当前位置:首页 » 净水方式 » 超滤系数是固定的吗

超滤系数是固定的吗

发布时间: 2021-02-18 08:25:27

水处理超滤过滤精度和道尔顿的关系

在膜上,道尔顿指的是截流分子量。道尔顿越大,截流分子的粒径就越小

⑵ 化工原理中,哪些理论有可能出简答题

精馏
1. 蒸馏的目的是什么?蒸馏操作的基本依据是什么?
分离液体混合物
液体中各组分挥发度不同

2.蒸馏的主要费用花费
加热和冷却的费用

3.何谓泡点,露点?对于一定的组成和压力,两者大小关系如何?
泡点指液相混合物加热至出现第一个气泡时的温度;露点指气相混合物冷却至出现第一个液滴时的温度。
露点大于或等于泡点

4.非理想物系何时出现最低衡沸点?何时出现最高衡沸点?
强正偏差;强负偏差

5.平衡蒸馏与简单蒸馏有何不同
前者是连续操作且一级平衡;后者是间歇操作且瞬时一级平衡

6.最适宜回流比的选取须考虑哪些因素?
设备费,操作费之和最小

7.衡摩尔流假设指什么?其成立的主要条件是什么?
在没有加料,出料的情况下,塔段内的气相或液相摩尔流量各自不变
组分摩尔汽化热相近,热损失不计,显热差不计

8.间歇精馏与连续精馏相比有何特点?适用于什么场合?
操作灵活,适用于小批量物料分离

9.衡沸精馏和萃取精馏的主要异同点
相同点:都加入第三组分改变相对挥发度
区别:前者生成新的最低衡沸物,加入组分从塔顶出,后者不形成新衡沸物,加入组分从塔底出;操作方式前者可间隙,较方便;前者消耗热量在气化潜热,后者再显热,消耗热量较少

10.如何选择多组分精馏的流程方案
考虑经济上优化,物性,产品纯度

11.何谓轻关键组分,重关键组分?何谓轻组分,重组分?
对分离起控制作用的两个组分为关键组分,挥发度大的为轻关键组分,挥发度小的为重关键组分
比轻关键组分更容易挥发的为轻组分,比重关键组分更难挥发的为重组分
流动
1.层流与湍流的本质区别
是否存在流速u,压强P的脉动性,即是否存在流涕质点的脉动性

2.什么是流涕流动的边界层?边界层分离的条件是什么?
流速降为未受边壁影响流速(来流速度)的99%以内的区域为边界层,即边界影响未及的区域。
流道扩大造成逆压强梯度,逆压强梯度容易造成边界层的分离
边界层分离造成大量漩涡,大大增加机械能消耗

3.动量守恒和机械能守恒应用于流体流动时,二者关系如何?
当机械能守恒定律应用于实际流体时,由于流体的粘性导致机械能的耗损,在机械能恒算式中将出现Hf项,但动量守恒只是将力和动量变化率联系起来,未涉及能量和消耗问题

4.塑性流体
只有当施加的剪应力大于某一临界值(屈服应力)后才开始流动

5.涨塑性
在某一剪切范围内表现出剪切增稠现象,即粘度随剪切率增大而升高

6.假塑性
在某一剪切率范围内,粘度随剪切率增高而下降的剪切稀化现象

7.触变性,震凝性
随τ作用时间延续,/dy增大,粘度变小。当一定剪应力τ所作用的时间足够长后,粘度达到定态的平衡值,称触变性;反之,粘度随剪切力作用时间延长而增大的行为称震凝性。

8.粘弹性
爬捍效应,挤出胀大,无管虹吸

9.何谓泊谡叶方程?其应用条件有哪些?
△=32uL/d2
不可压缩流体在直圆管中做定态流动,流动时的阻力损失计算

10.何谓轨线?何谓流线?为什么流线互不相交?
轨线是某一流体质点的运动轨迹,描述的是同一质点在不同时刻的位置(拉格朗日)
流线上各点的切线表示同一时刻各点的速度方向,描述的是同一瞬间不同质点的速度方向(欧拉)
同一点在指定某一时刻只有一个速度

11.动能校正系数α为什么总是大于,等于1?
根据α=dA ,可知流体界面速度分布越均匀,α越小。可认为湍流速度分布是均匀的,代入上式,得α接近于1

12.流体流动过程中,稳定性是指什么?定态性是指什么?
系统对外界扰动的反应
有关运动参数随时间的变化情况

13.因次分析法规化试验的主要步骤
(1)析因实验——寻找影响过程的主要因素
(2)规划试验——减少实验工作量
(3)数据处理——实验结果的正确表达

14.什么是连续性假设?质点的涵义是什么?
假定流体是由大量质点组成的,彼此间没有间隙,完全充满所占空间的连续介质
质点是含有大量分子的流体微团,其尺寸远小于设备尺寸,但比分子自由程却要大得多

15.描述流体运动的拉格朗日法和欧拉法有什么不同点?
前者描述同一质点在不同时刻的状态;后者描述空间任意定点的状态

16.粘性的物理本质是什么?为什么温度上升,气体粘度上升,而液体粘度下降?
分子间的引力和分子的热运动
气体分子间距较大,以分子的热运动为主,温度上升,热运动加剧,粘度上升。液体分子间距较小,一分子间的引力为主,温度上升,分子间的引力下降,粘度下降。

17.静压强有什么特征?
(1)静止流体中任意界面上只受到大小相等,方向相反,垂直于作用面的压力
(2)作用于任意点所有不同方位的静压强在数值上相等
(3)压强各向传递

18.为什么高烟囱比低烟囱拔烟效果好?
由静力学方程可以导出△P=H(ρ冷-ρ热)g,所以H增加,压强增加,拔风量大

19.什么叫均匀分布?什么叫均匀流段?
前者指速度分布大小均匀;后者指速度方向平行,无迁移加速度

20.柏努利方程的应用条件有哪些?
重力场下,不可压缩,理想流体做定态流动,流体微元与其他微元或环境没有能量交换时,同一流线上的流体间能量的关系

21.雷诺数的物理意义是什么?
惯性力与粘性力之比

22.何谓水力光滑管?何谓完全湍流粗糙管?
当壁面凸出物低于层流内层厚度,体现不出粗糙度过对阻力损失的影响时,称为水力光滑管。在Re很大,λ与Re无关的区域,称为完全湍流粗糙管。

23.非圆形管的水力当量直径是如何定义的?能否按uπde2 ­ /4计算流量?
定义为4A/Π。不能按该式计算流量

24.在漫流的条件下,水在垂直直管中向下流动,对同一瞬时沿管长不同位子的速度而言,是否会因重力加速度而使下部的速度大于上部的速度?
因为质量守恒,直管内不同轴向位子的速度是一样的,不会因为重力而加快,重力只体现在压强的变化上。

25.是否在任何管路中,流量增大则阻力损失就增大;流量减小则阻力损失就减小?为什么?
不一定,具体要看管路状况是否变化。

26.系统与控制体
系统或物系是包含众多流体质点的集合。系统与辩解之间的分界面为系统的边界。系统与外界可以有力的作用与能量的交换,但没有质量交换,系统的边界随着流体一起运动,因而其形状和大小都可随时间而变化。(拉格朗日)
当划定一固定的空间体积来考察问题,该空间体积称为控制体。构成控制体空间界面称为控制面。控制面是封闭的固定界面,流体可以自由进出控制体,控制面上可以有力的作用与能量的交换(欧拉)

27.定态流动
运动空间个点的状态不随时间而变化

28.平均流速
单位时间内流体在流动方向上流经的距离称为流速,在流体流动中通常按流量相等的原则来确定平均流速
29.伯努利方程的物理意义
在流体流动中,位能,压强能,动能可相互转换,但其和保持不变

30.理想流体与非理想流体
前者粘度为零,后者为粘性流体

31.局部阻力当量长度
近似地认为局部阻力损失可以相当于某个长度的直管

32.可压缩流体
有较大的压缩性,密度随压强变化

33.转子流量计的特点
恒流速,恒压差
其他
1.结晶有哪几种基本方法?溶液结晶操作的基本原理
溶液结晶,熔融结晶,升华结晶,反应沉淀。
溶液的过饱和

2.溶液结晶操作有哪几种方法造成过饱和度?
冷却,蒸发浓缩

3.与精馏相比,结晶操作有哪些特点
分离纯度高,温度低,相变热小

4.什么是在结晶现象
小晶体溶解与大晶体成长同时发生的现象

5.选择结晶设备考虑因素
溶解度曲线的斜率,能耗,物性,产品粒度,处理量

6.什么是吸附现象?基本原理
流体中的吸附质借助于范德华力而富集于吸附剂固体表面的现象
吸附剂对流体中各组分选择性的吸附

7.工业吸附对吸附剂有哪些要求
内表面大,活性高,选择性高,有一定的机械强度,粒度,化学稳定性好

8.吸附过程有哪几个传质步骤
外扩散,内扩散,吸附

9.常用的吸附分离设备有哪几种类型
固定床,流体流速,相平衡

10.什么是膜分离?有哪几种常用的膜分离过程?
利用固体膜对流体混合物各组分的选择性渗透,实现分离
反渗透,超滤,电渗析,气体渗透分离

11.膜分离有哪些特点?分离过程对膜有哪些基本要求?
不发生相变化,能耗低,常温操作,适用范围广,装置简单
截留率,透过速率,截留分子量

12.常用的膜分离其有哪些类型?
平板式,管式,螺旋卷式,中空纤维式

13.吸附分离常用吸附剂
活性碳,硅胶,活性氧化铝,活性土,沸石分子筛,吸附树脂
吸收
1.吸收的目的和基本依据是什么?吸收的主要操作费用花费在哪里?
目的是分离气体混合物;依据是气体混合物中各组分在溶剂中的溶解度不同;操作费用主要花费在溶剂再生,溶剂损失

2.选择吸收溶剂的主要依据是什么?什么是溶剂的选择性?
溶解度大,选择性高,再生方便,蒸汽压低,损失小
溶剂对溶质溶解度大,对其他组分溶解度小

3.工业吸收过程气液接触的方式有哪两种?
级式接触和微分接触

4.漂流因子有什么含意?等分子反向扩散时有无漂流因子?为什么?
表示了主体流动对传质的贡献
无漂流因子,因为没有主体流动

5.修伍德数,施密特数的物理含意是什么
表征对流传质速率与扩散传质速率之比
表征动量扩散系数与分子扩散系数之比

6.传质理论中,有效膜理论与表面更新理论有何主要区别
表面更新理论考虑到微元传质的非定态性

7.传质过程中,何种情况为气相阻力控制?何种情况是液相阻力控制?
mky<<kx时;mky>>kx时

8.低含量气体吸收有哪些特点
G,L为常量;等温过程;传质系数沿塔高不变

9.什么是返混
少量流体自身由下游返回至上游的现象

10.Hog的物理含意是什么?
气体流经这一单元高度塔段的浓度变化等于该单元内的平均推动力

11.吸收剂的进塔条件有哪三个要素?操作中调节这三要素,对吸收结果有何影响?
T,X2,L
T下降,X2下降,L上升均有利于吸收

12.高含量气体吸收的主要特点有哪些?
G,L沿程变化;非等温;传质分数与浓度有关

13.化学吸收与物理吸收的本质区别是什么?化学吸收有何特点?
溶质是否与液相组分发生化学反应
高的选择性;较高的吸收速率;降低平衡浓度ye
14.化学吸收过程中,何时成为容积过程?何时成为表面过程?
快反应使吸收成表面过程;慢反应使吸收成容积过程
蒸发
1.蒸发操作节能的措施
除采用多效蒸发外,还可从下面三个方面入手:二次蒸汽的利用,冷凝水的利用,热泵蒸发。

2.提高蒸发器内液体循环速度的意义在哪?循环型蒸发器中,降低单程气化率的目的是什么?
不仅提高,更重要在于降低单程气化率
减缓结垢现象

3.蒸发操作不同于一般环热过程的主要点有哪些?
溶质常析出在加热面上形成垢层;热敏性物质停留时间不得过长;与其他单元操作相比节能更重要

4.为什么要尽可能扩大管内沸腾时的汽液环状流动的区域
因为该区域的给热系数最大

5.提高蒸发器生产强度的途径有哪些?
U上升,降低单程气化率,K上升;提高真空度,t下降,增加传热推动力

6.分析比较单效蒸发器的间歇蒸发和连续蒸发的生产能力的大小。设原料液浓度,温度,完成液浓度,加热蒸汽压强以及冷凝器操作压强均相等
单效间歇蒸发起先小,生产能力大

7.多效蒸发的效数受哪些限制
经济上限制:W/D的上升达不到与效数成正比,W/A的下降与效数成反比快;技术上限制:必须小于T-t0,而T-t0是有限的

8.比较单效与多效蒸发之优缺点
单效蒸发生产强度高,设备费用低,经济性低。多效蒸发经济性高

⑶ 求费森尤斯透析器F7和F60、F80的说明书,拜谢!

环氧乙烷消毒的费森尤斯聚砜膜高通膜透析器/滤过器
F60 HF80
清除率(ml/min)

尿素氮 185 192
肌肝 172 180
磷酸 170 177
维生回素B12 118 135
菊粉 88 110
超滤答系数(ml/h.mmHg)(1) 40 55
膜材料 费森尤斯聚砜膜
有效表面积(㎡) 1.3 1.8
膜壁厚(μm) 40
膜内径(μm) 200
容血体积(ml) 82 110
外壳材料 聚碳酸酯
两端密封物 聚胺酯
消毒方法 环氧乙烷
临床应用 HD/HDF HDF/HF

这个东西一般没说明书的。上面只是它的性能特征

⑷ 病理学作业3

221321423425
12345 245 123 134

⑸ 超滤和反渗透净水器都是用活性碳去氯的,为什么超滤还是有氯,而反渗透没有氯

我可以很明确告诉你,氯离子是可以透过反渗透膜的,而且对于反渗透膜没有影响。但是余氯【余氯可分为化合性余氯(指水中氯与氨的化合物,有NH2Cl、NHCl2及NHCl3三种,以NHCl2较稳定,杀菌效果好),又叫结合性余氯;游离性余氯指水中的ClO-、HClO、Cl2等,杀菌速度快,杀菌力强,但消失快),又叫自由性余氯;总余氯即化合性余氯与游离性余氯之和】——网络具有氧化性会对聚酰胺膜造成巨大影响,所以需要严格控制。RO及NF进水中的游离氯要降到 0.05ppm 以下,才能达到聚酰胺复合膜的要求。【除氯的预处理方法有两种,粒状活性炭吸附和使用还原性药剂如亚硫酸钠。在小系统(50-00gpm)中一般用活性碳过滤器,投资成本比较合理。推荐使用酸洗处理过的优质活性炭,去除硬度、金属离子,细粉含量要非常低,否则会造成对膜的污染。新安装的碳滤料一定要充分淋洗,直到碳粉被完全除去为止,一般要几个小时甚至几天。我们不能依靠5μm的保安过滤器来保护反渗透膜不受碳粉的污染。碳过滤器的好处是可以除去会造成膜污染的有机物,对于所有进水的处理比添加药剂更为可靠。但其缺点是碳会成为微生物的饲料,在碳过滤器中孳生细菌,其结果是造成反渗透膜的生物污染。亚硫酸氢钠(SBS)是较大型RO装置选用的典型还原剂。将固体偏亚硫酸氢钠溶解在水中配制成溶液,商品偏亚硫酸氢钠的纯度为97.5-99%,干燥储存期6个月。BS溶液在空气中不稳定,会与氧气发生反应,所以推荐2%的溶液的使用期为3-7天, 10%以下的溶液使用期为7-14天。从理论上讲,1.47ppm的SBS(或0.70ppm偏亚硫酸氢钠)能够还原1.0ppm的氯。设计时考虑到工业苦咸水系统的安全系数,设定SBS的添加量为每1.0ppm氯1.8-3.0ppm。SBS的注入口要在膜元件的上游,设置距离要保证在进入膜元件有29秒的反应时间。推荐使用适当的在线搅拌装置(静态搅拌器)。SBS脱氯反应:Na2S2O5 (偏亚硫酸钠)+ H2O =2 NaHSO3 (亚硫酸氢钠) ·NaHSO3 + HOCl =NaHSO4 (硫酸氢钠) + HCl (盐酸)·NaHSO3 + Cl2 + H2O =NaHSO4 + 2 HCl采用SBS脱氯的好处是在大系统中比碳过滤器的投资较少,反应副产物及残余SBS易于被RO脱除。SBS脱氯的缺点是需要人工混合小体积的药剂,在脱氯系统没有设计足够的监测控制仪器时增加了氯对膜的威胁,而且在少数情况下进水中存在硫还原菌(SBR),亚硫酸会成为细菌营养帮助细菌的繁殖。SBR通常在浅层井水厌氧环境下有发现,硫化氢(H2S)作为SBR的代谢产物会同时存在。】——我所在本公司对外宣传资料对于超滤来说, 基本不需要预处理来除去余氯 ,因为超滤膜材质有一定耐氧化性(PVDF,PVC),不像RO膜娇贵,实际上有些超滤反洗就有用到次氯酸钠。常规的超滤预处理步骤是:混凝沉淀+多介质过滤器+保安过滤器+超滤或混凝沉淀+自清洗过滤器。还有很重要的一点是,超滤膜相对便宜,活性炭可是很贵的。实际上超滤的预处理,一般是为了除去微生物、降低浊度、去除悬浮物胶体物质、可溶性有机物这四大类,我基本没看到除余氯的。
求采纳

⑹ 生物分离高手进

这写起来复杂了....... 很多地方都有这样的实验步骤啊,我看了一下 下面这个,还可以
酶的分离简单,就是麻烦,时间挺长的

酶的分离纯化方法简介
生物细胞产生的酶有两类:一类由细胞内产生后分泌到细胞外进行作用的酶,称为细胞外酶。这类酶大都是水解酶,如酶法生产葡萄糖所用的两种淀粉酶,就是由枯草杆菌和根酶发酵过程中分泌的。这类酶一般含量较高,容易得到;另一类酶在细胞内产生后并不分泌到细胞外,而在细胞内起催化作用,称为细胞内酶,如柠檬酸、肌苷酸、味精的发酵生产所进行的一系列化学反应,就是在多种酶催化下在细胞内进行的,在类酶在细胞内往往与细胞结构结合,有一定的分布区域,催化的反应具有一定的顺序性,使许多反应能有条不紊地进行。
酶的来源多为生物细胞。生物细胞内产生的总的酶量虽然是很高的,但每一种酶的含量却很低,如胰脏中期消化作用的水解酶种类很多,但各种酶的含量却差别很大。
因此,在提取某一种酶时,首先应当根据需要,选择含此酶最丰富的材料,如胰脏是提取胰蛋白酶、胰凝乳蛋白酶、淀粉酶和脂酶的好材料。由于从动物内脏或植物果实中提取酶制剂受到原料的限制,如不能综合利用,成本又很大。目前工业上大多采用培养微生物的方法来获得大量的酶制剂。从微生物中来生产酶制剂的优点有很多,既不受气候地理条件限制,而且动植物体内酶大都可以在微生物中找到,微生物繁殖快,产酶量又丰富,还可以通过选育菌种来提高产量,用廉价原料可以大量生产。
由于在生物组织中,除了我们所需要的某一种酶之外,往往还有许多其它酶和一般蛋白质以及其他杂质,因此为制取某酶制剂时,必须经过分纯化的手续。
酶是具有催化活性的蛋白质,蛋白质很容易变性,所以在酶的提纯过程中应避免用强酸强碱,保持在较低的温度下操作。在提纯的过程中通过测定酶的催化活性可以比较容易跟踪酶在分离提纯过程中的去向。酶的催化活性又可以作为选择分离纯化方法和操作条件的指标,在整个酶的分离纯化过程中的每一步骤,始终要测定酶的总活力和比活力,这样才能知道经过某一步骤回收到多少酶,纯度提高了多少,从而决定着一步骤的取舍。

酶的分离纯化一般包括三个基本步骤:即抽提、纯化、结晶或制剂。首先将所需的酶从原料中引入溶液,此时不可避免地夹带着一些杂质,然后再将此酶从溶液中选择性地分离出来,或者从此溶液中选择性地除去杂质,然后制成纯化的酶制剂。下面就酶的分离纯化的常用方法作一综合介绍:
一、预处理及固液分离技术
1.细胞破碎(cell disruption)
高压均质器法:此法可用于破碎酵母菌、大肠菌、假单胞菌、杆菌甚至黑曲霉菌。将细胞悬浮液在高压下通入一个孔径可调的排放孔中,菌体从高压环境转到低压环境,细胞就容易破碎。菌悬液一次通过均质器的细胞破碎率在12%-67%。细胞破碎率与细胞的种类有关。要达到90%以上的细胞破碎率,起码要将菌悬液通过均质器两次。最好是提高操作压力,减少操作次数。但有人报道,当操作压力达到175Mpa时,破碎率可达100%。当压力超过70Mpa时,细胞破碎率上升较为缓慢。高压均质器的阀门是影响细胞破碎率的重要因素。丝状菌会堵塞均质器的阀门,尤其高浓度菌体时更是如此。在丰富培养基上比在合成培养基上生长的大肠菌更难破碎。
容菌酶处理法:蛋清中含有丰富的溶菌酶,价格便宜,常用来裂解细胞。具体做法是:溶壁微球菌(micrococcus lysodeikticus)43kg,置于0.5%的氯化钠溶液中,使细胞浓度为5%(干重),在35℃用0.68kg(干重)的蛋清处理20min,得到的细胞碎片用相同体积的乙醇处理,用离心机将细胞碎片和胞内蛋白质除去,再将乙醇浓度提高到75%(体积分数),可以得到纯度为5%的过氧化氢酶1500g。
2.离心
离心分离过程可分为离心过滤、离心沉淀、离心分离3种类型,所使用的设备有过滤式离心机、沉降式离心机和离心机。过滤式离心机的转鼓壁上开有小孔,壁上有过滤介质,一般可用于处理悬浮固体颗粒较大、固体含量较高的场合。沉降式离心机用于分离固体浓度较低的固液分离,如发酵液中的菌体,用盐析法或有机溶剂处理过的蛋白质等。分离机用于分离两种互不相溶的、密度有微小差别的乳浊液或含微量固体微粒的乳浊液。
在生物领域采用的离心机系统,除了应具备离心机的一般要求外,还应满足生物生产的技术要求,这包括灭菌、冷却、密封,以保证产品不受污染并不污染环境。现代哦离心机装置包括以下三个步骤,并进行程序控制:离心、离心系统的灭菌及就地清洗。如阿法-拉伐公司离心机产品的装置,具有双重轴向密封,密封由装在转筒主轴上下的碳化硅动环和固定环组成,密封由水连续冷却和润滑,可防止产品被污染,也可防止生产过程中排出的废物对环境的污染。该离心机又如一个密闭的压力容器,可在121℃温度下进行蒸汽灭菌,该离心设备设有环绕离心机转筒的冷却夹套,对悬浮液和浓缩的固体都能进行充分的冷却,并能有效地控制温度,这对于生物制品是非常重要的。如BTPX205型离心机可用于细胞收集、培养液的净化和细胞碎片的分离,可用于疫苗、酶制剂等的提取。该机的其他辅助系统及控制系统也较为完善,如设有压力指示器、力量计、温度传感器和液面传感器。
3.膜分离技术
在蛋白质纯化过程中主要用到的膜分离技术多为超滤。在静压作用下降溶液通过孔径非常小的滤膜,使溶液中分子量较小的溶质透过薄膜,而大分子被截留于膜表面。大多数超滤膜是由一层非常薄的功能膜与较厚的支撑膜结合在一起而组成的。功能膜决定了膜的孔径,而支撑膜提供机械强度以抵抗静压力。超滤浓缩的优点是:操作条件温和,无相变化,对生物活性物质没有破坏。
超滤系统主要由料液贮罐、泵、超滤器、透过液收集罐组成,料液经泵打入超滤器,水及低分子量物质排出超滤器外,被浓缩的料液在料液贮罐、泵、及超滤器中循环。当料液浓缩至一定的倍数后即可作为进一步处理的浓缩料液。
超滤应用于蛋白质类物质的浓缩和脱盐过程中时应注意以下问题:第一,在超滤循环过程中,由于泵和叶轮与料液的摩擦放热作用,料液的温度会逐渐升高,会造成蛋白质分子的损失。因此,料液贮罐应加冷却系统,并安装自动测温及控制系统。第二,某些酶的辅助因子散失为问题:一些酶含有辅助因子,其分子量小,超滤时易从透过液中排除掉,因而在超滤前或超滤后要添加一定浓度的的辅助因子。
还可将超滤与亲和层析相结合以提高分离纯度。其工作原理是:当溶液中欲被分离的蛋白质不受阻碍地通过超滤膜的孔隙时,如果在膜的一侧结合着亲和配基,该蛋白质就会与配基结合因而结聚在膜的这一侧。不与配基结合的其他物质就将穿过孔而被带走。再用适宜的洗脱剂将该蛋白质洗脱下来,洗脱液用于进一步的分离纯化。
4.泡沫分离
原理:将气体通入含多种组分的溶液中,由于这些组分的表面活性由差异,因此在溶液的表面,某些组分将形成泡沫,泡沫的稳定性取决于操作条件及溶液的生物学特性。泡沫中含有更多的表面活性成分,故泡沫的组分种类及其含量与溶液中的不相同。这样,溶液中的组分舅得以分离。
蛋白质较易吸附与气液界面,这有利于其结构的稳定。泡沫分离过程是:蛋白质从主体溶液中扩散到气液界面,该过程可能是可逆的也可能是不可逆的;分子发生重排,一般认为在空气-水界面会形成两种类型的膜,一种是稀膜,另一种是浓膜,可能会发生由多个分子聚集在一起的现象。在气液界面形成的蛋白质膜可以是单层的也可以是多层的。膜的类型取决于主体溶液及气液界面上蛋白质的特性、结构和浓度。
泡沫分离的目的,一方面提高酶蛋白的富集率(泡沫中蛋白质的浓度/最初溶液中蛋白质浓度),另一方面提高酶蛋白的提取率(泡沫中蛋白质的提取率/最初的蛋白质质量),或使多组分混合物中某一组分的分配系数最大。

二、抽提
沉淀
1. 盐析
常用的盐析剂是硫酸铵,其溶解度大、价格便宜。硫酸铵沉淀蛋白质的能力很强,其饱和溶液能使大多数的蛋白质沉淀下来。对酶没有破坏作用。
pH的控制:应从酶的溶解度与稳定性两个方面考虑,在酶等电点时其溶解度最小易沉淀,但有些酶再等电点时稳定性较差,因此要选择最佳pH值.一般要求在酶最稳定的pH值的前提下再考虑最适宜酶沉淀的pH值。在操作中一旦确定最佳pH值后,在添加硫酸铵之前甲酸或碱调节好酶液的pH值,要尽量避免溶液pH值的波动以免破坏酶的稳定性。在添加硫酸铵时要注意搅拌,并注意硫酸铵的加入速度,一般是由少到多,缓慢加入,硫酸铵尽可能磨成细粉。
温度的控制:有些酶在较高温度下稳定性能较好,可在常温下进行盐析操作,而对于大多数酶,尽可能在低温下操作。
酶液的净置:加完硫酸铵后,酶液要静置一段时间,使酶蛋白完全沉淀下来,酶静置后,就不要再加以搅拌。
2.有机溶剂沉淀
有机溶剂选择:可用于酶蛋白沉淀的有机溶剂包括醇类物质等,如甲醇、乙醇、异丙醇。乙醇的亲水性能较好,可防止蛋白质的变性,酶蛋白在其中的溶解度也较低。
有机溶剂沉淀操作:有机溶剂一般都使蛋白质变性,当温度较高时变性蛋白质分子就会变成永久失活。因此用有机溶剂处理时最好在0℃以下进行。用有机溶剂沉淀得到的酶蛋白不要放置过久,要尽快加水溶解。
3.聚合物絮凝剂沉淀
聚合物絮凝剂,如葡聚糖和聚乙二醇,与酶分子争夺水分子,具有脱水作用使酶沉淀。聚乙二醇作为一种沉淀剂的优点是在水溶液中,其浓度可达到50%,浓度为6%-12%的蛋白质大都可以沉淀下来。这种试剂不需要低温操作,而且对蛋白质的稳定还有一定的保护作用。聚乙二醇不会被吸附,故在离子交换吸附前不必去除。
4.用金属离子和络合物沉淀
酶和其他蛋白质都会形成金属盐,其溶解度较低。用金属离子沉淀的缺点是酶与金属离子相互作用后,可逆变化较差,尤其是用巯基衍生物,它结合的]金属离子会催化酶变性而失活。
5.用特殊试剂沉淀法
用链霉素可选择性去除核酸,从而使胞内酶沉淀出来。链霉素盐(浓度为0.5-1.0mg/mg蛋白质)对于选择性沉淀核酸的效果比锰离子还要好,酶不易失活。
6.亲和沉淀
将亲和反应的高度选择性、低处理量特性与沉淀操作的大处理量、地选择性有机结合形成了亲和沉淀技术。将配基与可溶性载体偶联后形成载体-配基复合物,该复合物与生物分子结合后在一定条件下可以沉淀出来。
配基-载体复合物可以选择性地与蛋白质结合,溶液中的pH值、离子强度及蛋白质浓度等条件对亲和结合的影响力并不大,只有竞争性的配基会降低产物与原配基的亲和结合力,甚至使亲和结合发生逆转。
引导产生沉淀的方法有:离子交联;加入带相反电荷的聚合物;加入带相反电荷的疏水基团;改变pH值,诱导产生疏水沉淀;温度诱导产生沉淀。
亲和结合:将亲和配基加入到含有目的物蛋白质的溶液中,调节好有关沉淀的条件,使之有利于亲和结合。
洗涤:为经过处理的粗制液中发生亲和沉淀可能会发生非特异性结合,尤其是使用带电的聚合物,离子交换的效应将使其他蛋白质共同沉淀,因此在分离目的物之前要洗涤沉淀物。其做法是:加入适当的清洗剂重新溶解沉淀,再沉淀;或在专一性洗脱之前,彻底清洗沉淀。在上述过程中要始终保持目的蛋白质与配基处于亲和结合状态。
配基-载体复合物与目的蛋白质的分离:分离结束之后,要确保回收目的蛋白质和配基-载体复合物,目的蛋白质要达到一定的纯度,回收率要高。

⑺ 气体分离膜的分离系数是固定的吗

高分子分离膜(一高分子为材料,而不是分离高分子),是一种高分子薄层物内。膜有固态,也有容液态。1846年,德国学者会拜思用硝基纤维素制成第一张高分子膜。1920年,麦克戈达开始观察和研究反渗透现象。30年代,人们将纤维素膜用于超滤分离。40年代,离子交换膜开发和利用及电渗析方法建立。50年代,加拿大学者萨里拉简研究反渗透。1960年,洛伯和萨里拉简成功地制备具有完整表皮和高度不对称的第一张高效能的反渗透膜,为该法奠定了基础。70年代以来,超滤膜、微滤膜成功地开发和应用,有支撑的液膜和乳液膜及气体分离膜也相继问世。
用于分离膜的高分子材料主要有聚酸胺类、聚酸亚胺类、聚砜类、聚乙烯酸类、丙烯类衍生物聚合物及纤维素类等,有关的共聚物和共混物也可作为膜材料用。各种高分子分离膜已广泛用于核燃料及金属提炼,气体及烃类分离,海水及苦咸水淡化,纯水及超纯水制备,环境保护和污水处理,人工脏器的制造,生物制品提纯以及医、食品、农业、化工等各个领域中。(摘自《国民科普大课堂》)

⑻ 为什么超滤设备运行过程不稳定

一、超滤透过通量
超滤在操作压力为0.1—0.6MPa、温度为60℃以下时,其透过通量应在100—500L/(m2.h)为宜,实际中比它要小得多,一般为1—100L/(m2.h)。当超滤透过浓差通量低于1L/(m2.h)时,过程缺乏经济效益,其原因是浓差极化在膜面上形成的边界层(或凝胶层),使流体阻力增加,因此必须相应采取一些措施来解决。
1、料液流速
提高料液流速对防止浓差极化、提高设备处理能力有利。但增大压力使工艺过程耗能增加,结果导致费用增大。一般湍流体系中流速为1—3m/s。
在螺旋式组件体系中,常在层流区操作,可在液流通道上设湍流促进材料,或采用振动的膜支撑物,在流道上产生压力波等方法,以改善流动状态,控制浓差极化,从而保证超滤组件的正常运行。
2、操作压力
超滤膜透过通量与操作压力的关系决定于膜和边界层的性质。在实际超滤过程中往往后者控制着超滤透过同量。在用渗透压模型时,膜透过通量与压力成正比,而用凝胶化模型时,膜透过通量与压力无关。此时的透过通量称为临界透过通量。实际中超滤操作应在临界透过通量附近进行,此时操作压力约为0.5—0.6MPa,除了克服透过膜的阻力外,还要克服通过膜表面的流体压力损失。
3、温度
操作温度主要决定与所处理料液的化学、物理性质和生物稳定性,应在膜设备和处理物质允许的最高温度下进行操作,因为高温可以减少料液的黏度,从而增加传质效率,提高透过通量。温度与扩散系数的关系,可以用下式表示:
μD/T=常数
由上式可见,温度T愈高,黏度μ变小,而扩散系数D则变大。例如,酶最高温度为25℃,电涂料为30℃,蛋白质为55℃,制奶工业为50—55℃,纺织工业脱浆废水中回收PVA时为85℃。
4、操作时间
随着超滤过程的进行,浓度极化在膜表面上形成了浓缩的凝胶层,使超滤透过通量下降。其透过通量随时间的衰减情况,与膜组件的水力特性、料液的性质和膜的特性有关。当超滤运行一段时间后,就需要进行清洗,这段时间称为一个运行周期,当然运行周期的变化还与清洗情况有关。
5、进料浓度
随着超滤过程的进行,料液(主体液流)的浓度在增高,此时黏度变小,边界层厚度扩大,这对超滤来说无论从技术上还是经济上都是不利的,因此对超滤过程主体液流的浓度应有一个限制,既最高允许浓度。
6、料液的预处理
为了提高膜的透过通量,保证超滤膜的正常稳定运行,在超滤前需对料液进行预处理,虽然超滤的预处理过程不像反渗透过程那么严格,但这种预处理也是保证实现超滤过程正常运行的关键,通常采用的预处理方法有:
(1)过滤;
(2)化学絮凝;
(3)PH调节;
(4)消毒;
(5)活性炭吸附;
上述预处理方法可以根据料液的性质和需要进行选用。
此外,经超滤回收的水,在使用前还需进行再处理(称为后处理,如电子工业用水)如脱除CO2、PH调节、过滤、消毒等。

⑼ 有关病理生理:为什么系膜细胞收缩引起肾小球血管阻力增加滤过面积减少超滤系数降低

系膜细胞收缩导致肾小球毛细血管内皮的基底膜也发生收缩,基底膜面积减小,从而减小肾小球滤过率。

热点内容
丁度巴拉斯情人电影推荐 发布:2024-08-19 09:13:07 浏览:886
类似深水的露点电影 发布:2024-08-19 09:10:12 浏览:80
《消失的眼角膜》2电影 发布:2024-08-19 08:34:43 浏览:878
私人影院什么电影好看 发布:2024-08-19 08:33:32 浏览:593
干 B 发布:2024-08-19 08:30:21 浏览:910
夜晚看片网站 发布:2024-08-19 08:20:59 浏览:440
台湾男同电影《越界》 发布:2024-08-19 08:04:35 浏览:290
看电影选座位追女孩 发布:2024-08-19 07:54:42 浏览:975
日本a级爱情 发布:2024-08-19 07:30:38 浏览:832
生活中的玛丽类似电影 发布:2024-08-19 07:26:46 浏览:239