当前位置:首页 » 净水方式 » 噪声词过滤算法

噪声词过滤算法

发布时间: 2021-01-31 05:50:39

1. 减少噪声的匹配滤波算法

(1)传统匹配滤波算法

Rickett et al.(2001)给出了匹配滤波简要的公式及算子长度设计标准,本节给出了更为详细的匹配 滤波公式,并给出推导公式基本条件和结果。

设同一地区不同时期Y1,Y2得到的地震数据分别为GY1(t),GY2(t),取Y1年份的地震记录为参

考地震道,使Y2年份相应的地震记录与之匹配。选取归一化算子p使得目标泛函:

海上时移地震油藏监测技术

极小。最终得到关于求解匹配滤波器{P(m),m=1,2,…,L}的L个方程的方程组:

海上时移地震油藏监测技术

为意义更明确,对上面的公式进一步简化,令

海上时移地震油藏监测技术

上两式中:RY2Y2(m-n)为时间延迟为m-n的时期Y2地震记录在设计窗口中的自相关;RY1Y2(n)为时间延迟为n的时期Y1与时期Y2地震记录在设计窗口中的互相关,于是方程(4.8)可以进一步写成:

海上时移地震油藏监测技术

求解方程组(4.11)得到匹配滤波器算子{P(m),m=1,2,…,L},用

海上时移地震油藏监测技术

校正相应的地震剖面。通过实际数据处理结果验证了上述推导的正确性和方法的有效性。

方程(4.11)写成矩阵形式:

海上时移地震油藏监测技术

式中:M为时期Y2地震记录在设计窗口中的自相关序列组成的Toeplitz矩阵,R为时期Y1与时期Y2地 震记录在设计窗口中的互相关序列向量。求解方程(4.13)可采用Levinson递推算法,计算效率高。

为了减少噪音的影响,通常引入阻尼项,方程(4.13)变为

海上时移地震油藏监测技术

式中:μ为很小的数,通常为可设为0.01或0.001。

实际应用中,可以发现式(4.13)受噪声的影响很大,不稳定。虽然加入阻尼项后结果有所改善,但 如何选取合适阻尼因子又是一个难题。为此推导新的匹配滤波表达形式,寻求更稳健的求解方法。

(2)新匹配滤波公式

同样设同一地区不同时期Y1,Y2得到的地震数据分别为GY1(t),GY2(t),取Y1年份的地震记录 为参考地震道,使Y2年份相应的地震记录与之匹配。则匹配过程可描述为

海上时移地震油藏监测技术

其中M为GY2组成的褶积矩阵。如果设地震道的采样点数为n,设计滤波器f长度为m,M则为(2×n-1)×m矩阵,为保持矩阵维数相同,一种方法是将GY1后面补零为(2×n-1)×1向量,另一种方法是取 矩阵M的前n×m项。如果采用第一种方法,可以验证得到的公式与(4.13)式相同。在此采用后一种方 法,得到新的匹配滤波方程。只要设计滤波器f足够长,总能满足能量差e(f)最小,根据范数定义:

海上时移地震油藏监测技术

求解能量差e(f)最小问题可转化为

海上时移地震油藏监测技术

即对滤波因子向量求导,最终可归结为求解线性方程:

海上时移地震油藏监测技术

如果记A=MTM,b=MTGY1,方程(4.18)转化为

海上时移地震油藏监测技术

(4.19)式形式上与(4.13)式类似,内容不同,不再是Toeplitz矩阵,因此不能应用Levinson递推算法求解。因此,引入奇异值分解方法求解方程(4.19)。

(3)基于奇异值分解的匹配滤波算法

矩阵的奇异值分解,是矩阵计算中一套很有用的技术。它可以有效地处理系数矩阵是奇异的或者接 近奇异的方程组。对于矩阵A,如果A∈Rm×n,并且A的秩为r,总有

海上时移地震油藏监测技术

其中, V为正交阵。 ,并且 为A 的奇异值。

公式(4.20)即为矩阵A的奇异值分解,根据正交矩阵的性质:

海上时移地震油藏监测技术

很容易表示出矩阵A的逆矩阵

海上时移地震油藏监测技术

将式(4.22)带入式(4.19)中,得到滤波因子的表达式为

海上时移地震油藏监测技术

实际计算中,当A是奇异阵出现奇异值,或A接近奇异或病态矩阵时,(4.23)式的计算过程就无法进行。这时可将出现的奇异项 (σk是零,或者数值很小)简单地替换成零或很小的常数,通过这种方法能得 到方程稳定的解。

对于实际含有噪声的信号,信号能量主要分布在奇异值大的分量上,因此去除小奇异值同时能消除 噪声影响。通常可选取某一能量百分比的奇异值作为去除的阈值,以这种方式既能克服A接近奇异或病 态矩阵的影响,又能减小噪声的影响,使滤波因子稳健。

(4)模拟数据验证

模拟得到一组存在时间、振幅、频率、相位差异的信号,作为基测线与监测测线地震道,对监测测 线地震道加入不同比例的随机噪声,组成验正算法有效性的数据体,如图4.10所示。分别用传统的匹配 滤波方法和重新推导的基于奇异值分解的匹配滤波方法进行匹配处理,比较匹配后基测线与监测测线振 幅差异,结果见图4.11和图4.12。可以看出,传统匹配滤波公式的计算结果受噪声的影响很大,而基于 奇异值分解的匹配滤波方法具有很好的抗噪声能力。

图4.10 模拟地震记录(从上至下依次为加入0%,10%,20%,30%噪声的信号)

图4.11 传统方法匹配结果

图4.12 基于奇异值分解方法匹配结果

(5)实际数据验证

选择一块同一地区两次不同时间测得的两条二维测线;选取油藏上方时间长度为300ms的窗口作为 滤波因子设计窗口,并以抽取其中139道构成验证互均衡算法的数据体(图4.13,图4.14)。分别采用 传统匹配滤波公式与基于奇异值分解的匹配滤波两种方法进行校正。比较差异剖面的平均能量,结果见 图4.15。从图中可知基于奇异值分解的匹配滤波方法具有更好的抗噪声能力,匹配误差远小于传统匹配 滤波。

图4.13 某地区时间1地震记录

图4.14 某地区时间2地震记录

图4.15 两种匹配方法结果误差能量对比图

本节推导了新的匹配滤波方程,提出基于奇异值分解的匹配滤波算法,理论和实际数据都验证了该 方法有效性。这里从计算精度上比较两种匹配滤波算法,实际处理时移地震数据时还要考虑计算时间,此时寻求快速的奇异值分解算法是一种提高处理效率的方式,另外针对不同信噪比,将传统匹配滤波算 法与基于奇异值分解的匹配滤波算法结合应用同样是一种很好的方式。总之,基于奇异值分解的匹配滤 波提高了匹配精度,有利于为时移地震解释提供一致性更好的地震资料。

2. 用matlab滤除随机噪声的算法

% Denoising.m
%
% by Brigitte Forster,
% Centre of Mathematical Sciences
% Munich University of Technology, Germany
%
% Version: March 17 2005
%
% This File shows an example for denoising
% via hard thresholding of Fourier coefficients.
% It is part of the summer term lecture on
% Fourier- and Laplace transform at TUM.

% Threshold festlegen

thresholdstep = 0.01;

% Varianz des normalverteilten Rauschens festlegen

sigma = 3;

% Signal erzeugen

M = 400;
x = -pi:(2*pi/(M-1)):pi;

forig = sin(6*x);
f = forig + sigma*(rand(size(x))-0.5);
figure(1)
subplot(2,2,1)
hold on
plot(x,f)
plot(x, forig,'r-')
axis tight;
hold off

% Fourier-Koeffizienten berechnen
ff = fft(f)/M;
ff = fftshift(ff);
x0 = x/(2*pi)*M;
subplot(2,2,2)
plot(x0,abs(ff),'.','LineWidth', 3)

% Schleife uber verschiedene Thresholds
threshold = 0;
for k = 1:15

threshold = threshold + thresholdstep;

%Fourier-Koeffizienten Thresholden
y = find(abs(ff) < threshold);
ff(y) = 0;
subplot(2,2,3)
plot(x0,abs(ff),'.','LineWidth', 3)

%Inverse Fourier-Transformation
rff = fftshift(ff)*M;
rf = ifft(rff);
subplot(2,2,4)
plot(x, real(rf))
hold on
plot(x, imag(rf),'k')
plot(x, forig,'r')
hold off
axis tight

pause;

end;

3. 噪声过滤和减少噪声选项如何设置

减少噪声平时一律关掉!! RAW也会有条纹或者粗颗粒的影像,因为它是直接针对MOS和CCD电路降噪

4. 在信号处理和图像处理领域,滤波,平滑和去噪几个词的区别和联系

你好
图像其实也可以说是一种信号。我个人理解,是觉得一个是用一维处理一个使用二维处理。
我先说说这三个词的联系好了。你要去噪声,噪声可以理解成信号干扰,你想去掉多余的信号干扰其实也可以说是滤波。平滑也是同样的道理,就比如图像几乎每一块都有一点信号传输的干扰,你需要做图像平滑,把噪声的像素降低,提升周围像素,这个平滑也算是滤波吗?我觉得也算,就比如噪声对信号或者图像是同一种频率影响下的,你滤掉它,也是做平滑。
那我说说不同。滤波你可以滤掉不是噪声的频率的波形。比如我现在想要提取EEG信号的阿尔法,那我就得用bandpass想办法滤波到那一个频率的波才好提取数据。平滑的话,还有很多其他的方面,就比如我现在用DAC得出一个analog的波形,我需要用reconstruction filter做平滑处理。去噪的话,也其实不一定要用那种所谓的传统的滤波器,比如可以使用adaptive filter,通过算法无限的接近真实的信号。
所以总而言之,你如果想精通各个方面,在EE这条道路上要走很多的路= =..
希望对你有所帮助。

5. 图像处理中的线性滤波算法与非线性滤波算法的区别、高斯噪声与椒盐噪声的区别及各自的特点(简要)急急急

线性滤波器来的原始数据与滤自波结果是一种算术运算,即用加减乘除等运算实现,如均值滤波器(模板内像素灰度值的平均值)、高斯滤波器(高斯加权平均值)等。由于线性滤波器是算术运算,有固定的模板,因此滤波器的转移函数是可以确定并且是唯一的(转移函数即模板的傅里叶变换)。
非线性滤波器的原始数据与滤波结果是一种逻辑关系,即用逻辑运算实现,如最大值滤波器、最小值滤波器、中值滤波器等,是通过比较一定邻域内的灰度值大小来实现的,没有固定的模板,因而也就没有特定的转移函数(因为没有模板作傅里叶变换),另外,膨胀和腐蚀也是通过最大值、最小值滤波器实现的。
高斯噪声是指噪声服从高斯分布,即某个强度的噪声点个数最多,离这个强度越远噪声点个数越少,且这个规律服从高斯分布。高斯噪声是一种加性噪声,即噪声直接加到原图像上,因此可以用线性滤波器滤除。
椒盐噪声类似把椒盐撒在图像上,因此得名,是一种在图像上出现很多白点或黑点的噪声,如电视里的雪花噪声等。椒盐噪声可以认为是一种逻辑噪声,用线性滤波器滤除的结果不好,一般采用中值滤波器滤波可以得到较好的结果。
本人非大神,互相学习,希望能帮到你

6. 如何利用bp神经算法去除音频噪声

小波分析 (Wavelet)
小波分析是当前数学中一个迅速发展的新领域,它同时具有理论深刻和应用十分广泛的双重意义。
小波变换的概念是由法国从事石油信号处理的工程师J.Morlet在1974年首先提出的,通过物理的直观和信号处理的实际需要经验的建立了反演公式,当时未能得到数学家的认可。正如1807年法国的热学工程师J.B.J.Fourier提出任一函数都能展开成三角函数的无穷级数的创新概念未能得到著名数学家J.L.Lagrange,P.S.Laplace以及A.M.Legendre的认可一样。幸运的是,早在七十年代,A.Calderon表示定理的发现、Hardy空间的原子分解和无条件基的深入研究为小波变换的诞生做了理论上的准备,而且J.O.Stromberg还构造了历史上非常类似于现在的小波基;1986年著名数学家Y.Meyer偶然构造出一个真正的小波基,并与S.Mallat合作建立了构造小波基的同意方法枣多尺度分析之后,小波分析才开始蓬勃发展起来,其中比利时女数学家I.Daubechies撰写的《小波十讲(Ten Lectures on Wavelets)》对小波的普及起了重要的推动作用。它与Fourier变换、窗口Fourier变换(Gabor变换)相比,这是一个时间和频率的局域变换,因而能有效的从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析(Multiscale Analysis),解决了Fourier变换不能解决的许多困难问题,从而小波变化被誉为“数学显微镜”,它是调和分析发展史上里程碑式的进展。
小波(Wavelet)这一术语,顾名思义,“小波”就是小的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。与Fourier变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。有人把小波变换称为“数学显微镜”。
小波分析的应用是与小波分析的理论研究紧密地结合在一起地。现在,它已经在科技信息产业领域取得了令人瞩目的成就。 电子信息技术是六大高新技术中重要的一个领域,它的重要方面是图像和信号处理。现今,信号处理已经成为当代科学技术工作的重要部分,信号处理的目的就是:准确的分析、诊断、编码压缩和量化、快速传递或存储、精确地重构(或恢复)。从数学地角度来看,信号与图像处理可以统一看作是信号处理(图像可以看作是二维信号),在小波分析地许多分析的许多应用中,都可以归结为信号处理问题。现在,对于其性质随实践是稳定不变的信号,处理的理想工具仍然是傅立叶分析。但是在实际应用中的绝大多数信号是非稳定的,而特别适用于非稳定信号的工具就是小波分析。
小波分析是当前应用数学和工程学科中一个迅速发展的新领域,经过近10年的探索研究,重要的数学形式化体系已经建立,理论基础更加扎实。与Fourier变换相比,小波变换是空间(时间)和频率的局部变换,因而能有效地从信号中提取信息。通过伸缩和平移等运算功能可对函数或信号进行多尺度的细化分析,解决了Fourier变换不能解决的许多困难问题。小波变换联系了应用数学、物理学、计算机科学、信号与信息处理、图像处理、地震勘探等多个学科。数学家认为,小波分析是一个新的数学分支,它是泛函分析、Fourier分析、样调分析、数值分析的完美结晶;信号和信息处理专家认为,小波分析是时间—尺度分析和多分辨分析的一种新技术,它在信号分析、语音合成、图像识别、计算机视觉、数据压缩、地震勘探、大气与海洋波分析等方面的研究都取得了有科学意义和应用价值的成果。
事实上小波分析的应用领域十分广泛,它包括:数学领域的许多学科;信号分析、图像处理;量子力学、理论物理;军事电子对抗与武器的智能化;计算机分类与识别;音乐与语言的人工合成;医学成像与诊断;地震勘探数据处理;大型机械的故障诊断等方面;例如,在数学方面,它已用于数值分析、构造快速数值方法、曲线曲面构造、微分方程求解、控制论等。在信号分析方面的滤波、去噪声、压缩、传递等。在图像处理方面的图像压缩、分类、识别与诊断,去污等。在医学成像方面的减少B超、CT、核磁共振成像的时间,提高分辨率等。
(1)小波分析用于信号与图像压缩是小波分析应用的一个重要方面。它的特点是压缩比高,压缩速度快,压缩后能保持信号与图像的特征不变,且在传递中可以抗干扰。基于小波分析的压缩方法很多,比较成功的有小波包最好基方法,小波域纹理模型方法,小波变换零树压缩,小波变换向量压缩等。
(2)小波在信号分析中的应用也十分广泛。它可以用于边界的处理与滤波、时频分析、信噪分离与提取弱信号、求分形指数、信号的识别与诊断以及多尺度边缘检测等。
(3)在工程技术等方面的应用。包括计算机视觉、计算机图形学、曲线设计、湍流、远程宇宙的研究与生物医学方面。

7. opencv过滤噪声

问题1 你可以设置5个图像变量,保存连续五个帧,求均值后,显示就是了,取得新的帧后,替换最早的那一帧
问题2 不一定比方法1好,方法2的原理是求5帧的均值,当出现细小的白噪声时,效果不比方法一好。

8. 给个正弦波,加个白噪声,通过matlab仿真把噪声滤掉。这句话怎么理解,具体怎么操作

需要加算法吧?比如自适应LMS算法 通过算法然后仿真滤掉噪声

9. 什么是滤波算法

卡尔曼滤波器(Kalman Filter)是一个最优化自回归数据处理算法(optimal recursive data processing algorithm)。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。

最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼滤波理论。卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合于实时处理和计算机运算。

现设线性时变系统的离散状态防城和观测方程为:

X(k) = F(k,k-1)·X(k-1)+T(k,k-1)·U(k-1)

Y(k) = H(k)·X(k)+N(k)

其中

X(k)和Y(k)分别是k时刻的状态矢量和观测矢量

F(k,k-1)为状态转移矩阵

U(k)为k时刻动态噪声

T(k,k-1)为系统控制矩阵

H(k)为k时刻观测矩阵

N(k)为k时刻观测噪声

则卡尔曼滤波的算法流程为:

预估计X(k)^= F(k,k-1)·X(k-1)

计算预估计协方差矩阵
C(k)^=F(k,k-1)×C(k)×F(k,k-1)'+T(k,k-1)×Q(k)×T(k,k-1)'
Q(k) = U(k)×U(k)'

计算卡尔曼增益矩阵
K(k) = C(k)^×H(k)'×[H(k)×C(k)^×H(k)'+R(k)]^(-1)
R(k) = N(k)×N(k)'

更新估计
X(k)~=X(k)^+K(k)×[Y(k)-H(k)×X(k)^]

计算更新后估计协防差矩阵
C(k)~ = [I-K(k)×H(k)]×C(k)^×[I-K(k)×H(k)]'+K(k)×R(k)×K(k)'

X(k+1) = X(k)~
C(k+1) = C(k)~

热点内容
丁度巴拉斯情人电影推荐 发布:2024-08-19 09:13:07 浏览:886
类似深水的露点电影 发布:2024-08-19 09:10:12 浏览:80
《消失的眼角膜》2电影 发布:2024-08-19 08:34:43 浏览:878
私人影院什么电影好看 发布:2024-08-19 08:33:32 浏览:593
干 B 发布:2024-08-19 08:30:21 浏览:910
夜晚看片网站 发布:2024-08-19 08:20:59 浏览:440
台湾男同电影《越界》 发布:2024-08-19 08:04:35 浏览:290
看电影选座位追女孩 发布:2024-08-19 07:54:42 浏览:975
日本a级爱情 发布:2024-08-19 07:30:38 浏览:832
生活中的玛丽类似电影 发布:2024-08-19 07:26:46 浏览:239