当前位置:首页 » 净水方式 » 防火墙包过滤技术分析

防火墙包过滤技术分析

发布时间: 2021-02-10 07:52:35

1. 包过滤技术特点是什么

防火墙的一类。传统的包过滤功能在路由器上常可看到,而专门的防火墙系专统一般属在此之上加了功能的扩展,如状态检测等。它通过检查单个包的地址,协议,端口等信息来决定是否允许此数据包通过。
包过滤防火墙是最简单的一种防火墙,它在网络层截获网络数据包,根据防火墙的规则表,来检测攻击行为。包过滤防火墙一般作用在网络层(IP层),故也称网络层防火墙(Network Lev Firewall)或IP过滤器(IP filters)。数据包过滤(Packet Filtering)是指在网络层对数据包进行分析、选择。通过检查数据流中每一个数据包的源IP地址、目的IP地址、源端口号、目的端口号、协议类型等因素或它们的组合来确定是否允许该数据包通过。在网络层提供较低级别的安全防护和控制。

2. 包过滤防火墙的技术缺点

→一些包过滤网关不支持有效的用户认证。
→规则表很快会变得很大而且复杂,规则很难测试。随着表的增大和复杂性的增加,规则结构出现漏洞的可能 性也会增加。
→这种防火墙最大的缺陷是它依赖一个单一的部件来保护系统。如果这个部件出现了问题,会使得网络大门敞开,而用户甚至可能还不知道。
→在一般情况下,如果外部用户被允许访问内部主机,则它就可以访问内部网上的任何主机。
→包过滤防火墙只能阻止一种类型的IP欺骗,即外部主机伪装内部主机的IP,对于外部主机伪装外部主机的IP欺骗却不可能阻止,而且它不能防止DNS欺骗。
虽然,包过滤防火墙有如上所述的缺点,但是在管理良好的小规模网络上,它能够正常的发挥其作用。一般情况下,人们不单独使用包过滤网关,而是将它和其他设备(如堡垒主机等)联合使用。
包过滤的工作是通过查看数据包的源地址、目的地址或端口来实现的,一般来说,它不保持前后连接信息,过滤决定是根据 当前数据包的内容来做的。管理员可以做一个可接受机和服务的列表,以及一个不可接受机和服务的列表。在主机和网络一级,利用数据包过滤很容易实现允许或禁止访问。
由此不难看出这个层次的防火墙的优点和弱点,由于防火墙只是工作在OSI的第三层(网络层)和第四层(传输层),因此包过滤的防火墙的一个非常明显的优势就是速度,这是因为防火墙只是去检查数据报的报头,而对数据报所携带的内容没有任何形势的检查,因此速度非常快。与此同时,这种防火墙的缺点也是显而易见的,比较关键的几点如下所述。
(1)由于无法对数据报的内容进行核查,一次无法过滤或审核数据报的内容
体现这一问题的一个很简单的例子就是:对某个端口的开放意味着相应端口对应的服务所能够提供的全部功能都被开放,即使通过防火墙的数据报有攻击性,也无法进行控制和阻断。例如在一个简单的Web服务器,而包过滤的防火墙无法对数据报内容进行核查。因此,未打相应补丁的提供Web服务的系统,及时在防火墙的屏蔽之后,也会被攻击着轻易获取超级用户的权限。
(2)由于此种类型的防火墙工作在较低层次,防火墙本身所能接触的信息较少,所以它无法提供描述细致事件的日志系统。
此类防火墙生成的日志常常只是包括数据报捕获的时间、网络层的IP地址、传输层的端口等非常原始的信息。至于这个数据报内容是什么,防火墙不会理会,而这对安全管理员而言恰恰是很关键的。因为及时一个非常优秀的系统管理员,一旦陷入大量的通过/屏蔽的原始数据包信息中,往往也是难以理清头绪,这在发生安全事件时给管理员的安全审计带来很大的困难。
(3)所有可能用到的端口(尤其是大于1024的端口)都必须开放,对外界暴露,从而极大地增加了被攻击的可能性
通常对于网络上所有服务所需要的数据包进出防火墙的二端口都要仔细考虑,否则会产生意想不到的情况。然而我们知道,当被防火墙保护的设备与外界通信时,绝大多数应用要求发出请求的系统本身提供一个端口,用来接收外界返回的数据包,而且这个端口一般是在1024到65536之间不确定的,如果不开放这些端口,通信将无法完成,这样就需要开放1024以上的全部端口,允许这些端口的数据包进出。而这就带来非常大的安全隐患。例如:用户网中有一台UNIX服务器,对内部用户开放了RPC服务,而这个服务是用在高端口的,那么这台服务器非常容易遭到基于RPC应用的攻击。
(4)如果网络结构比较复杂,那么对管理员而言配置访问控制规则将非常困难
当网络发展到一定规模时,在路由器上配置访问控制规则将会非常繁琐,在一个规则甚至一个地址处出现错误都有可能导致整个访问控制列表无法正常使用。

3. 包过滤防火墙的基本原理分析屏蔽主机防火墙,屏蔽子网防火墙,多宿主主机防火墙的特点以及之间的区别

同学,你是湖南大学的吧,选修了计算机网络安全吧。。。其实。。。你去看老师的PPT,备注里面基本都有的,都不用你上网去找了。

4. 什么是包过滤防火墙技术

数据包过滤用在内部主机和外部主机之间, 过滤系统是一台路由器或是一台主机。过滤系统根据过滤规则来决定是否让数据包通过。用于过滤数据包的路由器被称为过滤路由器。

数据包信息的过滤
数据包过滤是通过对数据包的IP头和TCP头或UDP头的检查来实现的,主要信息有:
* IP源地址
* IP目标地址
* 协议(TCP包、UDP包和ICMP包)
* TCP或UDP包的源端口
* TCP或UDP包的目标端口
* ICMP消息类型
* TCP包头中的ACK位
* 数据包到达的端口
* 数据包出去的端口
在TCP/IP中,存在着一些标准的服务端口号,例如,HTTP的端口号为80。通过屏蔽特定的端口可以禁止特定的服务。包过滤系统可以阻塞内部主机和外部主机或另外一个网络之间的连接,例如,可以阻塞一些被视为是有敌意的或不可信的主机或网络连接到内部网络中。

望采纳。谢谢🙏

5. 分析了各种防火墙技术尤其是包过滤技术的优缺点及实用特性,

第一类攻击防火墙的方法是探测在目标网络上安装的是何种防火墙系统并且版找出此防火墙系统允许哪些权服务。我们叫它为对防火墙的探测攻击。

第二类攻击防火墙的方法是采取地址欺骗、TCP序号攻击等手法绕过防火墙的认证机制,从而 对防火墙和内部网络破坏。

第三类攻击防火墙的方法是寻找、利用防火墙系统实现和设计上的安全漏洞,从而有针对性地发动攻击。这种攻击难度比较大,可是破坏性很大。

6. 什么是包过滤技术其特点是什么

包过滤技术(IP Filtering or packet filtering) 的原理在于监视并过滤网络上流入流出的IP包,拒绝发送可疑的包。基于协议特定的标准,路由器在其端口能够区分包和限制包的能力叫包过滤(Packet Filtering)。由于Internet 与Intranet 的连接多数都要使用路由器,所以Router成为内外通信的必经端口,Router的厂商在Router上加入IP 过滤 功能,过滤路由器也可以称作包过滤路由器或筛选路由器(Packet FilterRouter)。
防火墙常常就是这样一个具备包过滤功能的简单路由器,这种Firewall应该是足够安全的,但前提是配置合理。然而一个包过滤规则是否完全严密及必要是很难判定的,因而在安全要求较高的场合,通常还配合使用其它的技术来加强安全性。 常用的优秀的个人防火墙有Norman Personal Firewall、天网防火墙等。
路由器逐一审查数据包以判定它是否与其它包过滤规则相匹配。每个包有两个部分:数据部分和包头。过滤规则以用于IP顺行处理的包头信息为基础,不理会包内的正文信息内容。
包头信息包括:IP 源地址、IP目的地址、封装协议(TCP、UDP、或IP Tunnel)、TCP/UDP源端口、ICMP包类型、包输入接口和包输出接口。如果找到一个匹配,且规则允许这包,这一包则根据路由表中的信息前行。如果找到一个匹配,且规则拒绝此包,这一包则被舍弃。如果无匹配规则,一个用户配置的缺省参数将决定此包是前行还是被舍弃。
包过滤规则允许Router取舍以一个特殊服务为基础的信息流,因为大多数服务检测器驻留于众所周知的TCP/UDP端口。例如,Telnet Service 为TCP port 23端口等待远程连接,而SMTP Service为TCP Port 25端口等待输入连接。如要封锁输入Telnet、SMTP的连接,则Router舍弃端口值为23、25的所有的数据包。

7. 包过滤防火墙的技术优点

→对于一个小型的、不太复杂的站点,包过滤比较容易实现。
→因为过滤路专由器工作在属IP层和TCP层,所以处理包的速度比代理服务器快。
→过滤路由器为用户提供了一种透明的服务,用户不需要改变客户端的任何应用程序,也不需要用户学习任何新的东西。因为过滤路由器工作在IP层和TCP层,而IP层和TCP层与应用层的问题毫不相关。所以,过滤路由器有时也被称为“包过滤网关”或“透明网关”,之所被称为网关,是因为包过滤路由器和传统路由器不同,它涉及到了传输层。
→过滤路由器在价格上一般比代理服务器便宜。

8. 基于包过滤防火墙的原理和实现技术是怎样的

推荐看一看 朱雁冰 写的《Windows防火墙与网络封包截获技术》,上面介绍了三种分别基于用户态和核心态下的防火墙编译,虽然他提到的三种技术现在看来都有不足,但是是一本讲解详细的好书~~~!!

防火墙就是一种过滤塞(目前你这么理解不算错),你可以让你喜欢的东西通过这个塞子,别的玩意都统统过滤掉。在网络的世界里,要由防火墙过滤的就是承载通信数据的通信包。

天下的防火墙至少都会说两个词:Yes或者No。直接说就是接受或者拒绝。最简单的防火墙是以太网桥。但几乎没有人会认为这种原始防火墙能管多大用。大多数防火墙采用的技术和标准可谓五花八门。这些防火墙的形式多种多样:有的取代系统上已经装备的TCP/IP协议栈;有的在已有的协议栈上建立自己的软件模块;有的干脆就是独立的一套操作系统。还有一些应用型的防火墙只对特定类型的网络连接提供保护(比如SMTP或者HTTP协议等)。还有一些基于硬件的防火墙产品其实应该归入安全路由器一类。以上的产品都可以叫做防火墙,因为他们的工作方式都是一样的:分析出入防火墙的数据包,决定放行还是把他们扔到一边。

所有的防火墙都具有IP地址过滤功能。这项任务要检查IP包头,根据其IP源地址和目标地址作出放行/丢弃决定。看看下面这张图,两个网段之间隔了一个防火墙,防火墙的一端有台UNIX计算机,另一边的网段则摆了台PC客户机。

当PC客户机向UNIX计算机发起telnet请求时,PC的telnet客户程序就产生一个TCP包并把它传给本地的协议栈准备发送。接下来,协议栈将这个TCP包“塞”到一个IP包里,然后通过PC机的TCP/IP栈所定义的路径将它发送给UNIX计算机。在这个例子里,这个IP包必须经过横在PC和UNIX计算机中的防火墙才能到达UNIX计算机。

现在我们“命令”(用专业术语来说就是配制)防火墙把所有发给UNIX计算机的数据包都给拒了,完成这项工作以后,“心肠”比较好的防火墙还会通知客户程序一声呢!既然发向目标的IP数据没法转发,那么只有和UNIX计算机同在一个网段的用户才能访问UNIX计算机了。

还有一种情况,你可以命令防火墙专给那台可怜的PC机找茬,别人的数据包都让过就它不行。这正是防火墙最基本的功能:根据IP地址做转发判断。但要上了大场面这种小伎俩就玩不转了,由于黑客们可以采用IP地址欺骗技术,伪装成合法地址的计算机就可以穿越信任这个地址的防火墙了。不过根据地址的转发决策机制还是最基本和必需的。另外要注意的一点是,不要用DNS主机名建立过滤表,对DNS的伪造比IP地址欺骗要容易多了。

服务器TCP/UDP 端口过滤

仅仅依靠地址进行数据过滤在实际运用中是不可行的,还有个原因就是目标主机上往往运行着多种通信服务,比方说,我们不想让用户采用 telnet的方式连到系统,但这绝不等于我们非得同时禁止他们使用SMTP/POP邮件服务器吧?所以说,在地址之外我们还要对服务器的TCP/ UDP端口进行过滤。

比如,默认的telnet服务连接端口号是23。假如我们不许PC客户机建立对UNIX计算机(在这时我们当它是服务器)的telnet连接,那么我们只需命令防火墙检查发送目标是UNIX服务器的数据包,把其中具有23目标端口号的包过滤就行了。这样,我们把IP地址和目标服务器TCP/UDP端口结合起来不就可以作为过滤标准来实现相当可靠的防火墙了吗?不,没这么简单。

客户机也有TCP/UDP端口

TCP/IP是一种端对端协议,每个网络节点都具有唯一的地址。网络节点的应用层也是这样,处于应用层的每个应用程序和服务都具有自己的对应“地址”,也就是端口号。地址和端口都具备了才能建立客户机和服务器的各种应用之间的有效通信联系。比如,telnet服务器在端口23侦听入站连接。同时telnet客户机也有一个端口号,否则客户机的IP栈怎么知道某个数据包是属于哪个应用程序的呢?

由于历史的原因,几乎所有的TCP/IP客户程序都使用大于1023的随机分配端口号。只有UNIX计算机上的root用户才可以访问1024以下的端口,而这些端口还保留为服务器上的服务所用。所以,除非我们让所有具有大于1023端口号的数据包进入网络,否则各种网络连接都没法正常工作。

这对防火墙而言可就麻烦了,如果阻塞入站的全部端口,那么所有的客户机都没法使用网络资源。因为服务器发出响应外部连接请求的入站(就是进入防火墙的意思)数据包都没法经过防火墙的入站过滤。反过来,打开所有高于1023的端口就可行了吗?也不尽然。由于很多服务使用的端口都大于1023,比如X client、基于RPC的NFS服务以及为数众多的非UNIX IP产品等(NetWare/IP)就是这样的。那么让达到1023端口标准的数据包都进入网络的话网络还能说是安全的吗?连这些客户程序都不敢说自己是足够安全的。

双向过滤

OK,咱们换个思路。我们给防火墙这样下命令:已知服务的数据包可以进来,其他的全部挡在防火墙之外。比如,如果你知道用户要访问Web服务器,那就只让具有源端口号80的数据包进入网络:

不过新问题又出现了。首先,你怎么知道你要访问的服务器具有哪些正在运行的端口号呢? 象HTTP这样的服务器本来就是可以任意配置的,所采用的端口也可以随意配置。如果你这样设置防火墙,你就没法访问哪些没采用标准端口号的的网络站点了!反过来,你也没法保证进入网络的数据包中具有端口号80的就一定来自Web服务器。有些黑客就是利用这一点制作自己的入侵工具,并让其运行在本机的80端口!

检查ACK位

源地址我们不相信,源端口也信不得了,这个不得不与黑客共舞的疯狂世界上还有什么值得我们信任呢?还好,事情还没到走投无路的地步。对策还是有的,不过这个办法只能用于TCP协议。

TCP是一种可靠的通信协议,“可靠”这个词意味着协议具有包括纠错机制在内的一些特殊性质。为了实现其可靠性,每个TCP连接都要先经过一个“握手”过程来交换连接参数。还有,每个发送出去的包在后续的其他包被发送出去之前必须获得一个确认响应。但并不是对每个TCP包都非要采用专门的ACK包来响应,实际上仅仅在TCP包头上设置一个专门的位就可以完成这个功能了。所以,只要产生了响应包就要设置ACK位。连接会话的第一个包不用于确认,所以它就没有设置ACK位,后续会话交换的TCP包就要设置ACK位了。

举个例子,PC向远端的Web服务器发起一个连接,它生成一个没有设置ACK位的连接请求包。当服务器响应该请求时,服务器就发回一个设置了ACK位的数据包,同时在包里标记从客户机所收到的字节数。然后客户机就用自己的响应包再响应该数据包,这个数据包也设置了ACK位并标记了从服务器收到的字节数。通过监视ACK位,我们就可以将进入网络的数据限制在响应包的范围之内。于是,远程系统根本无法发起TCP连接但却能响应收到的数据包了。

这套机制还不能算是无懈可击,简单地举个例子,假设我们有台内部Web服务器,那么端口80就不得不被打开以便外部请求可以进入网络。还有,对UDP包而言就没法监视ACK位了,因为UDP包压根就没有ACK位。还有一些TCP应用程序,比如FTP,连接就必须由这些服务器程序自己发起。

FTP带来的困难

一般的Internet服务对所有的通信都只使用一对端口号,FTP程序在连接期间则使用两对端口号。第一对端口号用于FTP的“命令通道”提供登录和执行命令的通信链路,而另一对端口号则用于FTP的“数据通道”提供客户机和服务器之间的文件传送。

在通常的FTP会话过程中,客户机首先向服务器的端口21(命令通道)发送一个TCP连接请求,然后执行LOGIN、DIR等各种命令。一旦用户请求服务器发送数据,FTP服务器就用其20端口 (数据通道)向客户的数据端口发起连接。问题来了,如果服务器向客户机发起传送数据的连接,那么它就会发送没有设置ACK位的数据包,防火墙则按照刚才的规则拒绝该数据包同时也就意味着数据传送没戏了。通常只有高级的、也就是够聪明的防火墙才能看出客户机刚才告诉服务器的端口,然后才许可对该端口的入站连接。

UDP端口过滤

好了,现在我们回过头来看看怎么解决UDP问题。刚才说了,UDP包没有ACK位所以不能进行ACK位过滤。UDP 是发出去不管的“不可靠”通信,这种类型的服务通常用于广播、路由、多媒体等广播形式的通信任务。NFS、DNS、WINS、NetBIOS-over-TCP/IP和 NetWare/IP都使用UDP。

看来最简单的可行办法就是不允许建立入站UDP连接。防火墙设置为只许转发来自内部接口的UDP包,来自外部接口的UDP包则不转发。现在的问题是,比方说,DNS名称解析请求就使用UDP,如果你提供DNS服务,至少得允许一些内部请求穿越防火墙。还有IRC这样的客户程序也使用UDP,如果要让你的用户使用它,就同样要让他们的UDP包进入网络。我们能做的就是对那些从本地到可信任站点之间的连接进行限制。但是,什么叫可信任!如果黑客采取地址欺骗的方法不又回到老路上去了吗?

有些新型路由器可以通过“记忆”出站UDP包来解决这个问题:如果入站UDP包匹配最近出站UDP包的目标地址和端口号就让它进来。如果在内存中找不到匹配的UDP包就只好拒绝它了!但是,我们如何确信产生数据包的外部主机就是内部客户机希望通信的服务器呢?如果黑客诈称DNS服务器的地址,那么他在理论上当然可以从附着DNS的UDP端口发起攻击。只要你允许DNS查询和反馈包进入网络这个问题就必然存在。办法是采用代理服务器。

所谓代理服务器,顾名思义就是代表你的网络和外界打交道的服务器。代理服务器不允许存在任何网络内外的直接连接。它本身就提供公共和专用的DNS、邮件服务器等多种功能。代理服务器重写数据包而不是简单地将其转发了事。给人的感觉就是网络内部的主机都站在了网络的边缘,但实际上他们都躲在代理的后面,露面的不过是代理这个假面具。

小结

IP地址可能是假的,这是由于IP协议的源路有机制所带来的,这种机制告诉路由器不要为数据包采用正常的路径,而是按照包头内的路径传送数据包。于是黑客就可以使用系统的IP地址获得返回的数据包。有些高级防火墙可以让用户禁止源路由。通常我们的网络都通过一条路径连接ISP,然后再进入Internet。这时禁用源路由就会迫使数据包必须沿着正常的路径返回。

还有,我们需要了解防火墙在拒绝数据包的时候还做了哪些其他工作。比如,防火墙是否向连接发起系统发回了“主机不可到达”的ICMP消息?或者防火墙真没再做其他事?这些问题都可能存在安全隐患。ICMP“主机不可达”消息会告诉黑客“防火墙专门阻塞了某些端口”,黑客立即就可以从这个消息中闻到一点什么气味。如果ICMP“主机不可达”是通信中发生的错误,那么老实的系统可能就真的什么也不发送了。反过来,什么响应都没有却会使发起通信的系统不断地尝试建立连接直到应用程序或者协议栈超时,结果最终用户只能得到一个错误信息。当然这种方式会让黑客无法判断某端口到底是关闭了还是没有使用。

9. 简述包过滤防火墙的工作原理

包过滤防火墙是最简单的一种防火墙,它在网络层截获网络数据包,根据防火墙的版规则表,来检测攻击行为。权包过滤防火墙一般作用在网络层(IP层),故也称网络层防火墙(Network Lev Firewall)或IP过滤器(IP filters)。数据包过滤(Packet Filtering)是指在网络层对数据包进行分析、选择。通过检查数据流中每一个数据包的源IP地址、目的IP地址、源端口号、目的端口号、协议类型等因素或它们的组合来确定是否允许该数据包通过。在网络层提供较低级别的安全防护和控制。

10. 防火墙技术当中,状态检测技术与静态的包过滤技术相比有什么特点

一、包过滤技术
包过滤防火墙工作在网络层,对数据包的源及目地 IP 具有识别和控制作用,对于传输层,也只能识别数据包是 TCP 还是 UDP 及所用的端口信息,如下图所示。现在的路由器、 Switch Router 以及某些操作系统已经具有用 Packet Filter 控制的能力。
由于只对数据包的 IP 地址、 TCP/UDP 协议和端口进行分析,包过滤防火墙的处理速度较快,并且易于配置。
包过滤防火墙具有根本的缺陷:
1 .不能防范黑客攻击。包过滤防火墙的工作基于一个前提,就是网管知道哪些 IP 是可信网络,哪些是不可信网络的 IP 地址。但是随着远程办公等新应用的出现,网管不可能区分出可信网络与不可信网络的界限,对于黑客来说,只需将源 IP 包改成合法 IP 即可轻松通过包过滤防火墙,进入内网,而任何一个初级水平的黑客都能进行 IP 地址欺骗。
2 .不支持应用层协议。假如内网用户提出这样一个需求,只允许内网员工访问外网的网页(使用 HTTP 协议),不允许去外网下载电影(一般使用 FTP 协议)。包过滤防火墙无能为力,因为它不认识数据包中的应用层协议,访问控制粒度太粗糙。
3 .不能处理新的安全威胁。它不能跟踪 TCP 状态,所以对 TCP 层的控制有漏洞。如当它配置了仅允许从内到外的 TCP 访问时,一些以 TCP 应答包的形式从外部对内网进行的攻击仍可以穿透防火墙。
综上可见,包过滤防火墙技术面太过初级,就好比一位保安只能根据访客来自哪个省市来判断是否允许他(她)进入一样,难以履行保护内网安全的职责。
二、状态检测技术
我们知道, Internet 上传输的数据都必须遵循 TCP/IP 协议,根据 TCP 协议,每个可靠连接的建立需要经过 “ 客户端同步请求 ” 、 “ 服务器应答 ” 、 “ 客户端再应答 ” 三个阶段,我们最常用到的 Web 浏览、文件下载、收发邮件等都要经过这三个阶段。这反映出数据包并不是独立的,而是前后之间有着密切的状态联系,基于这种状态变化,引出了状态检测技术。
状态检测防火墙摒弃了包过滤防火墙仅考查数据包的 IP 地址等几个参数,而不关心数据包连接状态变化的缺点,在防火墙的核心部分建立状态连接表,并将进出网络的数据当成一个个的会话,利用状态表跟踪每一个会话状态。状态监测对每一个包的检查不仅根据规则表,更考虑了数据包是否符合会话所处的状态,因此提供了完整的对传输层的控制能力。
网关防火墙的一个挑战就是能处理的流量,状态检测技术在大为提高安全防范能力的同时也改进了流量处理速度。状态监测技术采用了一系列优化技术,使防火墙性能大幅度提升,能应用在各类网络环境中,尤其是在一些规则复杂的大型网络上。
任何一款高性能的防火墙,都会采用状态检测技术。

热点内容
丁度巴拉斯情人电影推荐 发布:2024-08-19 09:13:07 浏览:886
类似深水的露点电影 发布:2024-08-19 09:10:12 浏览:80
《消失的眼角膜》2电影 发布:2024-08-19 08:34:43 浏览:878
私人影院什么电影好看 发布:2024-08-19 08:33:32 浏览:593
干 B 发布:2024-08-19 08:30:21 浏览:910
夜晚看片网站 发布:2024-08-19 08:20:59 浏览:440
台湾男同电影《越界》 发布:2024-08-19 08:04:35 浏览:290
看电影选座位追女孩 发布:2024-08-19 07:54:42 浏览:975
日本a级爱情 发布:2024-08-19 07:30:38 浏览:832
生活中的玛丽类似电影 发布:2024-08-19 07:26:46 浏览:239