硼酸离子交换
Ⅰ 水泥SO3的测定(离子交换法)
定义与原理 1.水泥的比表面积,以1克水泥所含颗拉的表面积表示,其单位为厘专米[2]/克。 2.水泥的比属表面积,主要是根据通过一定空隙率的水泥层的空气流速来测定。因为对一定空隙率的水泥层,其中空隙的数量和大小是水泥颗粒,比表面积的函数,也决定了空气流过水泥层的速度,因此根据空气流速即可计算比表面积。二、仪器 3.试验仪器采用透气仪,仪
Ⅱ 四水八硼酸钠溶剂
四水八硼酸钠溶剂
溶于水,加盐酸试试,应该能得到水合八硼酸沉淀
或者通过离子交换柱试试
Ⅲ 硼酸水溶液蒸发会析出什么物质
必修1全册基本内容梳理
一、化学实验安全
1、(1)做有毒气体的实验时,应在通风厨中进行,并注意对尾气进行适当处理(吸收或点燃等)。进行易燃易爆气体的实验时应注意验纯,尾气应燃烧掉或作适当处理。
(2)烫伤宜找医生处理。
(3)浓酸撒在实验台上,先用Na2CO3 (或NaHCO3)中和,后用水冲擦干净。浓酸沾在皮肤上,宜先用干抹布拭去,再用水冲净。浓酸溅在眼中应先用稀NaHCO3溶液淋洗,然后请医生处理。
(4)浓碱撒在实验台上,先用稀醋酸中和,然后用水冲擦干净。浓碱沾在皮肤上,宜先用大量水冲洗,再涂上硼酸溶液。浓碱溅在眼中,用水洗净后再用硼酸溶液淋洗。
(5)钠、磷等失火宜用沙土扑盖。
(6)酒精及其他易燃有机物小面积失火,应迅速用湿抹布扑盖。
二.混合物的分离和提纯
分离和提纯的方法 分离的物质 应注意的事项 应用举例
过滤 用于固液混合的分离 一贴、二低、三靠 如粗盐的提纯
蒸馏 提纯或分离沸点不同的液体混合物 防止液体暴沸,温度计水银球的位置,如石油的蒸馏中冷凝管中水的流向 如石油的蒸馏
萃取 利用溶质在互不相溶的溶剂里的溶解度不同,用一种溶剂把溶质从它与另一种溶剂所组成的溶液中提取出来的方法 选择的萃取剂应符合下列要求:和原溶液中的溶剂互不相溶;对溶质的溶解度要远大于原溶剂 用四氯化碳萃取溴水里的溴、碘
分液 分离互不相溶的液体 打开上端活塞或使活塞上的凹槽与漏斗上的水孔,使漏斗内外空气相通。打开活塞,使下层液体慢慢流出,及时关闭活塞,上层液体由上端倒出 如用四氯化碳萃取溴水里的溴、碘后再分液
蒸发和结晶 用来分离和提纯几种可溶性固体的混合物 加热蒸发皿使溶液蒸发时,要用玻璃棒不断搅动溶液;当蒸发皿中出现较多的固体时,即停止加热 分离NaCl和KNO3混合物
三、离子检验
离子 所加试剂 现象 离子方程式
Cl- AgNO3、稀HNO3 产生白色沉淀 Cl-+Ag+=AgCl↓
SO42- 稀HCl、BaCl2 白色沉淀 SO42-+Ba2+=BaSO4↓
四.除杂
注意事项:为了使杂质除尽,加入的试剂不能是“适量”,而应是“过量”;但过量的试剂必须在后续操作中便于除去。
五、物质的量的单位――摩尔
1.物质的量(n)是表示含有一定数目粒子的集体的物理量。
2.摩尔(mol): 把含有6.02 ×1023个粒子的任何粒子集体计量为1摩尔。
3.阿伏加德罗常数:把6.02 X1023mol-1叫作阿伏加德罗常数。
4.物质的量 = 物质所含微粒数目/阿伏加德罗常数 n =N/NA
5.摩尔质量(M)(1) 定义:单位物质的量的物质所具有的质量叫摩尔质量.(2)单位:g/mol 或 g..mol-1(3) 数值:等于该粒子的相对原子质量或相对分子质量.
6.物质的量=物质的质量/摩尔质量 ( n = m/M )
六、气体摩尔体积
1.气体摩尔体积(Vm)(1)定义:单位物质的量的气体所占的体积叫做气体摩尔体积.(2)单位:L/mol
2.物质的量=气体的体积/气体摩尔体积n=V/Vm
3.标准状况下, Vm = 22.4 L/mol
物质的量在化学实验中的应用
七1.物质的量浓度.
(1)定义:以单位体积溶液里所含溶质B的物质的量来表示溶液组成的物理量,叫做溶质B的物质的浓度。(2)单位:mol/L(3)物质的量浓度 = 溶质的物质的量/溶液的体积 CB = nB/V
2.一定物质的量浓度的配制
(1)基本原理:根据欲配制溶液的体积和溶质的物质的量浓度,用有关物质的量浓度计算的方法,求出所需溶质的质量或体积,在容器内将溶质用溶剂稀释为规定的体积,就得欲配制得溶液.
(2)主要操作
a.检验是否漏水.b.配制溶液 1计算.2称量.3溶解.4转移.5洗涤.6定容.7摇匀8贮存溶液.
注意事项:A 选用与欲配制溶液体积相同的容量瓶. B 使用前必须检查是否漏水. C 不能在容量瓶内直接溶解. D 溶解完的溶液等冷却至室温时再转移. E 定容时,当液面离刻度线1―2cm时改用滴管,以平视法观察加水至液面最低处与刻度相切为止.
3.溶液稀释:C(浓溶液)?V(浓溶液) =C(稀溶液)?V(稀溶液)
八。常见物质的分离、提纯和鉴别
i、蒸发和结晶 蒸发是将溶液浓缩、溶剂气化或溶质以晶体析出的方法。结晶是溶质从溶液中析出晶体的过程,可以用来分离和提纯几种可溶性固体的混合物。结晶的原理是根据混合物中各成分在某种溶剂里的溶解度的不同,通过蒸发减少溶剂或降低温度使溶解度变小,从而使晶体析出。加热蒸发皿使溶液蒸发时、要用玻璃棒不断搅动溶液,防止由于局部温度过高,造成液滴飞溅。当蒸发皿中出现较多的固体时,即停止加热,例如用结晶的方法分离NaCl和KNO3混合物。
ii、蒸馏 蒸馏是提纯或分离沸点不同的液体混合物的方法。用蒸馏原理进行多种混合液体的分离,叫分馏。
操作时要注意:
①在蒸馏烧瓶中放少量碎瓷片,防止液体暴沸。
②温度计水银球的位置应与支管底口下缘位于同一水平线上。
③蒸馏烧瓶中所盛放液体不能超过其容积的2/3,也不能少于l/3。
④冷凝管中冷却水从下口进,从上口出。
⑤加热温度不能超过混合物中沸点最高物质的沸点,例如用分馏的方法进行石油的分馏。
iii、分液和萃取 分液是把两种互不相溶、密度也不相同的液体分离开的方法。萃取是利用溶质在互不相溶的溶剂里的溶解度不同,用一种溶剂把溶质从它与另一种溶剂所组成的溶液中提取出来的方法。选择的萃取剂应符合下列要求:和原溶液中的溶剂互不相溶;对溶质的溶解度要远大于原溶剂,并且溶剂易挥发。
在萃取过程中要注意:
①将要萃取的溶液和萃取溶剂依次从上口倒入分液漏斗,其量不能超过漏斗容积的2/3,塞好塞子进行振荡。
②振荡时右手捏住漏斗上口的颈部,并用食指根部压紧塞子,以左手握住旋塞,同时用手指控制活塞,将漏斗倒转过来用力振荡。
③然后将分液漏斗静置,待液体分层后进行分液,分液时下层液体从漏斗口放出,上层液体从上口倒出。例如用四氯化碳萃取溴水里的溴。
iv、升华 升华是指固态物质吸热后不经过液态直接变成气态的过程。利用某些物质具有升华的特性,将这种物质和其它受热不升华的物质分离开来,例如加热使碘升华,来分离I2和SiO2的混合物。
2、化学方法分离和提纯物质
对物质的分离可一般先用化学方法对物质进行处理,然后再根据混合物的特点用恰当的分离方法(见化学基本操作)进行分离。
用化学方法分离和提纯物质时要注意:
①最好不引入新的杂质;
②不能损耗或减少被提纯物质的质量
③实验操作要简便,不能繁杂。用化学方法除去溶液中的杂质时,要使被分离的物质或离子尽可能除净,需要加入过量的分离试剂,在多步分离过程中,后加的试剂应能够把前面所加入的无关物质或离子除去。
对于无机物溶液常用下列方法进行分离和提纯:
(1)生成沉淀法 (2)生成气体法 (3)氧化还原法 (4)正盐和与酸式盐相互转化法 (5)利用物质的两性除去杂质 (6)离子交换法
常见物质除杂方法
Ⅳ 测定土壤阳离子交换量的方法有哪些
土壤阳离子交换量的测定受多种因素的影响,如交换剂的性质、盐溶液浓度和pH、淋洗方法等,必须严格掌握操作技术才能获得可靠的结果。联合国粮农组织规定用于土壤分类的土壤分析中使用经典的中性乙酸铵法或乙酸钠法。
新方法是将土壤用BaCl2 饱和,然后用相当于土壤溶液中离子强度那样浓度的BaCl2溶液平衡土壤,继而用MgSO4交换Ba测定酸性土壤阳离子交换量。
蒸馏法测定铵离子的量并换算为土壤阳离子交换量。此法的优点是交换液中可同时测定各种交换性盐基离子。石灰性土壤用氯化铵-乙酸铵作交换剂,盐碱土用乙酸钠作交换剂进行测定。不同的交换剂与测定操作对实验结果影响较大,报告实验结果时应标出。
(4)硼酸离子交换扩展阅读:
石灰性土壤阳离子交换量的测定方法有NH4Cl–NH4OAc法、Ca(OAc)2法和NaOAc法。目前应用的较多、而且认为较好的是NH4Cl–NH4OAc法,其测定结果准确、稳定、重现性好。NaOAc法是目前国广泛应用于石灰性土壤和盐碱土壤交换量测定的常规方法。
土壤阳离子交换量测定:土壤阳离子交换量(CEc是指土壤胶体所能吸附的各种阳离子)的总量。酸性、中性土壤多用传统的乙酸铵交换法测定,使用乙酸铵溶液反复处理土壤,使土壤成为铵离子饱和土;用乙醇洗去多余的乙酸铵后。
Ⅳ tris可用作阳离子交换buffer吗
Tris-HCl缓冲液的配制方法:
Tris:三羟甲基氨基甲烷
三羟甲基氨基甲烷(Tris(hydroxymethyl)aminomethane,一般简称为Tris)是一种有机化合物,其分子式为(HOCH2)3CNH2。Tris被广泛应用于生物化学和分子生物学实验中的缓冲液的制备。例如,在生物化学实验中常用的TAE和TBE缓冲液(用于核酸的溶解)都需要用到Tris。由于它含有氨基因此可以与醛发生缩合反应
Tris为弱碱,在室温(25℃下,它的pKa为8.1;根据缓冲理论,Tris缓冲液的有效缓冲范围在pH7.0到9.2之间。
Tris碱的水溶液pH在10.5左右,一般加入盐酸以调节pH值至所需值,即可获得该pH值的缓冲液。但同时应注意温度对于Tris的pKa的影响。
由于Tris缓冲液为弱碱性溶液,DNA在这样的溶液中会被去质子化,从而提高其溶解性。人们常常在Tris盐酸缓冲液中加入EDTA制成“TE缓冲液”,TE缓冲液被用于DNA的稳定和储存。如果将调节pH值的酸溶液换成乙酸,则获得“TAE缓冲液”(Tris/Acetate/EDTA),而换成硼酸则获得“TBE缓冲液”(Tris/Borate/EDTA)。这两种缓冲液通常用于核酸电泳实验中。 用途:有机合成中间体。在电泳缓冲液中同甘氨酸构成缓冲体系,稳定电泳过程中的PH值。在凝胶中也起到稳定PH的作用,只不过是Tris-HCl缓冲体系。
Tris缓冲液不仅被广泛用作核酸和蛋白质的溶剂,还有许多重要用途。Tris被用于不同pH条件下的蛋白质晶体生长。Tris缓冲液的低离子强度特点可用于线虫(C. elegans核纤层蛋白lamin)的中间纤维的形成。Tris也是蛋白质电泳缓冲液的主要成分之一。此外,Tris还是制备表面活性剂、硫化促进剂和一些药物的中间物。Tris也被用作滴定标准物。
1 M Tris-HCl (pH7.4,7.6,8.0)
组份浓度 1 M Tris-HCl 配制量 1L 配制方法:
1.称量121.1 g Tris置于l L烧杯中。
2.加入约800 ml的去离子水,充分搅拌溶解。 3.按下表加入浓HCl量调节所需要的pH值。
pH值 浓HCl 7.4 约70 ml 7.6 约60 ml 8.0 约42ml
4.将溶液定容至1 L。
5.高温高压灭菌后,室温保存。 注意:应使溶液冷却至室温后再调定pH值,因为Tris溶液的pH值随温度的变化差异很大,温度每升高1℃,溶液的pH值大约降低0.03个单位。
1.5 M Tris-HCl (pH8.8)
组份浓度 1.5 MTris-HCl 配制量 1 L 配制方法
1.称量181.7 g Tris置于1 L烧杯中。
2.加入约800 ml的去离子水,充分搅拌溶解。 3.用浓HCl调节pH值至8.8。 4.将溶液定容至1 L。
5.高温高压灭菌后,室温保存。 注意:应使溶液冷却至室温后再调定pH值,因为Tris溶液的pH值随温度的变化差异很大,温度每升高1℃,溶液的pH值大约降低0.03个单位。
TE即Tris-EDTA buffer(10mM Tris,1mM EDTA,pH7.4 pH7.6 pH8.0)。
常用分子生物学试剂,用于DNA的溶解等。 配制1 0×TE Buffer (pH7.4, 7.6,8.0)
组份浓度: 100 mM Tris-HCl,10 mM EDTA 配制量: 1 L 配制方法:
1. 量取下列溶液,置于l L烧杯中。
1 M Tris-HCl Buffer(pH7.4,7.6,8.0) 100 ml 500 mM EDTA(pH8.0) 20 ml
2.向烧杯中加入约800 ml的去离子水,均匀混合。 3.将溶液定容至1 L后,高温高压灭菌。 4.室温保存。
Ⅵ 硼同位素测量
硼同位素正热电离(Cs2BO2+)质谱法测量
自然界硼有两种稳定同位素,即11B和10B,它们的相对丰度分别为80.173(13)%和19.827(13)%(Coplen,etal.,2002)。近十几年来,自然环境样品中硼同位素比值的测定引起了人们极大的兴趣,因为它能给出有关地质和环境过程的非常有价值的信息。所研究的样品有铝硅酸盐岩石和沉积物、硼酸盐矿物、碳酸盐、珊瑚、海水、咸水、盐湖卤水、地下水、热液矿床水等,其δ11B值的变化范围为-34.2‰~59.2‰(Coplen,etal.,2002)。随着硼同位素化学及地球化学研究的更深层次的发展,对硼同位素测定的精度提出了更高的要求。
热电离质谱是硼同位素测定的主要方法,它的测定精度高,所用试样量少,试样的制备过程比较简单。热电离质谱法测定硼同位素有负热电离质谱法(NTIMS)和正热电离质谱法(PTIMS)两种。Palmer(1958)利用硼砂涂样,首次从Na2B4O7获得了质量数为88和89的Na210BO2+和Na211BO2+离子峰,建立了正热电离质谱测定硼同位素的方法,但是这种方法受到很多因素的影响,限制了测定精度的提高,测定精度为0.2%~0.3%。Spivack(1986)和Ramakumar(1985)首先实现了采用Cs2BO2+对硼同位素组成的高精度测定。由于Cs2BO2+比Na2BO2+具有高得多的质量数,因此在测定过程中的硼同位素分馏大为减小,硼同位素测定精度得到一定的提高。但是,它仍受到与采用Na2BO2+离子时相同影响因素的限制,特别对地质试样的测定精度难以保证。
肖应凯(XiaoYK,etal.,1988)发现电离带上石墨的存在能极大地增强Cs2BO2+离子的热发射,建立了高精度硼同位素的质谱测定新方法,在硼同位素测定上取得了重要突破,成为硼同位素测定最精密的方法,在世界上获得广泛应用。
方法提要
采用酸溶或碱熔的方法将天然试样中的B提取出来,制备成含硼溶液;或液态样品采用AmberliteIRA743型B特效离子交换树脂和由阳离子交换树脂与阴离子交换树脂组成的混合离子交换树脂进行B的分离和纯化,制成含H3BO3的溶液,加入适当量的Cs2CO3(或CsOH)和甘露醇,使B∶Cs∶甘露醇=1∶0.5∶1(摩尔比)。在石墨的存在下采用热电离方式获得Cs2BO2+离子进行硼同位素组成的测定(XiaoYK,etal.,1988)。
仪器和装置
热电离同位素质谱计(VG354,MAT262,IsoProbeT,FinniganTriton)。
真空烧带装置。
超净化实验室。
石英亚佛蒸馏器。
超净化干燥蒸发箱。
离心机。
铂金坩埚。
高温炉。
分光光度计。
试剂和材料
碳酸铯(Cs2CO3) 高纯。
进口光谱纯石墨。
氢氧化钠 优级纯。
Na2CO3优级纯。
K2CO3优级纯。
NaHCO3分析纯。
低B高纯水 将18.2MΩ.cm-1MilliQ纯化水再经AmberliteIRA743硼特效树脂交换柱纯化,或采用石英亚佛蒸馏器进行二次重蒸馏,再经AmberliteIRA743硼特效树脂交换柱纯化。
盐酸 优级纯。
低B亚沸蒸馏盐酸 将优级纯HCl经石英亚佛蒸馏器蒸馏或采用在密封容器中平衡方法纯化,9.0mol/L、2.0mol/L及0.1mol/L。
低B亚沸蒸馏无水乙醇。
(4+1)乙醇-石墨悬浮液 由低B亚沸蒸馏无水乙醇、低B亚沸蒸馏水和光谱纯石墨配制。
甘露醇溶液 分析纯,φ(甘露醇)=1.82%
AmberliteIRA743硼特效离子交换树脂粒径80目。
Dowex50W×8阳离子交换树脂。
Ion-exchangeⅡ(德国产)弱碱性阴离子交换树脂。
离子交换柱制备:
AmberliteIRA743硼特效离子交换柱将约0.5mLAmberliteIRA743(80~100目)硼特效树脂装入Φ0.2cm聚乙烯管中,树脂高度1.5cm.交换树脂顺序用5mL2mol/LHCl、5mL高纯水、5mL2mol/LNH4OH和10mL高纯水再生。
混合离子交换柱将Dowex50W×8阳离子交换树脂用2mol/LHCl再生,用低硼水洗至中性。IonexchangerII弱碱性阴离子交换树脂用饱和NaHCO3溶液再生,用低硼水洗至中性。将以上2种再生好的离子交换树脂等体积混合均匀,取1.0mL装入Φ0.2cm聚乙烯管中。
甲亚胺-H酸0.45g甲亚胺-H酸和1g抗坏血酸,溶解在100mL亚沸蒸馏水中。
缓冲溶液251gNH4AC、15gEDTA和125g冰醋酸,溶于400mL亚沸蒸馏水中。
各类四氟乙烯器皿烧杯、洗瓶等。
NBSSRM951H3BO3硼同位素标准物质。
NBSSRM952富10B稀释剂。
Ta金属箔(规格:长7.5mm,宽0.76mm,厚0.02mm)。
分析步骤
(1)试样制备
a.岩石试样分解。称取约1.0g岩石试样,在铂金坩埚内与2.5gNa2CO3和2.5gK2CO3混合均匀,然后在高温炉中于850℃熔融45min。冷却后用0.6mol/LHCl浸取坩埚内熔融物,在石英离心管内进行离心,并用无硼水洗涤不熔物两次,收集全部清液(含有试样中全部硼),此清液将进行下一步硼的纯化(王刚等,2000)。
b.离子交换纯化。试样溶液(pH7~10)首先通过再生好的AmberliteIRA743树脂柱,流速控制在0.5mL/min以内。然后用10~15mL低B水清洗柱子。柱子内吸附的硼用10mL75℃的0.1mol/mLHCl淋洗。淋洗液在超净蒸发干燥箱中于60℃蒸发至约0.1mL,冷却至室温后,将浓缩的淋洗溶液通过混合离子交换柱,流速控制在0.3mL/min以内,此时注意检测流出液应呈中性,若呈酸性,表明混合树脂量不够,应添加混合树脂,重新进行交换。最后用约10mL低B高纯水清洗混合离子交换柱子。最终的淋洗液被收集在Teflon烧杯中,进行淋洗液中B含量的测定。溶液中硼浓度用甲亚胺-H光度法测定。取1mL试样溶液、2mL甲亚胺-H酸溶液和2mL缓冲溶液,充分混合后静置120min,在420nm处测定硼-甲亚胺-H配合物的吸光值,由校准曲线获得B的含量。也可以采用SRM952作稀释剂,并在带上加入26μg恒定量铯用同位素稀释法测定硼量。根据测定结果,加入适量Cs2CO3,使B/Cs摩尔比约为2∶1,并加入甘露醇溶液,使硼与甘露醇的摩尔比约为1∶1。淋洗液再次在超净蒸发干燥箱中于60℃蒸发至约0.2mL,转移到聚乙烯离心管中继续蒸发至硼的浓度~1mg/mL。将离心管内的试样溶液密封保存,供质谱测定用(肖应凯等,1997;张崇耿等,2003;Wang,etal.,2002;Xiao,etal.,2003)。
(2)质谱测定
a.钽带的加热去气处理。为了降低Ta带中的B及其他杂质的含量,Ta带通常要进行加热处理:将点焊在灯丝架上的Ta带在专用的真空系统中进行电加热处理,加热电流为3.0A,加热时间为1.0h,系统的真空度应优于1×10-3Pa。
b.硼同位素测定。采用扁平并经去气的钽带(7.5mm×0.76mm×0.025mm),带首先涂覆2.5μL(约含100μg石墨)的石墨-乙醇-水悬浮液,蒸至近干,再加入试样溶液,石墨悬浮液和硼溶液布满整个带时能获得最好结果,然后并通以1.2A电流下烘干5min。
将涂好试样的灯丝装入质谱计离子源,对离子源抽真空达到3×10-5Pa时,开始进行测量。将带加热电流快速升至0.5A,然后以0.05A/min速率增加电流,在Cs2BO2+测量前发射的133Cs+离子可用作监控和对仪器聚焦。当133Cs+离子流为2×10-12A时,Cs2BO2+离子流信号一般为2×10-14A,以同样速度增加带电流直到Cs2BO2+离子流为3~5×10-12A,此时带电流一般为1.40~1.60A,由此电流产生的带温度太低,不能用光学高温计准确测量。
在308和309质量峰间采集数据,在306.5处测定基线零点,它在307~310质量范围内确实没有明显变化。测定时采用单峰跳扫的方法分别测量质量数为309(133Cs112B16O+2+133Cs102B16O17O+)和308(133Cs102B16O+2)的离子流强度I309和I308,得到R309/308=I309/I308。然后进行17O校正得到11B和10B丰度比11B/10B,即:
岩石矿物分析第四分册资源与环境调查分析技术
试样的硼同位素组成用相对于NISTSRM951硼酸标准的δ11B表示:
岩石矿物分析第四分册资源与环境调查分析技术
式中:(11B/10B)SRM951为测定的NISTSRM951硼酸标准的11B/10B比值。
图87.20为典型的单次测定中Cs2BO+2信号强度和同位素比值随时间的变化。
图87.20 R309/308比值和Cs2BO2+离子流强度随时间的变化
按照以上方法对NISTSRM951硼酸标准进行重复涂样测定,结果如表87.22所示,相对标准偏差为0.0034%(2σ)。
表87.22 方法的重现性(对NISTSRM951硼酸标准进行重复涂样测定)
续表
c.同质异位数的干扰。采用Cs2BO+2离子进行硼同位素测定时可完全消除锶的干扰,但有机质和NO-3却是潜在的干扰因素(Xiao,Wang,1998;Weietal.,2004)。有机质或NO-3存在时,除在质量数312处可观察到很强的离子峰外,还会诱发CNO-的合成,从而导致Cs2CNO+离子的产生,在质量数308(133Cs212C14N16O)和309(133Cs213C14N16O+133Cs212C15N16O+133Cs212C14N17O)处产生离子峰而严重干扰硼同位素的测定,由于14N丰度比15N丰度要高得多,因此会使11B/10B测定比值偏低,甘露醇的存在能加剧这种干扰。
图87.21是NO-3与含有Cs的NIST951硼溶液同时涂在事先涂有石墨的金属带上,在不同时间测定11B/10B比值的变化。只有NO-3存在时,测定的11B/10B比值在开始时明显偏低,然后再上升到正常值,11B/10B比值上升的速率随HNO3量的增加而降低;但一般在加热1h后,NO-3的影响将消失。有甘露醇存在时,NO-3的影响将严重得多。当有0.5μgNO-3存在时,开始时测定的11B/10B比值明显偏低,加热2h以后才上升到正常值;而当NO-3大于1.0μg时,加热270min以后,测定的11B/10B比值仍比正常值偏低(见图87.22)。
图87.21 只有NO-3存在时11B/10B测定比值随时间的变化
d.采用Cs2B4O7方法测得的SRM951硼同位素标准的11B/10B比值。目前世界上通用的硼同位素标准参考物质是NBSSRM951硼酸,绝对丰度值11B/10B=4.04362±0.00137(Catanzaro,1970)。不同实验室采用不同的测定方法的测定值却有较大范围的变化(3.987~4.05595)。
图87.22 NO-3和甘露醇同时存在时11B/10B测定比值随时间的变化
Cs2B4O7方法,特别是Cs2B4O7-石墨方法现已成为硼同位素质谱法测定的主流,在同位素地球化学、环境等研究领域获得广泛应用。表87.23总结了世界各实验室采用Cs2B4O7方法测定的SRM951硼同位素标准的11B/10B比值和测定精度。
表87.23 采用Cs2B4O7方法测得SRM951硼同位素标准的11B/10B比值
参考文献
王刚,肖应凯,王蕴慧,等 .2000.岩石中硼的提取分离及同位素组成的测定 .岩矿测试,19(3) : 169-172
张崇耿,肖应凯,魏海珍,等 .2003.珊瑚中硼的分离及其同位素组成的测定 .理化检验 (化学分册) ,39 (11) : 652-654
肖应凯 .2003.石墨的热离子发射特性及其应用 .北京: 科学出版社
肖应凯,刘卫国,肖云,等 .1997.硼特效树脂离子交换法分离硼的研究 .盐湖研究,5 (2) : 1 -6
Aggarwal J K,Palmer M R.1995.Boron isotope analysis: a review.Analyst,120: 1301-1307
Catanzaro E J,Champion C E,Garner E L,et al.1970.Standard reference materials: boron acid; isotoic and assay standard reference materials.natl.Bur.Stand.(U S) Spec.Publ.,260-17
Coplen T B,Blke J K,Bièvre P De,et al.2002.Isotope-aboundance variations of selected elements.Pure Appl.Chem.,74 (10) : 1987-2017
Deyhle A.2001.Improvements of boron isotope analysis by positive thermal ionization mass spectrometry using static multicollection of Cs2BO+2ions.Int.J.Mass Spectrom,206: 79-89
Gaillardet J, Allègre C J.1995.Boron isotopic compositions of coral: seawater or diagenesis record? Earth Plan.Sci.Lett.,136: 665-676
Ishikawa T,Nakamura E.1990.Suppression of boron volatilization from a hydrofluoric acid solution using a boron- mannitol complex.Anal.Chem.,62: 2612-2616
Ishikawa T,Nakamura E.1993.Boron isotope systematics of marine sediments.Earth and Planet Sci.Lett.,117:567-580
Jiang S Y.2001.Boron isotope geochemistry of hydrothermal ore deposits in China: A preliminary study.Phys Chem.Earth (A) ,26 (9-10) : 851-858
Leeman W P,Vocke B D,Beary E S,et al.1991.Precise boron isotopic analysis of aqueous samples: ion exchange extraction and mass spectrometry.Geochim Cosmochim Acta,35: 3901-3907
Nakamura E,Ishikawa T,Brick J L,et al.1994.Precise boron isotopic analysis of natural rock samples using a boron-mannitol complex.Chem Geol,94: 193-204
Nakano T,Nakamura E.1998.Sataic multicollection of Cs2BO+2ions for precise boron isotope analysis with positive thermal ionization mass spectrometry.Int.J.Mass Spectrom,176: 13-21
Palmer G.H.1958.Thermal emission ion source in solid-source mass spectrometry.J.Nucl.Energy,7: 1-12
Ramakumar K L, Parab A R, Khodade P S, et al.1985.Determination of isotopic composition of boron.J.Radioanal Nucl.Chem.Lett.,94: 53-62
Spivack A J,Edmond J M.1986.Determination of boron isotope ratios by thermal ionization mass spectrometry of the dicesium metaborate cation.Anal Chem,58: 31-35
Swihart G H,McBay E H,Smith D H,et al.1996.A boron isotopic study of a mineralogically zoned lacustrine borate deposit: the Kramer deposit,California,USA.Chem Geol,127: 241-250
Tonarini S,Pennisi M,Leeman W P.1997.Precise boron isotopic analysis of complex silicate (rock) samplesusing alkali carbonate fusion and ion-exchange separation.Chem Geol,142: 129-137
Wang Q Z,Xiao Y K,Wang Y H,et al.2002.Boron separation by the two-step ion-exchange for the isotopic measurement of boron.Chin J.Chem,20: 45-50
Wei H Z,Xiao Y K,Sun A D,et al.2004.Effective elimination of isobaric ions interference and precise thermal ionization mass spectrometer analysis for boron isotope.Int.J.Mass Spectrom,235,187-195
Xiao Y K,Beary E S,Fassett J D.1988.An improved method for the high-precision measurement of boron by thermal ionization mass spectometry.Int.J.Mass Spectrom Ion Proc.,85: 203-213
Xiao Y K,Liao B Y,Liu W G,et al.2003.Ion exchange extraction of boron from aqueous fluids by Amberlite IRA 743 resin.Chin.J.of Chem,21: 1073-1079
Xiao Y K,Wang L.1998.Effect of NO-3on the isotopic measurement of boron.Int.J.Mass Spectrom Ion Proc.,178: 213-220
Zhai M Z,Nakamura E,Shaw D M,et al.1996.Boron isotope ratios in meteorites and lunar racks.Geochim et Cosmochim Acta,60: 4877-4881
本节编写人: 肖应凯 (中国科学院青海盐湖研究所) 。
Ⅶ 如何除去硼酸溶液中的氯离子
如果用离抄子交换树脂 可以用凝袭胶型离子交换树脂或阴离子交换膜(也会除去其它阴离子)
但是强酸性阴离子树脂最好 可以吸附Cl- 不过会放出其它阴离子(如果用强碱交换就没关系)
总之难以两全 (还不如加固态硝酸银沉淀 再过滤 或是电解法)
Ⅷ 离子交换树脂作为药物载体应具备哪些优点
1、高效离子交换色谱 应用离子交换的原理,采用低交换容量的离子交换树脂来分离离子,这在离子色谱中应用最广泛,其主要填料类型为有机离子交换树脂,以苯乙烯二乙烯苯共聚体为骨架,在苯环上引入磺酸基,形成强酸型阳离子交换树脂,引入叔胺基而成季胺型强碱性阴离子交换树脂,此交换树脂具有大孔或薄壳型或多孔表面层型的物理结构,以便于快速达到交换平衡,离子交换树脂耐酸碱可在任何pH范围内使用,易再生处理、使用寿命长,缺点是机械强度差、易溶胀易、受有机物污染。 硅质键合离子交换剂以硅胶为载体,将有离子交换基的有机硅烷与基表面的硅醇基反应,形成化学键合型离子交换剂,其特点是柱效高、交换平衡快、机械强度高,缺点是不耐酸碱、只宜在pH28范围内使用。离子交换色谱是最常用的离子色谱。 2、离子排斥色谱 它主要根据Donnon膜排斥效应,电离组分受排斥不被保留,而弱酸则有一定保留的原理,制成离子排斥色谱主要用于分离有机酸以及无机含氧酸根,如硼酸根碳酸根和硫酸根有机酸等。它主要采用高交换容量的磺化H型阳离子交换树脂为填料以稀盐酸为淋洗液。3、离子对色谱 离子对色谱的固定相为疏水型的中性填料,可用苯乙烯二乙烯苯树脂或十八烷基硅胶(ODS),也有用C8硅胶或CN,固定相流动相由含有所谓对离子试剂和含适量有机溶剂的水溶液组成,对离子是指其电荷与待测离子相反,并能与之生成疏水性离子,对化合物的表面活性剂离子,用于阴离子分离的对离子是烷基胺类如氢氧化四丁基铵氢氧化十六烷基三甲烷等,用于阳离子分离的对离子是烷基磺酸类,如己烷磺酸钠,庚烷磺酸钠等对离子的非极性端亲脂极性端亲水,其CH2键越长则离子对化合物在固定相的保留越强,在极性流动相中,往往加入一些有机溶剂,以加快淋洗速度,此法主要用于疏水性阴离子以及金属络合物的分离,至于其分离机理则有3种不同的假说,反相离子对分配离子交换以及离子相互作用。 二、离子色谱系统IC系统的构成与HPLC相同,仪器由流动相传送部分、分离柱、检测器和数据处理4个部分组成,在需要抑制背景电导的情况下通常还配有MSM或类似抑制器。其主要不同之处是IC的流动相要求耐酸碱腐蚀以及在可与水互溶的有机溶剂(如乙腈、甲醇和丙酮等)中不溶胀的系统。因此,凡是流动相通过的管道、阀门、泵、柱子及接头等均不宜用不锈钢材料,而是用耐酸碱腐蚀的PEEK材料的全塑IC系统。离子色谱的最重要的部件是分离柱。柱管材料应是惰性的,一般均在室温下使用。高效柱和特殊性能分离柱的研制成功,是离子色谱迅速发展的关键。
Ⅸ 当用氟硼酸根液体离子交换薄膜电极测量10的负5次幂摩尔每升的氟硼酸根离子时,
问题说全有点吧,电化学传感器我可以给你答案
Ⅹ 离子交换层析和亲和层析都可以用来分离所有的蛋白质吗哪种的效果更好
这个你问的太笼统了,方法没有最好的,只有最合适的
蛋白的分离纯化无非是内利用目标蛋白和容别的蛋白不同进行分离,这包括分子量大小,电荷,极性等特性的不同,此外包括别的特性,特别是酶例如酶需要辅酶象苹果酸 脱氢酶,或者底物,酶抑制剂,金属离子等,那相对应的纯化方法有凝胶过滤,离子交换,疏水层析,后面的可以分别把底物,酶抑制剂,金属离子偶联或鳌合到介质上做亲和介质,而象果酸脱氢酶也可以用染料亲和的办法,因为染料的结构和NAD类似。糖蛋白可以用凝集素亲和或者苯硼酸琼脂糖亲和分离等方法,总之要尽 量多知道目标蛋白的特性和了解各种分离的手段,就很容易找到最有效的分离纯化的方法。