超滤设备的工作原理
『壹』 超滤膜设备的工艺流程是什么样的
1、矿泉水超滤来膜系统
在膜法自分离技术中膜的微孔径在20×10-10m~1000×10-10m之间的过滤膜称为超滤膜,即0.002-0.1μm之间,而一般胶体体积均≥0.1μm,乳胶≥0.5μm,大肠菌、葡萄球菌等细菌体积≥0.2μm,悬浮物、微粒子等体积≥5μm,因此超滤膜可以过滤出溶液中的细菌、胶体、悬浮物、蛋白质等大分子物质。
2、工艺流程图
适用于饮用矿泉水、山泉水、工业用超滤水,也可用于纯净水设备的前置预处理。
3、矿泉水超滤设备用途
超滤通常用于制取矿泉水、山泉水,是以压力为推动力,利用超滤膜不同孔径分离液体中的杂质的过程。目前在水处理行业中,聚砜和聚丙烯中空纤维式是组件应用最多。
转载:网页链接
上文仅供参考,不作学术性问答。
『贰』 超滤设备的工作原理
通常正常的膜芯,过同种滤液,通量是和流速以及膜芯内外压差直接挂钩的。版流速越快,压力越权大,过滤速度也越快。
所以呢,进口压力大一点,回流压力小一点会过滤的更快,但是如果滤液比较粘稠,那么回流压力最好也大一点。还有压力大了容易堵膜,不要调过头。
『叁』 超滤设备的工艺流程
超滤是利用多孔材料的拦截能力,以物理截留的方式去除水中一定大小的杂质颗粒。在压力驱内动下容,溶液中水、有机低分子、无机离子等尺寸小的物质可通过纤维壁上的微孔到达膜的另一侧,溶液中菌体、胶体、颗粒物、有机大分子等大尺寸物质则不能透过纤维壁而被截留,从而达到筛分溶液中不同组分的目的。该过程为常温操作,无相态变化,不产生二次污染。
工艺流程:原水→原水泵→机械过流器→活性疾过滤器→离子交换→用户用水→存水箱→超滤过滤主机→保安过滤器
『肆』 超滤膜的超滤设备
超滤概念
超滤设备公司生产超滤膜净水设备,超滤膜设备被大量用于水处理净水设备工程;超滤膜设备技术在反渗透预处理,饮用水处理,中水回用,酒类和饮料的除菌与除浊,药品的除热原以及食品及制药物浓缩等领域发挥着越来越重要的作用。
超滤过滤孔径和截留分子量的范围一直以来定义较为模糊,一般认为超滤膜的过滤孔径为0.001-0.1微米,截留分子量(Molecular weigh cut-off, MWCO)为1,000-1,000,000 Dalton。严格意义上来说超滤膜的过滤孔径为0.001-0.01微米,截留分子量为1,000-300,000 Dalton。若过滤孔径大于0.01微米,或截留分子量大于300,000 Dalton的微孔膜就应该定义为微滤膜或精滤膜。
一般用于水处理的超滤膜标称截留分子量为30,000-300,000 Dalton,而截留分子量为6,000-30,000 Dalton 的超滤膜大多用于物料的分离、浓缩、除菌和除热源等领域。
『伍』 超滤-超滤设备是怎么运行的
超滤(UF)是一种能将溶液进行净化和分离的膜分离技术。超滤膜系统是以超滤膜丝为过滤介质,版膜两侧的压力差权为驱动力的溶液分离装置。超滤膜只允许溶液中的溶剂(如水分子)、无机盐及小分子有机物透过,而将溶液中的悬浮物、胶体、蛋白质和微生物等大分子物质截留,从而达到净化或分离的目的。超滤是动态过滤过程,被截留物质可随浓缩液排除不致堵塞膜表面,可长期连续运行。超滤膜按结构型式分为板框式(板式)、中空纤维式、纳米膜表超滤膜、管式、卷式等多种结构。
原水-原水加压泵-多介质过滤器-活性炭过滤器-软水器-精密过滤器-一级反渗透机-脱气膜-中间水箱-中间水泵-EDI系统-纯化水箱-纯水泵-紫外线杀菌器-微孔过滤器-巴氏消毒-用水点。
『陆』 纳滤设备的工作原理
纳滤工作原理
膜分离是利用膜对混合物中各组分的选择渗透作用性能的差异,以外界能量或化版学位差为推动权力对双组分或多组分混合的气体或液体进行分离、分级、提纯和富集的方法。膜孔径处于纳米级,适宜于分离分子量在100~1000,分子尺寸约为1 nm的溶解组分的膜工艺被称为纳滤(NF)。NF膜分离需要的跨膜压差一般为0.5~2.0 MPa,比用反渗透膜达到同样的渗透能量所必需施加的压差低0.5~3 MPa。根据操作压力和分离界限,可以定性地将NF排在反渗透和超滤之间,有时也把NF称为"低压反渗透"或"疏松反渗透"。20世纪70年代J. E. Cadotte 研究NS-300膜,即为研究NF膜的开始。当时,以色列脱盐公司用" 混合过滤"来表示介于反渗透与超滤之间的膜分离过程,后来美国的公司把这种膜技术称为纳滤,一直沿用至今。之后,NF发展得很快,膜组件于80 年代中期商品化。目前,NF已成为世界膜分离领域研究的热点之一。
『柒』 超滤设备的超滤设备用途
rightleder◆莱特.莱德 矿泉水:在矿泉水制造中,应用超滤技术,在工程设计中,专将根据矿泉水的水源水质分属析报告,针对性地选择膜的孔径和膜的类型,设计超滤设计。◆食品:乳制品、果汁、酒、调味品等食品的生产中逐步采用超滤技术,如牛奶或乳清中蛋白和低分子量的乳糖与水的分离,果汁澄清和去菌消毒,酒中有色蛋白、多糖及其它胶体杂质的去除等,酱油、醋中细菌的脱除,较传统方法显示出经济、可靠、保证质量等优点。◆医药:在医药和生物化工生产中,常需要对热敏性物质进行分离提纯,超滤技术对此显示其突出的优点。用超滤来分离浓缩生物活性物(如酶、病毒、核酸、特殊蛋白等)是相当合适的从动、植物中提取的药物(如生物碱、荷尔蒙等),其提取液中常有大分子或固体物质,很多情况下可以用超滤来分离,使产品质量得到提高。◆纯水、超纯水:工业用水的初级纯化,纯水超纯水制备RO预处理,纯水、超纯水终端处理。◆环保:工业废水深度处理,城市中水回用系统,电泳漆、油品的回收。◆发酵:生化发酵液分离与精制、酶的浓缩与精制、糖及木糖醇澄清过滤。
『捌』 超滤设备的优点有哪些
过滤过程是在常温下进行,条件温和无成分破坏,因而特别适宜对热敏感的物质,回如药物、酶、果汁答等的分离、分级、浓缩与富集。
2. 过滤过程不发生相变化,无需加热,能耗低,无需添加化学试剂,无污染,是一种节能环保的分离技术。
3. 超滤技术分离效率高,对稀溶液中的微量成分的回收、低浓度溶液的浓缩均非常有效。
4. 超滤过程仅采用压力作为膜分离的动力,因此分离装置简单、流程短、操作简便、易于控制和维护。
超滤设备的应用范围:
主要包括食品工业、饮料工业、乳品工业、生物发酵、生物医药、医药化工、生物制剂、中药制剂、临床医学、印染废水、食品工业废水处理、资源回收以及环境工程、污水、废水的回收利用、地表水处理、生活饮用水处理、用来进行海水淡化等等。
『玖』 纳滤设备的工作原理
纳滤(NF)膜的研制与应用较反渗透膜大约晚20年。20世纪70年代Cadotte研究NS-300膜,即为研究NF膜的开始。当时,以色列脱盐公司用“混合过滤”(hybrid
filtration)来表示介于反渗透与超滤之间的膜分离过程,称为松散反渗透(loose
RO)膜。后来美国的Filmtec公司把这种膜技术称为纳滤,一直沿用至今。之后,纳滤技术发展得很快,膜组件于80年代中期商品化。目前,纳滤技术已成为世界膜分离领域研究的热点之一。
(1)
纳滤膜定义
到目前为止,对纳滤膜的准确定义、机制、特征等的认识还远远不充分。学术界比较统一的解释纳滤膜的定义包括以下七个方面:
①
纳滤膜介于反渗透和超滤膜之间,其膜表面分离皮层可能具有纳米级微孔结构。
②
相对于反渗透膜NaCI的脱除率均在95%以上,一般将NaCI脱除率为90%以下的膜均可称之为纳滤膜。
③
反渗透膜几乎对所有溶质都有很高的脱除率,而纳滤膜只对特定的溶质具有脱除率。
④
纳滤膜孔径在1nm以上,一般1~2nm。
⑤
主要去除一个纳米左右的溶质粒子,截留分子量在200~1000道尔顿。
⑥
反渗透膜几乎均为聚酰胺材质,而纳滤膜材料可采用多种材质,如醋酸纤维素、醋酸-三醋酸纤维素、磺化聚砜、磺化聚醚砜、芳香聚酰胺复合材料和无机材料等。
⑦
一般纳滤膜的表面形成高聚物电解质因而常常有较强的负电荷性。
(2)
纳滤原理
与超滤及反渗透等膜分离过程一样,纳滤也是以压力差为推动力的膜分离过程,是一个不可逆过程。其分离机制可以运用电荷模型(空间电荷模型和固定电荷模型)、细孔模型以及近年来才提出的静电排斥和立体阻碍模型等来描述。与其他膜分离过程比较,纳滤的一个优点是能截留透过超滤膜的小分子量的有机物,又能透析反渗透膜所截留的部分无机盐——也就是能使“浓缩”与脱盐同步进行。
『拾』 为什么超滤设备运行过程不稳定
一、超滤透过通量
超滤在操作压力为0.1—0.6MPa、温度为60℃以下时,其透过通量应在100—500L/(m2.h)为宜,实际中比它要小得多,一般为1—100L/(m2.h)。当超滤透过浓差通量低于1L/(m2.h)时,过程缺乏经济效益,其原因是浓差极化在膜面上形成的边界层(或凝胶层),使流体阻力增加,因此必须相应采取一些措施来解决。
1、料液流速
提高料液流速对防止浓差极化、提高设备处理能力有利。但增大压力使工艺过程耗能增加,结果导致费用增大。一般湍流体系中流速为1—3m/s。
在螺旋式组件体系中,常在层流区操作,可在液流通道上设湍流促进材料,或采用振动的膜支撑物,在流道上产生压力波等方法,以改善流动状态,控制浓差极化,从而保证超滤组件的正常运行。
2、操作压力
超滤膜透过通量与操作压力的关系决定于膜和边界层的性质。在实际超滤过程中往往后者控制着超滤透过同量。在用渗透压模型时,膜透过通量与压力成正比,而用凝胶化模型时,膜透过通量与压力无关。此时的透过通量称为临界透过通量。实际中超滤操作应在临界透过通量附近进行,此时操作压力约为0.5—0.6MPa,除了克服透过膜的阻力外,还要克服通过膜表面的流体压力损失。
3、温度
操作温度主要决定与所处理料液的化学、物理性质和生物稳定性,应在膜设备和处理物质允许的最高温度下进行操作,因为高温可以减少料液的黏度,从而增加传质效率,提高透过通量。温度与扩散系数的关系,可以用下式表示:
μD/T=常数
由上式可见,温度T愈高,黏度μ变小,而扩散系数D则变大。例如,酶最高温度为25℃,电涂料为30℃,蛋白质为55℃,制奶工业为50—55℃,纺织工业脱浆废水中回收PVA时为85℃。
4、操作时间
随着超滤过程的进行,浓度极化在膜表面上形成了浓缩的凝胶层,使超滤透过通量下降。其透过通量随时间的衰减情况,与膜组件的水力特性、料液的性质和膜的特性有关。当超滤运行一段时间后,就需要进行清洗,这段时间称为一个运行周期,当然运行周期的变化还与清洗情况有关。
5、进料浓度
随着超滤过程的进行,料液(主体液流)的浓度在增高,此时黏度变小,边界层厚度扩大,这对超滤来说无论从技术上还是经济上都是不利的,因此对超滤过程主体液流的浓度应有一个限制,既最高允许浓度。
6、料液的预处理
为了提高膜的透过通量,保证超滤膜的正常稳定运行,在超滤前需对料液进行预处理,虽然超滤的预处理过程不像反渗透过程那么严格,但这种预处理也是保证实现超滤过程正常运行的关键,通常采用的预处理方法有:
(1)过滤;
(2)化学絮凝;
(3)PH调节;
(4)消毒;
(5)活性炭吸附;
上述预处理方法可以根据料液的性质和需要进行选用。
此外,经超滤回收的水,在使用前还需进行再处理(称为后处理,如电子工业用水)如脱除CO2、PH调节、过滤、消毒等。