大孔”。分类属酸性的应在名称前加“阳”,分类属碱性的,在名称前加“阴”。如:大孔强酸性苯乙烯系阳离子交换树脂。
离子交换树脂还可以根据其基体的种类分为苯乙烯系树脂和丙烯酸系树脂。树脂中化学活性基团的种类决定了树脂的主要性质和类别。首先区分为阳离子树脂和阴离子树脂两大类,它们可分别与溶液中的阳离子和阴离子进行离子交换。阳离子树脂又分为强酸性和弱酸性两类,阴离子树脂又分为强碱性和弱碱性两类 (或再分出中强酸和中强碱性类)。
水处理领域离子交换树脂的需求量很大,约占离子交换树脂产量的90%,用于水中的各种阴阳离子的去除。含有钙、镁离子的水通过钠离子交换剂时,水中的钙、镁离子被结合在交换剂上,而交换剂本身的钠离子被等量的排到水里,这个过程就是生水软化;钠型树脂失效转变到钙、美型,通常用盐溶液与树脂接触来恢复树脂到原来的钠型,这个过程就是再生、软化、再生循环达到原水处理的目的。
威世顿一直关注人类的身体健康

❼ 含重金属的废水有哪些

重金属废水是指矿冶、机械制造、化工、电子、仪表等工业生产过程中排出的含重金属的废水。重金属(如含镉、镍、汞、锌等)废水是对一环境污染最严重和对人类危害最大的工业废水之一,其水质水量与生产工艺有关。

废水中的重金属一般不能分解破坏,只能转移其存在位置和转变其物化形态。处理方法是首先改革生产工艺,不用或少用毒性大的重金属。

在生产地点就地处理(如不排出生产车间)常采用化学沉淀法、离子交换法等进行处理,处理后的水中重金属低于排放标准可以排放或回用。形成新的重金属浓缩产物尽量回收利用或加以无害化处理。

(7)氟化物离子交换树脂扩展阅读

废水中的重金属是各种常用方法不能分解破坏的,而只能转移它们的存在位置和转变它们的物理和化学形态。例如,经化学沉淀处理后,废水中的重金属从溶解的离子状态转变成难溶性化合物而沉淀下来,从水中转移到污泥中;经离子交换处理后,废水中的金属离子转移到离子交换树脂上。

经再生后又从离子交换树脂上转移到再生废液中。总之,重金属废水经处理后形成两种产物,一是基本上脱除了重金属的处理水,一是重金属的浓缩产物。

重金属浓度低于排放标准的处理水可以排放;如果符合生产工艺用水要求,最好回用。浓缩产物中的重金属大都有使用价值,应尽量回收利用;没有回收价值的,要加以无害化处理。

❽ 请问井水含氟化物1.76能吃吗

超过1ppm就不能吃了。你这个都快将近1倍了。杜笙CH-87&CH-32去除氟化物专用树脂,除氟达1ppm以下。杜笙离子交换树脂。

❾ 稀土总量的测定

61.3.1.1 草酸盐分离-重量法

方法提要

试样经碱熔分解,热水提取(含铁高的试样用!=5%三乙醇胺提取),沉淀过滤后再用盐酸溶解,在pH1~3的微酸性溶液中,用草酸沉淀稀土元素,钍、钙同时被沉淀以及较大量的钛、锆可能被带下外,可与大多数杂质分离。用六次甲基四胺沉淀钍。对钛、锆、铌、钽较高的试样,可用氟化物沉淀分离。最后将稀土沉淀成氢氧化物再转化为草酸盐,于850℃灼烧成稀土氧化物称量。

试剂

过氧化钠。

抗坏血酸。

盐酸羟胺。

氟化铵。

盐酸。

硝酸。

氢氟酸。

高氯酸。

过氧化氢。

氢氧化铵。

盐酸。

三乙醇胺。

氢氟酸-盐酸洗液2mLHF加2mLHCl,用水稀释至100mL。

氢氧化钠溶液(10g/L)。

草酸丙酮溶液(400g/L)。

草酸溶液(10g/L)调节至pH1.5~2.5。

苯甲酸溶液(10g/L,2g/L)。

六次甲基四胺(200g/L)。

六次甲基四胺-氯化铵洗液(10g/L)称取1g六次甲基四胺、1gNH4Cl溶于水中,稀释至100mL,用稀盐酸调节至pH4.4~5.0。

氯化铵-氢氧化铵溶液称取2gNH4Cl溶于100mL氢氧化铵,pH8.6~9.0。

麝香草酚蓝指示剂(1g/L)。

甲基橙指示剂(0.1g/L)。

酚酞指示剂(4g/L)。

分析步骤

称取0.2~0.5g(精确至0.0001g)试样,置于高铝坩埚中,加4gNa2O2,搅匀后再覆盖一层,加盖,置于高温炉中于650~700℃熔融5~15min,取出冷却,置于300mL烧杯中,加约50mL热水提取[含铁高的试样用(5+95)三乙醇胺提取],洗出坩埚及盖,将烧杯加盖表面皿,置于控温电热板上加热煮沸,取下冷却,洗去表面皿,用中速滤纸过滤,用氢氧化钠溶液洗涤6~8次。将沉淀连同滤纸置于原烧杯中,加入2mLHCl、20mL水,用玻璃棒将滤纸捣碎,加热溶解沉淀,加入20~25mL草酸丙酮溶液加热至近沸,加入1滴麝香草酚蓝指示剂,用(1+4)NH4OH调节溶液变橙色(pH1.5~2.5),加水稀释至80mL,保温1h以上,取下冷却,用致密滤纸过滤。将沉淀全部转移到滤纸上,用草酸溶液洗涤7~8次,将沉淀连同滤纸置于瓷坩埚中低温灰化,于高温炉中650~700℃灼烧0.5h,取出冷却,将灼烧物移入250mL烧杯中,加入15mLHCl及0.5~1mLH2O2,加盖表面皿,加热溶解。用下列方法之一分离钍。

苯甲酸沉淀分离法。于上述盐酸溶液中,加2滴麝香草酚蓝指示剂,用(1+1)NH4OH中和至橙红色,加入0.1~0.3gNH2OH·HCl还原Ce4+,再加(1+1)NH4OH至橙红色(pH2.0~2.2),加热煮沸,加入100mL10g/L苯甲酸溶液,微沸片刻,趁热过滤,以2g/L苯甲酸溶液洗涤8次,滤液收集于烧杯中,将沉淀连同滤纸置于瓷坩埚中低温灰化后,于850℃灼烧0.5h,即得氧化钍。

六次甲基四胺分离法。于上述盐酸溶液中,用水调整体积为50~60mL,加入0.1g~0.2g抗坏血酸还原四价铈,加2滴甲基橙指示剂,用(1+1)NH4OH中和至刚变橙色[如有浑浊,滴加(1+1)HCl至溶液清亮]。加热至近沸,在搅拌下加入六次甲基四胺溶液至甲基橙刚变黄色(pH4.4~5.0),补加抗坏血酸少许,冷至室温过滤,以六次甲基四胺-氯化铵洗液(pH4.4~5.0)洗涤8~10次,滤液收集于烧杯中,沉淀连同滤纸置于瓷坩埚中低温灰化,置于高温炉中850℃灼烧0.5h,即得氧化钍。

将分离钍后的滤液,加几滴酚酞指示剂用氢氧化铵中和至红色并过量10mL,加热至近沸,使沉淀凝聚,取下冷却,过滤,以NH4Cl-NH4OH溶液(pH8.6~9.0)洗涤6~8次,将沉淀连同滤纸移入原烧杯中,加15mL草酸丙酮溶液和85mL水,充分搅拌。加2滴麝香草酚蓝指示剂,用(1+1)NH4OH中和至橙红色(pH1.5~2.5),加热保温1h以上,过滤,用草酸溶液洗涤8~10次,将沉淀连同滤纸置于已恒量的瓷坩埚中低温灰化,置于高温炉中于850℃灼烧0.5h,取出冷却,迅速称量,灼烧至恒量即得稀土氧化物总量。

试样中含铌、钽或锆、钛较高时,可用氟化物沉淀稀土,分离除去:将沉淀连同滤纸置于塑料烧杯中,加5mLHCl,将滤纸捣碎,再加10mLHF、2gNH4F、90mL热水,置于80~90℃水浴中保温1h,取下冷却,用塑料漏斗或涂蜡的玻璃漏斗以中速滤纸过滤,用HF-HCl洗液洗涤6~8次,滤液弃去。将沉淀连同滤纸置于原烧杯中,加20mLHNO3浸透滤纸,加入3~5mLHClO4,用玻璃棒将滤纸捣碎,加盖表面皿,置于电热板上加热至冒白烟20min,取下,冷却后,加入20mLHCl和50mL水,加热溶解盐类(如有白色不溶物,即是二氧化硅。如测定钍,应过滤除去)。然后按前述方法之一分离钍,并以草酸沉淀法测定稀土氧化物总量。

按下式计算稀土氧化物总量的含量:

岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析

式中:w[RE2O3(T)]为稀土氧化物总量的质量分数,%;m1为试样溶液中稀土氧化物的质量,g;m0为试样空白溶液中稀土氧化物的质量,g;m为称取试样质量,g。

注意事项

1)草酸稀土的定量沉淀,必须严格控制酸度,并尽量避免引入碱金属离子;否则将增加草酸稀土的溶解度,使结果偏低。特别是钇组稀土的定量沉淀,损失更为显著。

2)氢氧化铵必须不含碳酸根,否则钙分离不完全。不含二氧化碳氢氧化铵的处理方法如下:用两个塑料杯分别装入浓氢氧化铵及水各半杯,同时放入密闭容器内,一天后水吸收氨,即成为无二氧化碳氢氧化铵。

61.3.1.2 PMBP-苯萃取分离-偶氮胂Ⅲ光度法

方法提要

在pH2.4~2.8缓冲溶液中,偶氮胂Ⅲ与稀土元素生成蓝绿色配合物,可用作光度法测定。铁、钍、铀,锆、铪,钙、铅、铜、铋、钨和钼等元素干扰测定,必须预先分离除去。

试样经碱熔,三乙醇胺提取,滤去硅、铝、铁、钨和钼等杂质。沉淀用盐酸溶解,在pH5.5的乙酸-乙酸钠缓冲溶液中,PMBP与稀土金属离子生成的配合物为苯所萃取。同时被萃取的还有钍、铀、钪、铋、铁(Ⅲ)、铌,钽、铅、铝和少量钙、锶、钡、锰,以及部分钛、锆的水解物(调节pH前加入磺基水杨酸可掩蔽钛、锆)。用甲酸-8-羟基喹啉溶液反萃取,除稀土元素和部分铅转入水相外,其他元素仍留在有机相中被分离。

仪器

分光光度计。

试剂

过氧化钠。

三乙醇胺。

盐酸。

氢氧化铵。

1-苯基-3-甲基-苯基酰吡唑酮(PMBP)-苯溶液(0.01mol/L)称取2.78gPMBP溶于1000mL苯中。

乙酸-乙酸钠缓冲溶液(pH5.5)称取164g无水乙酸钠(或272g结晶乙酸钠),溶解后过滤,加入16mL冰乙酸,用水稀释至1000mL。以精密pH试纸检查,必要时用(5+95)HCl或氢氧化钠溶液调节。

甲酸-8-羟羟基喹啉反萃取液(pH2.4~2.8)称取0.15g8-羟基喹啉,溶于1000mL(1+99)甲酸中。用精密pH试纸检查。

偶氮胂Ⅲ溶液(1g/L)过滤后使用。

抗坏血酸溶液(50g/L)。

磺基水杨酸溶液(400g/L)。

六次甲基四胺溶液(200g/L)。

稀土氧化物标准储备溶液ρ[RE2O3(T)]=200.0μg/mL称取于0.1g从本矿区提纯的稀土氧化物或按矿区稀土元素比例配制的铈、镧、钇氧化物(850℃灼烧1h),加5mLHCl及数滴H2O2,加热溶解,冷却后,移入500mL容量瓶中,用水稀释至刻度,混匀。

稀土氧化物标准溶液ρ[RE2O3(T)]=5.0μg/mL用稀土氧化物标准储备溶液稀释制得。

混合指示剂溶液取0.15g溴甲酚绿和0.05g甲基红,溶于30mL乙醇中,再加70mL水,混匀。

强碱性阴离子树脂水洗至中性,用(1+9)HCl浸泡2h,再水洗至中性,用150g/LNH4Ac溶液浸泡过夜,水洗至中性备用。树脂再生处理相同。

校准曲线

移取0mL、1.00mL、2.00mL、4.00mL、6.00mL、8.00mL、10.00mL稀土氧化物标准溶液,分别置于一组分液漏斗中,用水补足体积至10mL,加入1mL抗坏血酸溶液、1mL磺基水杨酸溶液及2滴混合指示剂,混匀。用(1+4)NH4OH调节至溶液刚变绿色(有铁存在时是橙紫色),再用(5+95)HCl调至紫色,此时应约pH5(必要时可用精密pH试纸检查)。加入3mL乙酸-乙酸钠缓冲溶液,15mLPMBP-苯溶液,萃取1min,放置分层后,弃去水相。再加入3mL缓冲溶液,稍摇动洗涤一次,水相弃去,用水洗分液漏斗颈。于有机相中,准确加入15mL甲酸-8-羟基喹啉反萃取液,萃取1min,分层后,水相放入干燥的25mL比色管中。有机相可收集回收使用。于比色管中准确加入1mL偶氮胂Ⅲ溶液,混匀。用3cm比色皿,以试剂空白溶液作参比,于分光光度计波长660nm处测量其吸光度,绘制校准曲线。

分析步骤

称取0.1~0.5g(精确至0.0001g)试样,置于刚玉坩埚(或铁坩埚)内,加3~4gNa2O2,拌匀,再覆盖一薄层。在700℃熔融5~10min,冷却,放入预先盛80mL(5+95)三乙醇胺溶液的烧杯中,用水洗出坩埚(如氢氧化物沉淀太少,加入约含10mgMg的MgCl2溶液作载体),加热煮沸10min以逐去过氧化氢。用水稀释至120mL,搅匀。冷后用中速定性滤纸过滤,用10g/LNaOH溶液洗涤烧杯及沉淀6~8次。以数毫升热的(1+1)HCl溶解沉淀,用50mL容量瓶承接,用水洗涤并稀释至刻度,混匀。

分取10.0mL试液,置于分液漏斗中,以下按校准曲线进行测定。

按下式计算稀土氧化物总量的含量:

岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析

式中:w[RE2O(T)]为稀土氧化物总量的质量分数,%;m1为从校准曲线上查得分取试样溶液中稀土氧化物的质量,μg;m0为从校准曲线上查得分取试样空白溶液中稀土氧化物的质量,μg;V1为分取试样溶液体积,mL;V为试样溶液总体积,mL;m为称取试样的质量,g。

注意事项

1)稀土元素在矿物中一般以铈、镧、钇为主,在不同的矿物中,相互间的比例也各不相同。由于钇的相对原子质量最小,故其摩尔吸光系数最大。因此,配制混合稀土标准溶液时,必须与被测试液中稀土元素的组分,特别是铈和钇的比例大致相似。目前,稀土氧化物标准大多是选择所分析的矿区中具有代表性的矿石,从中提取纯稀土氧化物而配制。

2)PMBP-苯萃取稀土适宜的酸度为pH5.5。稀土元素由于“镧系收缩”,离子半径从镧到镥逐渐变小,故镧系元素的碱性由镧到镥逐渐减弱。当pH<5,铈组稀土萃取不完全,而钇组稀土可完全萃取;如pH>5,铈组能萃取完全,而钇组有所偏低。增加PMBP浓度有利于提高稀土元素的萃取率。浓度太大,反萃取时大量PMBP被带下来,给以后操作增加困难。

3)稀土氧化物能吸收空气中的二氧化碳和水分,氧化钕和氧化镧吸收作用最强。铈及钇组氧化物吸收作用最弱,氧化钇能吸收氨,故必须于850℃灼烧1h逐去上述杂质,并在干燥器中冷却后称取。

4)硫化矿需预先在高温炉中灼烧将硫除去。如试样中含铁量不高,又能用酸分解时可用王水或高氯酸分解,含硅高的可滴加少量氢氟酸。

5)磷酸根的存在能抑制稀土-PMBP配合物的形成,使萃取不完全,0.5~1mg五氧化二磷即有干扰,可在萃取前用强碱性阴离子树脂将磷静态吸附除去,处理后60mg以下磷酸根不干扰(将稀土沉淀为草酸盐或氟化物也可使磷酸根分离)。除磷酸根操作:于原烧杯中加入一小片刚果红试纸,用(1+1)NH4OH调节至刚变为红紫色,加2mL冰乙酸、2~3g强碱性阴离子树脂。混匀后,加入15mL六次甲基四胺溶液,过滤入50mL容量瓶中,用水洗净并稀释至刻度,混匀。

6)铅与偶氮胂Ⅲ生成有色配合物,少量存在便干扰稀土测定,使结果偏高。可在萃取前加入2mL20g/L铜试剂溶液使之与铅配位,以消除铅的影响。在反萃取稀土后的有机相中,再用(1+1)盐酸将钍反萃取,利用此性质还可以连续测定钍。

61.3.1.3 阳离子交换树脂分离-重量法

方法提要

在盐酸溶液中稀土元素在阳离子交换树脂上的分配系数与锆、铪和钪相近,小于钍,稍大于钡,比其他元素均大很多,可以用不同浓度的HCl洗提分离,在交换和淋洗液中加入少量酒石酸可有效的除去锆、铪、铌和钽等。在2mol/LHCl中加入乙醇能有效地淋洗铁、铝、钛、铀及大部分钙等,并可防止重稀土的损失。用3mol/LHCl-(1+4)乙醇洗提稀土元素,并用氢氧化铵沉淀稀土元素而与残留的钙和钡分离,最后灼烧为氧化物称量。

试剂

碳酸钠。

过氧化钠。

酒石酸。

氢氧化钠。

盐酸。

酒石酸溶液

盐酸-酒石酸淋洗液(0.2mol/LHCl-20g/L酒石酸)称取20g酒石酸溶于水中,加入16.7mLHCl,用水稀释至1000mL。

盐酸-酒石酸洗涤液[(5+95)HCl-20g/L酒石酸]。

盐酸-乙醇淋洗液A[2mol/LHCl-(1+4)乙醇]取300mLHCl,加360mL无水乙醇,用水稀释至1800mL(用时配制)。

盐酸-乙醇淋洗液B[3mol/LHCl-(1+4)乙醇]取500mLHCl,加400mL无水乙醇,用水稀释至2000mL(用时配制)。

离子交换色谱柱20cm×1.13cm,树脂Zerolit225H型,60~100目。

树脂的处理:先用水浸透,再用6mol/LHCl浸泡过夜,水洗至中性,装入交换柱中。先用200mL盐酸-乙醇淋洗液B淋洗,继用2.3mol/LH2SO4淋洗,最后用150~200mL水分两次淋洗至中性备用。

分析步骤

称取0.2~0.5g(精确至0.0001g)试样,置于刚玉坩埚中,加入1~2gNa2CO3和2~3gNa2O2,置于高温炉中于650~700℃熔融5~10min。冷却后,置于250mL烧杯中,用热水提取。洗出坩埚,用水稀释至约100mL,加热煮沸数分钟,冷却。用致密滤纸过滤,以20g/LNaOH溶液洗涤沉淀5~6次,用热的(1+1)HCl溶解沉淀于原烧杯中,用热水洗至无氯离子,在电热板上蒸干除硅。然后加3mLHCl润湿残渣,加入2g酒石酸、30mL水,加热溶解盐类。用致密滤纸过滤于150mL烧杯中,以热的(5+95)HCl洗涤烧杯及滤纸至70mL体积,再用热水洗至l00mL,混匀。将溶液全部移入离子交换柱的储液瓶中,用30mLHCl-酒石酸洗涤液洗涤烧杯,以0.5~0.8mL/min的速度进行交换。待溶液流完后继续用300mL盐酸-酒石酸淋洗液以同样流速淋洗磷酸根、锆、铌和钽。溶液流完后用100mL水淋洗,再用盐酸-乙醇淋洗液A淋洗铁、铝、钛、锰、铀、钙和镁等,用450mL盐酸-乙醇淋洗液B淋洗稀土元素。将稀土元素洗出液加热蒸发至约15mL,用水稀释至100mL,煮沸。加浓氢氧化铵至出现稀土沉淀,再过量溶液体积的10%,冷却。用中速滤纸过滤,以(5+95)NH4OH洗涤烧杯和沉淀6~7次。将沉淀连同滤纸一起移入已恒量的瓷坩埚中,低温灰化,在高温炉中850℃灼烧至恒量,即得稀土氧化物总量。

稀土氧化物总量含量的计算参见式(61.1)。

注意事项

1)如试样中含有锶、钡较高,将用盐酸溶解沉淀的溶液中,加氢氧化铵沉淀稀土元素,并过量10%氢氧化铵,以分离锶、钡。氢氧化物沉淀再用热(1+1)HCl溶解,然后蒸干除硅。

2)若要测定钍,可在淋洗稀土后用2.8mol/LH2SO4溶液淋洗钍。

61.3.1.4 阳离子交换树脂分离-偶氮胂Ⅲ光度法

方法提要

在1~2mol/LHCl中稀土元素在强酸性阳离子交换树脂上的分配系数很大,但随稀土元素的原子序数增加而减小,铈组稀土元素的分配系数大于钇组稀土元素。在0.5~1.0mol/LHCl中稀土元素、锆和钍被阳离子交换树脂强烈吸附,钛、U6+、Fe2+、锰、镁、Fe3+、钙及铝等也部分或全部被吸附,可用1.25mol/LHCl将上述元素淋洗下来,而稀土元素、锆和钍仍留在柱上。

在H2SO4溶液中,锆的分配系数变得很小,而稀土元素的分配系数反而增大。因此试样中含微量锆时,可在(1+99)H2SO4或(2+98)H2SO4中进行交换,以除去锆,而钍仍留在柱上。或在1.25mol/LHCl淋洗后,继续用0.36mol/LH2SO4溶液洗除锆,最后用3mol/LHCl淋洗稀土元素,用偶氮胂Ⅲ光度法进行测定。

仪器

分光光度计。

试剂

过氧化钠。

盐酸。

硫酸。

抗坏血酸溶液(10g/L)。

氢氧化钠溶液(0.1mol/L)。

氯化钠溶液(20g/L)。

苯二甲酸氢钾溶液(0.2mol/L)。

偶氮胂III溶液(1g/L)。

酚酞指示剂(10g/L)。

阳离子树脂交换色谱柱Zerolit225树脂,H+型,50~100目;柱1.5cm×10cm;流速为1~1.5mL/min。树脂再生:用50mL水洗去柱中残留盐酸,用50mL200g/LNH4Cl溶液使树脂转变为铵型,50mL水洗去残留的NH4Cl,再以240mL40g/L草酸溶液淋洗钍,50mL水洗去残留在柱中的草酸铵溶液,以100mL4mo1/LHCl使之变为氢型,最后加入50mL(1+99)H2SO4流过交换柱,作下次使用。

稀土氧化物标准溶液ρ[RE2O3(T)]=10.0μg/mL配制方法参见61.3.1.2PMBP-苯萃取分离-偶氮胂Ⅲ光度法。

校准曲线

移取0mL、0.50mL、1.00mL、2.00mL、3.00mL、4.00mL、5.00mL稀土氧化物标准溶液,分别置于一组25mL容量瓶中,加水至10mL左右,加入0.5mL新配制的抗坏血酸溶液及1滴酚酞指示剂,用氢氧化钠溶液中和至红色出现,再用0.1mol/LHCl溶液中和至红色褪去。加入2.8mL0.2mol/LHCl溶液及3.0mL0.2mol/L苯二甲酸氢钾溶液,混匀,加入1mL1g/L偶氮胂III溶液,以水稀释至刻度,混匀。在分光光度计上660nm波长处,用1cm比色皿,以水作参比测量吸光度,绘制校准曲线。

分析步骤

称取0.1~0.5g(精确至0.0001g)试样,置于刚玉坩埚中,加入4~6gNa2O2,搅匀,再覆盖一层,置于已升温至650~700℃的高温炉中,保持此温度至刚全熔。取出冷却,放入已盛有60mL水的250mL烧杯中,盖上表面皿,待剧烈作用停止后,用水洗出坩埚。置于电炉上加热煮沸15~20min,使溶液体积浓缩至40mL以下。取下,加水稀释至200mL左右,放置澄清后,用中速定性滤纸过滤,以20g/LNaCl溶液洗涤烧杯及滤纸共8~10次,滤液弃去。用50mL热的(8+92)H2SO4溶液将沉淀溶解于原烧杯中,用水洗涤滤纸6~8次。将烧杯置于电热板上加热,并蒸发至冒三氧化硫白烟片刻。取下冷却,加水至100mL(若含有锆则加入1gNa2HPO4),加热煮沸。取下冷却后,用慢速定性滤纸过滤(除去二氧化硅及锆),以(1+99)H2SO4溶液洗涤烧杯及滤纸共8~10次,滤液及洗液用400mL烧杯收集,并用水稀释至250~300mL。将上述溶液倾入已再生好的阳离子交换色谱柱中,以1~1.5mL/min的速度流过,依次用150mL(1+99)H2SO4、500mL1.25mol/LHCl洗提除去铁、镁、锰、铀、铁、铝等元素,流出液均弃去。然后用300mL3mol/LHCl淋洗稀土元素,以400mL烧杯承接,置于电热板上加热浓缩至约5mL,用水移入50mL容量瓶中并稀释至刻度,混匀。

分取部分试液(约含40μg的稀土元素)于25mL容量瓶中,以下按校准曲线进行测定。

稀土氧化物总量含量的计算参见式(61.2)。

❿ 二甲基砜

你好

二甲基砜是高新技术、高附加值的精细化工产品,是药物合成,染料中间体和食品添加剂的高温溶剂和高纯试剂,色谱固定液和分析试剂。二甲基砜作为一种有机硫化物,是人体胶原蛋白质合成的必须物质,作为保健品被应用,是维护人体生物硫元素平衡的主要药物。能调节胃肠功能,促进营养吸收,治疗关节炎,皮肤病,胃肠疾病,护肤养颜及保健功能,引起国外重视,作为保健药品大量应用,近两年来需求量迅速增加。
专利权人田军已向国家知识产权局专利局申请注册了名称为“一种生产二甲基砜的方法”的发明专利,其申请号为:CN01144216.6,并获得国家知识产权局颁发的发明专利证书。
本发明涉及一种生产二甲基砜的方法,属于制取化学物质的工艺技术领域。该生产方法是以纯度≥99.8%,凝固点为17.8℃的二甲基亚砜与相当于其重量1.566-1.567倍、浓度为27.5%、酸度≤0.01%的双氧水,在相当于二甲基亚砜投料量1.266—1.267倍的中性水为反应介质,于22±2℃温度经60分钟氧化反应,以及生成物之二甲基砜结晶混合液再通过甩干、精制、干燥和筛分等物理处理工艺步骤,最后生产出总收率达85%,纯度≥99.9%的高品质二甲基砜白色结晶。
产品纯度高,收率高,无三废污染。二甲基砜在国外已有应用,我国对其应用研究尚未开展,因此产品全部出口。二甲基砜作为一种高新技术高附加值的精细化工产品,产品新、市场潜力大,效益突出,又能出口创汇,具有广阔的生产和开发应用前景。

就能找到这些了,还满意吗

热点内容
丁度巴拉斯情人电影推荐 发布:2024-08-19 09:13:07 浏览:886
类似深水的露点电影 发布:2024-08-19 09:10:12 浏览:80
《消失的眼角膜》2电影 发布:2024-08-19 08:34:43 浏览:878
私人影院什么电影好看 发布:2024-08-19 08:33:32 浏览:593
干 B 发布:2024-08-19 08:30:21 浏览:910
夜晚看片网站 发布:2024-08-19 08:20:59 浏览:440
台湾男同电影《越界》 发布:2024-08-19 08:04:35 浏览:290
看电影选座位追女孩 发布:2024-08-19 07:54:42 浏览:975
日本a级爱情 发布:2024-08-19 07:30:38 浏览:832
生活中的玛丽类似电影 发布:2024-08-19 07:26:46 浏览:239