sp阳离子交换纯化步骤
① 离子交换层析中流出物质顺序是什么
若用离子交换层析分离物质,以蛋白质为例,离子交换层析中,基质是由带有电荷的树脂或纤维素组成。带有正电荷的称之阴离子交换树脂;而带有负电荷的称之阳离子树脂。离子交换层析同样可以用于蛋白质的分离纯化。
由于蛋白质也有等电点,当蛋白质处于不同的pH条件下,其带电状况也不同。阴离子交换基质结合带有负电荷的蛋白质,所以这类蛋白质被留在柱子上,然后通过提高洗脱液中的盐浓度等措施,将吸附在柱子上的蛋白质洗脱下来。结合较弱的蛋白质首先被洗脱下来。
反之阳离子交换基质结合带有正电荷的蛋白质,结合的蛋白可以通过逐步增加洗脱液中的盐浓度或是提高洗脱液的pH值洗脱下来。
(1)sp阳离子交换纯化步骤扩展阅读:
对于离子交换纤维素要用流水洗去少量碎的不易沉淀的颗粒,以保证有较好的均匀度,对于已溶胀好的产品则不必经这一步骤。
溶胀的交换剂使用前要用稀酸或稀碱处理,使之成为带H+或OH-的交换剂型。阴离子交换剂常用“碱-酸-碱”处理,使最终转为-OH-型或盐型交换剂;对于阳离子交换剂则用“酸-碱-酸”处理,使最终转为-H-型交换剂。
梯度不要上升太快,要恰好使移动的区带在快到柱末端时达到解吸状态。目的物的过早解吸,会引起区带扩散;而目的物的过晚解吸会使峰形过宽。
② 单克隆抗体的纯化技术操作步骤
从培养液或腹腔积液获得的单克隆抗体,不需要纯化即可应用于日常诊断或定性研究。如果用于免疫标记测定,须分离和纯化。可用半饱和、饱和硫酸铵进行沉淀,进行初步浓缩和纯化;可用亲和层析法进一步纯化。
一、腹水型单抗的纯化
在单抗纯化之前,一般均需对腹水进行预处理,目的是为了进一步除去细胞及其残渣、小颗粒物质、以及脂肪滴等。常用的方法有二氧化硅吸附法和过滤离心法,以前者处理效果为佳,而且操作简便。
1、二氧化硅吸附法
新鲜采集的腹水(或冻存的腹水),2000r/min 15分钟,除去细胞成分(或冻存过程中形成的固体物质)等;取上层清亮的腹水,等量加入PH7.2巴比妥缓冲盐水(VBS;0.004mol/L巴比妥,0.15mol/L NaCl,0.8mmol/L Mg2+,0.3mmol/L Ca2+)稀释;然后以每10ml稀释腹水中加150mg二氧化硅粉末,混匀,悬液在室温孵育30分钟,不时摇动;2000g离心20分钟,脂质等通过该法除去,即可得澄清的腹水。
2、过滤离心法
用微孔滤膜过滤腹水,以除去较大的凝块及脂肪滴;用10000g 15分钟高速离心(4℃)除去细胞残渣及小颗粒物质。
3、混合法
即上述两法的组合,先将腹水高速离心,取上清液再用二氧化硅吸附处理。
二、单抗的粗提
1、硫酸铵沉淀法
(1)饱和硫酸铵溶液的配制
500g硫酸铵加入500ml蒸馏水中,加热至完全溶解,室温过夜,析出的结晶任其留在瓶中。临用前取所需的量,用2mol/L NaOH调PH至7.8。
(2)盐析
吸取10ml处理好的腹水移入小烧杯中,在搅拌下,滴加饱和硫酸铵溶液5.0ml;继续缓慢搅拌30分钟;10000r/min离心15分钟;弃去上清液,沉淀物用1/3饱和度硫酸铵悬浮,搅拌作用30分钟,同法离心;重复前一步1-2次;沉淀物溶于1.5ml PBS(0.01mol/L PH7.2)或Tris-HCl缓冲液中。
(3)脱盐
常用柱层析或透析法。柱层析法是将盐析样品过Sephadex G-50层析柱,以PBS或Tris-HCl缓冲液作为平衡液和洗脱液,流速每分钟1ml。第一个蛋白峰即为脱盐的抗体溶液。透析法是将透析袋于2% NaHCO3,1mmol/L EDTA溶液中煮10分钟,用蒸馏水清洗透析袋内外表面,再用蒸馏水煮透析袋10分钟,冷至室温即可使用(并可于0.2mol/L EDTA溶液中,4℃保存备用)。将盐析样品装入透析袋中,对50-100倍体积的PBS或Tris-HCl缓冲液透析(4℃)12-24小时,其间更换5次透析液,用萘氏试剂(碘化汞11.5g,碘化钾8g,加蒸馏水50ml,待溶解后,再加20% NaOH 50ml)检测,直至透析外液无黄色物形成为止。
(4)蛋白质含量的测定
(Pr)(mg/ml)=(1.45×OD280-0.74×OD260)×稀释倍数;或(Pr)=OD280×稀释倍数/1.3
(5)分装冻存备用
2、辛酸-硫酸铵沉淀法
该法简单易行,适合于提纯IgG1和IgG2b,但对IgG3和IgA的回收率及纯化效果差。其主要步骤如下:取1份预处理过的腹水加2份0.06mol/L PH5.0醋酸缓冲液,用1mol/L HCl调PH至4.8;按每毫升稀释腹水加11ul辛酸的比例,室温搅拌下逐滴加入辛酸,于30分钟内加完,4℃静置2小时,取出15000g离心30分钟,弃沉淀;上清经尼龙筛过滤(125um),加入1/10体积的0.01mol/L PBS,用1mol/L NaOH调PH至7.2;在4℃下加入饱和硫酸铵至45%饱和度,作用30分钟,静置1小时;10000g离心30分钟,弃上清;沉淀溶于适量PBS(含137mmol/L NaCl,2.6mol/L KCl,0.2mmol/L EDTA)中,对50-100倍体积的PBS透析,4℃过夜,其间换水3次以上;取出10000g离心30分钟,除去不溶性沉渣,测定蛋白质含量后,分装,冻存备用。
3、优球蛋白沉淀法
该法适用于IgG3和IgM型单抗的提取,所获制品的抗体活性几乎保持不变,对IgG3单抗的回收率高于90%,对IgM单抗的回收率为40-90%不等。其操作步骤如下:取一定量的预处理过的腹水,先后加入NaCl和CaCl2,使各自的浓度分别达0.2mol/L和25mmol/L,随之可见纤维蛋白的产生;经滤纸过滤后,滤液对100倍体积的去离子水透析,4℃ 8-15小时(若是IgG3单抗,也可室温2小时),其间换水1-2次;取出后22000g离心30分钟,弃上清;将沉淀溶于PH8.0 1mol/L NaCl,0.1mol/L Tris-HCl溶液中,重复上述的透析与离心;将沉淀的优球蛋白浓度调至5-10mg/ml,分装冻存备用。
三、单抗纯化的方法
单抗纯化的方法有很多种,应根据具体单抗的特性和实验条件选择适宜的方法,常用的技术有DEAE离子交换层析柱、凝胶过滤法和亲和层析法三种。
1、离子交换层析:
分离蛋白质是根据在一定pH 条件下,蛋白质所带电荷不同而进行的分离方法。常用于蛋白质分离的离子交换剂有弱酸型的羧甲基纤维素(CM纤维素) 和弱碱型的二乙基氨基乙基纤维素(DEAE纤维素)。前者为阳离子交换剂,后者为阴离子交换剂。
离子交换层析中,基质是由带有电荷的树脂或纤维素组成。带有正电荷的称之阴离子交换树脂;而带有负电荷的称之阳离子树脂。离子交换层析同样可以用于蛋白质的分离纯化。由于蛋白质也有等电点,当蛋白质处于不同的pH条件下,其带电状况也不同。阴离子交换基质结合带有负电荷的蛋白质,所以这类蛋白质被留在柱子上,然后通过提高洗脱液中的盐浓度等措施,将吸附在柱子上的蛋白质洗脱下来。结合较弱的蛋白质首先被洗脱下来。反之阳离子交换基质结合带有正电荷的蛋白质,结合的蛋白可以通过逐步增加洗脱液中的盐浓度或是提高洗脱液的pH值洗脱下来
2、凝胶过滤法:
一定型号的凝胶网孔大小一定,只允许相应大小的分子进入凝胶颗粒内部,大分子则被排阻在外。洗脱时,大分子随洗脱液从颗粒间隙流下来,洗脱液体积小,小分子则在颗粒网状结构中穿来穿去,历程长,后洗脱下来,洗脱体积大。
缺点:从凝胶过滤的原理可知,蛋白质分子通过凝胶柱的速度(即洗脱体积的大小)并不直接取决于分子的质量,而是它的斯笃克半径,利用凝胶过滤法测定蛋白质分子量时,标准蛋白质(已知分子量和斯笃克半径)和待测蛋白质必须具有相同的分子形状(接近球体),否则不能得到比较准确的分子量。分子形状为线形的或与凝胶能发生吸附作用的蛋白质,则不能用此方法测定分子量。而且柱子成本比较高,整个实验过程耗时很长。
3、免疫亲和层析法:
是利用生物体内存在的抗原、抗体之间高度特异性的亲和力进行分离的方法。亲和层析的应用主要是生物大分子的分离、纯化。利用抗原、抗体之间高特异的亲和力而进行分离的方法又称为免疫亲和层析。例如将抗原结合于亲和层析基质上,就可以从血清中分离其对应的抗体。在蛋白质工程菌发酵液中所需蛋白质的浓度通常较低。
用离子交换、凝胶过滤等方法都难于进行分离,而亲和层析法则是一种非常有效的方法。将所需蛋白质作为抗原,经动物免疫后制备抗体,将抗体与适当基质偶联形成亲和吸附剂,就可以对发酵液中的所需蛋白质进行分离纯化。
③ 某种蛋白质,其等电点为6.4,利用其电离性质,可采用哪些方法将其分离纯化
蛋白质等电点为抄6.4
利用其电离性质,一般采用的就是离子交换层析。
当环境pH大于6.4时(比6.4高1到1.5个单位),理论上此时该蛋白质可以结合阴离子交换层析,比如Q或者DEAE。
当环境pH小于6.4时(比6.4低1到1.5个单位),理论上此时该蛋白质可以结合阳离子交换层析,比如SP或者CM。
可以通过阴阳离子交换层析组合使用分离纯化出该蛋白
需注意结合离子交换层析都是理论情况,因为实际结构的问题可能会和理论值有偏差,要通过具体实验结果分析。
④ 离子交换过程的5个步骤
离子交换过程归纳为如下几个过程1.水中离子在水溶液中向树脂表面扩散.水中离子进入树脂颗粒的交联网孔,并进行扩散3.水中离子与树脂交换基团接触,发生复分解反应,进行离子交换4.被交换下来的离子,在树脂的交联网孔内向树脂表面扩散5.被交换下来的离子,向水溶液中扩散影响交换的主要因素有流速、原料液浓度、温度等。流速原料液的流速实际上反映了达到反应平衡的时间,在交换过程中,离子进行扩散—交换—扩散一系列步骤,有效地控制流速很重要。一般,交换液流速大,离子的透析量就高,未来及交换而通过树脂层流失的量增多。因此,应根据交换容量等选择适宜的流速。原料液浓度树脂中可交换的离子与溶液中同性离子既有可能进行交换,也有可能相斥,液相离子浓度高,树脂接触机会多,较易进入树脂网孔内,液相浓度低,树脂交换容量大时,则相反。但液相离子浓度过高,将引起树脂表面及内部交联网孔收缩,也会影响离子进入网孔。实验证明,在流速一定时,溶液浓度越高,溶质的流失量液越大。温度温度越提高,离子的热运动越剧烈。单位时间碰撞次数增加,可加快反应速率。但温度太高,离子的吸附强度会降低,甚至还会影响树脂的热稳定性,经济上不利,实际生产中采用室温操作较宜。
赞同0
暂无评论
⑤ 离子交换法的运行操作过程有哪些步骤
离子交换法是以圆球形树脂(离子交换树脂)过滤原水,水中的离子会与固定在树脂上的离子交换专。常见的两属种离子交换方法分别是硬水软化和去离子法。硬水软化主要是用在反渗透(RO)处理之前,先将水质硬度降低的一种前处理程序。软化机里面的球状树脂,以两个钠离子交换一个钙离子或镁离子的方式来软化水质。
离子交换树脂利用氢离子交换阳离子,而以氢氧根离子交换阴离子;以包含磺酸根的苯乙烯和二乙烯苯制成的阳离子交换树脂会以氢离子交换碰到的各种阳离子(例如Na+、Ca2+、Al3+)。同样的,以包含季铵盐的苯乙烯制成的阴离子交换树脂会以氢氧根离子交换碰到的各种阴离子(如Cl-)。从阳离子交换树脂释出的氢离子与从阴离子交换树脂释出的氢氧根离子相结合后生成纯水。
阴阳离子交换树脂可被分别包装在不同的离子交换床中,分成所谓的阴离子交换床和阳离子交换床。也可以将阳离子交换树脂与阴离子交换树脂混在一起,置于同一个离子交换床中。不论是哪一种形式,当树脂与水中带电荷的杂质交换完树脂上的氢离子及(或)氢氧根离子,就必须进行“再生”。再生的程序恰与纯化的程序相反,利用氢离子及氢氧根离子进行再生,交换附着在离子交换树脂上的杂质。
⑥ 常用的离子交换法包含哪些步骤
离子交换水。一般指用离子交换法制备的水。将水通过阳离子交换树脂(常用的为苯乙烯型强酸性阳离子交换树脂),则水中的阳离子被树脂所吸收,树脂上的阳离子H+被置换到水中,并和水中的阴离子组成相应的无机酸;含此种无机酸的水再通过阴离子交换
⑦ 强酸性阳离子交换树脂的预处理详细步骤求助
强酸性阳离子交换树脂的预处理详细步骤求助
输入你树脂的牌号
这个一般网上都会有详细处理方法的
最好还是和购买的厂家联系,要他们的技术支持提供处理方法
⑧ 简述采用离子交换法制备纯化水的过程
离子交换设备介绍
离子交换设备是一种传统的、工艺成熟的脱盐处理设备,其原理是在一定条件下,依靠离子交换剂(树脂)所具有的某种离子和预处理水中同电性的离子相互交换而达到软化、除碱、除盐等功能。用于深度脱盐处理,产水电阻率动态可达到18MΩ·cm。
离子交换的基本原理:
采用离子交换方法,可以把水中阳、阴离子去除。以氯化钠(NaCl)代表水中无机盐类,水质除盐的基本反应式:
1.阳离子交换柱:R-H+Na+=R–Na+H+
2.阴离子交换柱:R–OH+Cl-=R–Cl-+OH-
阳、阴离子交换柱串联以后称为复合床,其总的反应式:
R-H+R-OH+NaCl=R-Na+R-Cl+H2O
由此得出,水中的NaCl已分别被树脂上的H+和OH-所取代,而反应生成物为H2O,故达到了去除水中盐的作用。
离子交换设备工艺
1、预处理-反渗透-水箱-阳床-阴床-混合床-纯化水箱-纯水泵-紫外线杀菌器-精制混床-精密过滤器-用水对象
2、预处理-一级反渗透-加药机(PH调节)-中间水箱-二级反渗透-纯化水箱-纯水泵-紫外线杀菌器-0.2或0.5μm精密过滤器-用水对象
3、预处理-反渗透-中间水箱-水泵-EDI装置-纯化水箱-纯水泵-紫外线杀菌器-0.2或0.5μm精密过滤器-用水对象
离子交换设备应用领域:
1)水处理-离子交换设备
2) 食品工业
3) 制药行业
4) 合成化学和石油化学工业
5) 环境保护
⑨ 阳离子交换量的试验步骤
取4只100 mL离心管,分别称出其重量(准确至0.0001 g,下同)。在其中2只加入1.0 g污灌区表层风干土壤样内品,其余2只加入1.0 g深层风干土壤样品,并作标记。向各管中加入20 mL氯化钡溶液,用玻棒搅拌4 min后,以3000r/min转速离心至下容层土样紧实为止。弃去上清液,再加20 mL氯化钡溶液,重复上述操作。
在各离心管内加20 mL蒸馏水,用玻棒搅拌1 min后,离心沉降,弃去上清液。称出离心管连同土样的重量。移取25.00 mL 0.1 mol/L硫酸溶液至各离心管中,搅拌10 min后,放置20 min,离心沉降,将上清液分别倒入4只试管中。再从各试管中分别移取10.00 mL上清液至4只100 mL锥形瓶中。同时,分别移取10.00 mL 0.1 mol/L硫酸溶液至另外2只锥形瓶中。在这6只锥形瓶中分别加入10 mL蒸馏水、1滴酚酞指示剂,用标准氢氧化钠滴定,溶液转为红色并数分钟不褪色为终点。
⑩ 离子交换的水处理步骤是什么
离子交换反应是可逆反应,这种反应是在固态的树脂和水溶液接触的界面间发生的。在水溶液中,连接在离子交换树脂骨架上的功能基能离解出可交换的离子B+,该离子在较大范围内可以自由移动并能扩散到溶液中。同时,溶液中的同类型离子A+也能扩散到整个树脂结构内部,这两种离子之间的浓度差推动着它们之间进行交换。其浓度差越大,交换速度就越快。离子交换树脂对不同的离子表现出了不同的交换亲和吸附性能,这种选择性与树脂本身所带有的功能基、骨架结构、交联度有关,也与溶液中离子的浓度、价数有关。一般情况下,离子价数越高,与树脂功能基的静电吸引力越大,亲和力越大;对同价离子而言,原子序数增加,树脂对其选择性也增加。由于阳离子交换剂可以与水中的阳离子进行交换,阳离子交换剂可以与水中的阴离子进行交换,因此,选用合适的交换剂便可去除水中所有的杂质离子,制得纯净的水。制备纯水用的阳离子交换树脂呈酸性,交换基因主要有磺酸基、羧基或酚基等,它们以H+与被处理水中的金属离子交换。阴离子交换树脂呈碱性,其交换基团主要有季胺基【-N(CH3)3OH】、伯胺基(-NH2)等碱性基因,它们在水中能以OH_与水中的阴离子进行交换反应。采用联合处理装置,使被处理水相继通过H+型阳离子交换剂和OH_型阴离子交换剂,与之进行交换,便可得到纯水。