卡纳滤杯
纳滤净水复机净水器的过制滤效果还是很不错的。净之泉的这种机子就不错。净之泉超滤原理采用的是一种物理的分离技术,膜孔径范围为0.5μm(接近微滤)~1nm(接近纳滤)能够去除水中细菌、胶体等有害物质,并保留水中有益物质。具有无需加电加压,没有废水产生,安装使用方便等诸多特点。
反渗透技术中,反渗透膜的孔径在2~3nm以下,能够去除水中一切物质,得到的水也就是我们常说的纯水。专家认为,长期饮用会造成人体微量元素的缺乏。反渗透的过滤过程中需要加电加压,并在净水过程中有大量的废水产生,纯水机的废水率大概在1:5左右,也就是说一杯纯净水的产生会伴随着五杯废水
2. 纳滤净水机和超滤机有什么区别
如果说滤芯更换方便,觉得没有什么能比得上博乐宝速热净水器这个了回。可以直接换整体滤芯的答,像更换电池一样更换滤芯,又避免了二次污染,而且速热可以3秒出温水,因为不需要安装的,随时插电就可以使用了,从此冬天喝热水再也不用保温杯热水壶大罐小瓶了。
3. 纳滤膜的水渗透系数和溶质渗透系数是多少
利用孔模型分析膜孔结构
本文基于孔模型,从膜对NaCl溶液的透过实验中,得到种膜的结构参数,实验结果表明,从溶质透过膜的参数与从溶剂透过膜的参数得到的膜结构参数并不一致。根据孔模型由溶质的Stokes半径γs得到的膜孔半径γp与根据透过溶剂而计算出的膜孔半径γω之间存在线性关系,对于CA膜,它们的关系式是:γω=10.50(γp-1.739),γp与γω之间的相关关系是0.9986,对于γp的标准偏差是0.14。
关键词:孔模型;膜结构参数;CA膜
ANALYSIS OF MEMBRANE STRUCTURE PARAMETERS BY PORE MODEL
LUO Ju-fen, MO Jian-xiong
(The Development Centr of Water Treatment Technology, SOA Hangzhou 310012)
Abstract:Based on the pore model, structural parameters of the eight kinds of membranes were determined with permeation experiments of aqueous solution of sodium chloride. The parameters determined from P differ from that obtained from Lp. There is a good linear correlation between rp which obtained from the solute radius rs and rω which obtained from the pure water flux. For cellulose acetate membranes, the relation of rp and rω can be written as rω =10.50(rp-1.739). The linear correlation coefficient between rp and rω is 0.9986 and for rp its standard deviation is 0.14.
Key words:pore model; structure parameters; CA membrane
测定膜结构参数对于预测溶质透过膜的传递性能是很重要的。为了能测定膜的结构参数,出现了摩擦模型,孔模型,改进的孔模型,SHP模型等。Nakao和Kimura等针对单组分水溶液,将这些模型应用到超滤膜分离体系和纳滤膜分离体系,以不同溶质的渗透实验计算了超滤膜和纳滤膜的γp和Ak/△x值〔1-3〕。
本文通过膜对NaCl水溶液的透过实验,在确定不可逆过程热力学迁移方程中的三个参数后,基于改进的孔模型〔6〕,得到8种分离膜的结构参数,并比较了从溶质和从溶剂透过性能所得到膜孔结构参数的区别。这些膜对NaCl的脱除率在15%~99%之间,其中有部分膜是超滤膜。
1 理 论
压力驱动过程中膜的迁移过程可以用不可逆过程热力学来描述。Kedem和Katchalsky〔4〕基于线性非平衡热力学唯象理论提出如下的传递方程:
Jv=Lp(△P-σ△π) (1)
Js=ω△π+(1-σ)Jv. (2)
利用Van't Hoff等式△π=RT△Cs,则式(2)可以写成
Js=P△Cs+(1-σ)Jv. (3)
为解决膜二边平均浓度的问题,Spiegler等〔5〕将等式(3)改写成另一种形式:
Js/△C=P+(1-σ)(JvCln/△C) (4)
等式(3)、(4)是作为反渗透膜(具有高溶质分离率)的传递方程提出的,Nakao在他的实验中〔2〕说明等式(3)、(4)也适用于作为超滤膜的传递方程。
在这些等式中,膜的表征以三个传递系数表示:纯水透过系数Lp,溶质渗透系数ω或P和反射系数σ。但上述唯象方程属于黑箱模型,不能得到有关膜内部透过机理的情况,因此,出现一些利用膜结构来说明σ和P的传递模型。
Pappenheimer等提出了传递“孔理论”来计算通过毛细管的迁移过程,在这个理论中,溶质通量包括过滤流和扩散流,这二种流动都受到进入膜孔时位阻障碍和孔内摩擦阻力的影响。Verniory等人〔6〕利用Haberman和Sayre的计算和摩擦模型改进了这种“孔理论”,根据这种改进的孔理论,膜结构可以用参数σ和P来预测。假设圆柱形膜孔的孔径与孔长分别为常数rp和△x,并且球状溶质半径为rs,则溶质通量可表示成
(5)
这里Ak是总的贯通孔面积与膜有效面积之比,SD和SF分别是扩散流和过滤流的位阻因数,并且是rs与rp比值q的函数,其中:
SD=(1-q)2 (6)
SF=(1-q)2(1+2q-q2) (7)
f(q)和g(q)是圆形壁面效应的修正因数,由Haberman和Sayre计算如下:
f(q)=(1-2.1q+2.1q3-1.7q5+0.73q6)/(1-0.76q5) (8)
g(q)=〔1-(2/3)q2-0.2q5〕/(1-0.76q5) (9)
将式(5)与式(3)相比较,则膜的参数σ和P可用下式表示
σ=1-g(q)SF (10)
P=Df(q)SD(Ak/△X) (11)
在孔模型中,纯水通量用Hagen-Poiseuille式表示,因此,纯水透过速率Lp可以写成:
Lp=(r2p/8μ).(AK/△X) (12)
2 实 验
2.1 实验装置
实验装置如图1所示。
图1 实验装置示意图
1.原液池,2.微滤器,3.恒流泵,4.测试池,
5.微型电导检测器,6.磁搅拌子,6.硅压力传感器
2.2 实验条件和过程
首先,将膜充分润湿后置于测试池,用纯水预压1h,预压压力为膜最高实验压力的1.2倍左右。然后原液换成0.01mol/L NaCl溶液,测定不同压力时透过液流速JV和浓度C3,利用式(4),根据Js/△C和JVCln/△C的关系,采用最佳拟合,得到膜性能参数σ和P,将σ和P代入(10)和(11)式,就能根据溶质的Stokes半径rs而算出膜孔半径rp和膜的Ak/△X值。在25℃条件下,NaCl-H2O体系的Stokes半径rs=1.616×10-10m。
利用式(1)计算膜的Lp值。
将Lp值和由式(11)得到的Ak/△X值代入Hegen-Poiseuille式(12)中,则可得到根据透过溶剂而计算出的膜孔孔径rω。
3 结果和讨论
在测试压力范围内,透过液流速与压力成直线关系,并且实验中透过液通量与纯水通量几乎一致,因此,实验渗透压可以忽略不计。并且这也表明,实验过程中没有出现污染或严重浓差极化现象。
3.1 压力的影响
压力对脱除率的影响是很大的,随压力增加,R值也增加,R值增加到某个数值后,变化趋缓。因此,对于表示膜的特征来说,R不是一个很合适的参数。
3.2 膜性能参数的确定
用以下方法确定膜的三个迁移参数Lp、σ和P。
纯水透过参数Lp利用实验的透过速率从式(1)可以得到,渗透压△π忽略不计,参数σ和P则利用对数平均浓度Cln从式(4)中可以确定。从实验数值看,Js/△C和Jυ.Cln/△C是一相当好的直线关系,这样参数σ和P也可从这条直线的斜率和截距中求得。
8种膜的三个性能参数列于表1。
表1 膜的性能参数Lp、σ、P
膜 1# 2# 3# 4# 5# 6# 7# 8#
σ 0.943 0.903 0.899 0.857 0.457 0.131 0.313 0.2998
P×107(m/s) 3.33 12.65 7.17 5.03 24.5 10.2 24.0 5.95
Lp×1012(m/Pa.s) 4.84 10.32 4.48 4.40 9.12 11.05 14.80 12.67
从表1可知,实验所用膜对NaCl的σ值在0.131~0.943之间。
3.3 膜结构参数的计算
根据改进的“孔模型”,式(10)的关系式可如图2所示,因此,在膜的σ值已知时,可从式(10)求出q值,再代入溶质的Stokes半径即可得到膜的rp值(=rs/q)
图2 σ与q之间关系
列于表2的膜的另一个结构参数Ak/△X也是基于孔模型,采用式(11)从q值和实验数值溶质的渗透系数P计算得到。
表2 从孔模型中得到的膜结构参数rP和△X值
膜 1# 2# 3# 4# 5# 6# 7# 8#
rp×1010(m) 2.02 2.18 2.21 2.31 3.85 8.78 5.19 5.39
Ak/△x(m-1) 2.72×105 3.67×105 1.78×105 7.98×104 1.9×104 1.63×103 8.20×103 1.91×103
若将膜的Ak/△X值和表1中的Lp值代入式(12),则可得到由水的透过速率Lp得到的膜孔半径,以rω表示,结果见表3。
表3 由水的透过速率得到的膜孔半径rω
膜 1# 2# 3# 4# 5# 6# 7# 8#
rω×1010(m) 3.77 4.74 4.49 6.64 19.6 73.6 38.0 72.9
比较表2和表3,可看到,rω与rp并不一致,并且rω大于rp。
不同文献〔1.3〕在利用“孔模型”时,提到由P得到的Ak/△X值与由Lp得到的Ak/△X值之间存在偏差,即从溶质透过膜参数与从溶剂透过膜参数得到的膜结构参数并不一致。
以rp对rω作图,可看到除了8#膜,其余膜的rp与rω几乎落在一条直线上,见图3。因8#膜为SPS膜,其余的均为CA膜。8#膜的rp与rω的关系不在直线上。也许,因材料不同,它的斜率和截距不同。
图3 rp与rω关系
除去8#膜的rp和rω值,对其余7种膜的rp和rω进行线性回归的结果是:
rp=0.09527rω+1.739 (13)
或者改写成
rω=10.50(rp-1.739) (14)
rp与rω之间的线性相关系数是0.9986,对rp的标准偏差是0.14。因此,可以认为对于CA膜,在NaCl水溶液体系中,根据孔模型由膜性能参数σ和P得到的膜孔半径rp与根据透过溶剂而计算出的膜孔半径rω之间存在线性关系。
由式(14)和图3可知,当rp小于1.74×10-10m时,rω已为零,也即此时,膜的纯水透过速率为零。这与祝振鑫等〔7〕推导的当网络孔半径小到2.0×10-10m时,膜产率为零的推论非常相近。水分子半径为0.87×10-10m,也即当孔道小于两个水分子时,水分子即被卡住,使水不能流动。
4 结 论
本文利用孔模型,对8种膜的性能参数和结构参数进行了测定。实验表明,由溶质的Stokes半径基于孔模型得到的膜孔半径rp与从溶剂水的透过速率得到的膜孔半径rω并不一致,但存在线性关系。对于CA膜,在NaCl水溶液体系中,它们的关系是: rω=10.50(rp-1.739)。相关关系是0.9986,对于rp的标准偏差是0.14。这也表明当rp小到1.74×10-10m时,膜的纯水透过速率为零。
对其它材料制成的膜的rp与rω之间关系有待进一步实验。
4. 纳滤净水机怎么应用
纳滤净水机来净水器的自过滤效果还是很不错的。超滤原理采用的是一种物理的分离技术,膜孔径范围为0.5μm(接近微滤)~1nm(接近纳滤)能够去除水中细菌、胶体等有害物质,并保留水中有益物质。具有无需加电加压,没有废水产生,安装使用方便等诸多特点。
反渗透技术中,反渗透膜的孔径在2~3nm以下,能够去除水中一切物质,得到的水也就是我们常说的纯水。专家认为,长期饮用会造成人体微量元素的缺乏。反渗透的过滤过程中需要加电加压,并在净水过程中有大量的废水产生,纯水机的废水率大概在1:5左右,也就是说一杯纯净水的产生会伴随着五杯废水。
5. 听说海尔施特劳斯净水采用的是纳滤技术,这个技术有哪些优势
纳滤技术是新来一代的膜技术自,它的膜孔没有反渗透膜那么小,但是又能有效过滤水中的有害物质,它的优势在于可以保留一些有益的微量元素,比如说钾、钙、钠、镁等。像我家的海尔施特劳斯润泉净水机HSNF2901-700采用这种技术,净化效果好,还非常省水省芯,净化3杯净水才产生一杯废水,是市面其他净水机的9倍,纳滤膜寿命也达到了2年。重点是它流速很快,接一杯200ML的水不到7S,日常洗菜、做饭、直饮都能轻松满足,用了段时间挺满意的。
6. 碧水源纳滤净水机的出水量大吗接一杯是不是要等很久
出水量还是挺大的呀。碧水源纳滤净水机有好多的净水机,它的出水量都要大很多了。
7. 杯壁上的茶垢,水垢怎样处理会比较干净
具体消除水垢的方法
①水壶煮山芋除垢 在新水壶内,放半水壶以上的山芋,加满水,将山芋煮熟,以后再烧水,就不会积水垢了。但要注意水壶煮山芋后,内壁不要擦洗,否则会失去除垢作用。对于已积满了水垢的旧水壶,用以上方法煮一二次后,不仅原来的水垢会逐渐脱落,并能起到防止再积水垢的作用。
②小苏打除水垢 用结了水垢的铝制水壶烧水时,放1小匙小苏打,烧沸几分钟,水垢即除。
③煮鸡蛋除水垢 烧开水的壶,用久了积垢坚硬难除。如用它煮上两次鸡蛋,会收到理想的效果。
④土豆皮除水垢 铝壶或铝锅使用一段时间后,会结有薄层水垢。将土豆皮放在里面,加适量水,烧沸,煮10分钟左右即可除去。
⑤热胀冷缩除水垢 将空水壶放在炉上烧干水垢中的水分,烧至壶底有裂纹或烧至壶底有“嘭”响之时,将壶取下,迅速注入凉水,或用抹布包上提手和壶嘴,两手握住,将烧干的水壶迅速坐在冷水中(不要让水注入壶内)。重复2次至3次,壶底水垢会因热胀冷缩而脱落。
⑥醋除水垢 如烧水壶有了水垢,可将几匀醋放入水中,烧一二个小时,水垢即除。如水垢中的主要成分是硫酸钙,则可将纯碱溶液倒在水壶里烧煮,可去垢。
⑦口罩防积水垢 在烧水壶里放一只干净的口罩,烧水时,水垢会被口罩吸附。
⑧磁化 在壶中放一块磁铁,不仅不积垢,煮开的水被磁化,还具有防治便秘、咽喉炎作用。
[1]⑨离子交换除水垢方法:采用特定的阳离子交换树脂,以钠离子将水中的钙镁离子置换出来,由于钠盐的溶解度很高,所以就避免了随温度的升高而造成水垢生成的情况。
⑩膜分离除水垢方法:纳滤膜(NF)及反渗透膜(RO)均可以拦截水中的钙镁离子,从而从根本上降低水的硬度。膜分离除水垢方法的特点是,效果明显而稳定,处理后的水适用范围广;但是对进水压力有较高要求,设备投资、运行成本都较高。
9、整体的去除全家的用水水垢,可以安装一台软水机,对全家的水进行整体的去处水垢,让大家省去了为水垢而烦恼的问题了。
注意事项:
1、水家电除水垢,要用食品级除垢剂,因为工业级除垢剂含有杂质,甚至有毒,喝了对人体有害;
2、水家电除水垢,用强酸除垢,有腐蚀性,对家电对人体都有害。
8. 饮水机的过滤原理和效果是有哪些
之前看到一份中国预防科学医学的饮用水监测报告,报告显示,水质量问题已经非常严重,全国26个省、区的180个县市,有43.3%的人在喝着不健康的水。而近年来关于水污染的报道也越来越多,越来越严重。
为了更加严谨,我把一号杯换成自来水试了一下。通过动态图显示,装有自来水的1号杯逐渐开始变黄,说明水中确实含有余氯。
三、总结
本次对"RO"净饮机 XX 和"超滤"净饮机grs v3进行了测试,4个测试下来,RO的净饮机得2分,超滤的v3在测试中得4分。
超滤过滤后的水能满足日常的饮水需求,也保留了矿物质元素,更加健康,家里有老人小孩的最好还是选超滤的。而且嵌入式的颜值还是不错的,也值这个价了。
RO反渗透过滤能力强,但是把矿物质也一并过滤掉了,这一点我觉得有点矫枉过正吧。当然,也有人觉得矿物质元素无关紧要,必须把全部物质过滤掉才安心,而且废水问题也能接受,那也可以选择RO的净水设备。
本次测评到此为止,可能不是很全面,仅供参考。在后续我会出再多的净水测评,欢迎大家一起讨论分享。