离子交换膜工作原理
离子交换膜与离子交换树脂
离子交换膜又称“离子交换树脂膜”或“离子选择透过膜”。这是因为离子交换膜与用于水处理领域的粒状离子交换膜树脂,具有基本相同的结构,而且早期的离子交换膜就是使用离子交换树脂,通过加入粘合剂混炼拉片,然后加网热压成为膜状物的,所以,有“离子交换树脂漠”之称。
但是,离子交换膜和离子交换树脂之间,除形状之差而外,还有着根本不同的作用原理:离子交换树脂是通过离子的吸附、药品溶离和再生的离子交换机能进行脱盐,但离子交换膜不是通过离子交换的机能,而是以选择透过为其主要机理,将离子作为一种选择性通过的媒介物。
此外,在应用方法上也不相同,例如,离子交换树脂的使用过程包含着处理、交换、再生等步骤,而离子交换膜在应用过程中,可以连续作用,不必再生。由此看来,与其称为离子交换膜,不如称为“离子选择透过膜”更为确切。不过,根据长期的习惯,人们还是沿称“离子交换膜”。
离子交换膜可制成均相膜和非均相膜两类。
而离子交换树脂就属于非均相膜
①均相膜。先用高分子材料如丁苯橡胶、纤维素衍生物、聚四氟乙烯、聚三氟氯乙烯、聚偏二氟乙烯、聚丙烯腈等制成膜,然后引入单体如苯乙烯、甲基丙烯酸甲酯等,在膜内聚合成高分子,再通过化学反应引入所需功能基。也可通过甲醛、苯酚等单体聚合制得。
②非均相膜。用粒度为200400目的离子交换树脂和普通成膜性高分子材料如聚苯乙烯、聚氯乙烯等充分混合后加工成膜制得。
⑵ 高中化学中燃料电池为什么要用质子交换膜质子交换膜的作用是什么
离子交换膜是一种选择性透过的膜,比如阳离子交换膜,就只能有阳离子通过,阴离子就专不行。
他的属原理是通过成膜材料上面的基团,通过对离子的结合和分离,形成一条条离子通道。比如质子交换膜,通常会有一些易于质子结合的强电解质基团,比如磺酸根,质子很容易和基团结合,也很溶液分离,使得质子顺利通过膜。而驱动力可能是膜两侧的压力差、浓度差或者电势差等。用途一般是电化学上的应用,比如燃料电池。氯碱工艺。
燃料电池要用质子交换膜这个不准确,目前只有pemfc和dmfc是用质子交换膜的。它的原理上面简单说过了,你可以配合图看看书。他的作用是让质子通过,形成电流,同事阻隔正负极的氧化剂和燃料。用了他和没有用比有什么好处,这个问题只能说它是燃料电池的一个必须的组成部分,没有它电池根本都不工作。
有问题再问我吧
⑶ 离子交换膜基本原理及应用的内容简介
离子交换膜是膜技术的一种,主要用于电渗析技术处理水、电解隔膜、分离等,版在食品工业、电子工业、化工权、环境保护等领域有广泛的应用。
本书适用于从事化工、环保、医药、食品、电力、膜研究、电子半导体等技术人员及科研工作者参考。
⑷ 高中化学中燃料电池为什么要用质子交换膜质子交换膜的作用是什么用了它之后和没用相比有什么好处谢
高中化学中燃料电池为什么要用质子交换膜?质子交换膜的作用是什么?用了它之后和没用相比有什么好处?谢
还有,阳离子交换膜和阴离子交换膜在什么时候用啊?他们的原理是什么,有什么用途?这些膜我有没弄懂!谢谢各位哥哥姐姐啦,我马上要高考了,急啊!!谢谢O(∩_∩)O谢谢
我有更好答案
最佳答案
阳离子交换膜和阴离子交换膜作用是让阳离子或阴离子通过,形成电流,同事阻隔正负极的氧化剂和燃料,防止正负极氧化剂和燃料直接接触,其原理是离子交换膜的选择透过性。质子交换膜的作用是让质子通过,形成电流,同事阻隔正负极的氧化剂和燃料。
wenming... 推荐于:2017-09-18
17
22
分享
其他回答(3)
离子交换膜是一种选择性透过的膜,比如阳离子交换膜,就只能有阳离子通过,阴离子就不行。
他的原理是通过成膜材料上面的基团,通过对离子的结合和分离,形成一条条离子通道。比如质子交换膜,通常会有一些易于质子结合的强电解质基团,比如磺酸根,质子很容易和基团结合,也很溶液分离,使得质子顺利通过膜。而驱动力可能是膜两侧的压力差、浓度差或者电势差等。用途一般是电化学上的应用,比如燃料电池。氯碱工艺。
燃料电池要用质子交换膜这个不准确,目前只有pemfc和dmfc是用质子交换膜的。它的原理上面简单说过了,你可以配合图看看书。他的作用是让质子通过,形成电流,同事阻隔正负极的氧化剂和燃料。用了他和没有用比有什么好处,这个问题只能说它是燃料电池的一个必须的组成部分,没有它电池根本都不工作。
有问题再问我吧
bluecat... 2011-04-27
8
3
分享
质子交换膜是只允许水和质子(或称水合质子,H3O+)穿过的膜。
原理简单说就是:水合质子同质子交换膜中的磺酸基结合,然后从一个磺酸基到另一个磺酸基,最终到达另一边。理论上只允许水和质子通过,但实际上一些阳离子、小分子有机物也可能会通过
质子交换膜膜材料的改进及应用
质子交换膜燃料电池具有工作温度低、启动快、比功率高、结构简单、操作方便等优点,被公认为电动汽车、固定发电站等的首选能源。在燃料电池内部,质子交换膜为质子的迁移和输送提供通道,使得质子经过膜从阳极到达阴极,与外电路的电子转移构成回路,向外界提供电流,因此质子交换膜的性能对燃料电池的性能起着非常重要的作用,它的好坏直接影响电池的使用寿命。
迄今最常用的质子交换膜(PEMFC)仍然是美国杜邦公司的Nafion®膜,具有质子电导率高和化学稳定性好的优点,目前PEMFC大多采用Nafion®等全氟磺酸膜,国内装配PEMFC所用的PEM主要依靠进口。但Nafion®类膜仍存在下述缺点:(1)制作困难、成本高,全氟物质的合成和磺化都非常困难,而且在成膜过程中的水解、磺化容易使聚合物变性、降解,使得成膜困难,导致成本较高;(2)对温度和含水量要求高,Nafion®系列膜的最佳工作温度为70~90℃,超过此温度会使其含水量急剧降低,导电性迅速下降,阻碍了通过适当提高工作温度来提高电极反应速度和克服催化剂中毒的难题;(3)某些碳氢化合物,如甲醇等,渗透率较高,不适合用作直接甲醇燃料电池(DMFC)的质子交换膜。
因此,为了提高质子交换膜的性能,对质子交换膜的改进研究正不断进行着。从近两年的文献报道看,改进方法可采用以下几种方法:
(1)有机/无机纳米复合质子交换膜,依靠纳米颗粒尺寸小和比表面积大的特点提高复合膜的保水能力,从而达到扩大质子交换膜燃料电池工作温度范围的目的;
(2)对质子交换膜的骨架材料进行改进,针对目前最常用的Nafion®膜的缺点,或在Nafion®膜基础上改进,或另选用新型骨架材料;
(3)对膜的内部结构进行调整,特别是增加其中微孔,以使成膜方便,并解决催化剂中毒的问题。
另外,除了这3种改进,现有的许多研究都或多或少的采用了纳米技术,使材料更小,性能更佳。
以下对采用这三种方法的文献进行简要介绍。
(1)有机/无机纳米复合质子交换膜
2003年12月4日公开的Columbian化学公司世界专利WO2003100884揭示了一种磺酸导体聚合物接枝碳材料。其制作工艺为将含杂原子的导体聚合物单体在碳材料中氧化聚合,并磺化接枝,该方法也可进一步金属化聚合物接枝的碳材料。含碳材料可以是碳黑、石墨、纳米碳或fullerenes等。聚合物为聚苯胺、聚吡咯等。其质子电导率为8.9×10-2S/cm(采用Nafion-磺酸聚苯胺测试)。
国内较多专利均采用类似方法。如2003年6月公开的清华大学中国专利CN1476113,将膜基体含磺酸侧基的芳杂环聚合物加到溶剂中,形成均匀混合物后,加入无机物,形成悬浮物。通过纳米破碎技术对该悬浮物进行破碎,得到分散均匀的浆料,用浇注法制膜。其形成的膜结构均匀、相当致密。它不但能良好地抗甲醇渗透,还具有良好的化学稳定性和质子传导性,甲醇渗透率小于5%。
(2)对膜骨架聚合物材料进行改进
《Journal of Membrane Science》杂志2005年刊登了香港大学发表的论文,其采用原位酸催化聚合法,将Nafion和聚糠醇共聚,由该材料制备的质子交换膜明显改善了还原甲醇流量,其质子电导率为0.0848S/cm。
2004年公开的中山大学中国专利CN1585153,介绍了一种直接醇类燃料电池的改性质子交换膜的制备方法。所述制备方法是以市售的磺化树脂为原料,并加入无机纳米材料,通过流延法、压延法、涂浆法或浸胶法等成膜方法来制备质子交换膜。
(3)对膜的内部结构进行调整
《Elctrochimica Acta》杂志2004年刊登了韩国Gwangju科技学院的论文,其采用了选择改进型聚合物为质子交换膜,其选用了磺化聚苯乙烯-b-聚(乙烯-γ-丁烯)-b-聚苯乙烯共聚物(SSEBS),在微观形态下观察,呈现出纳米结构离子通道,这种质子交换膜的电抗性比普通质子交换膜更优异。
2001年公开的由华中科技大学申请的中国发明专利CN1411085,其在一块厚度h≤1mm的陶瓷薄膜构上有序分布有若干微孔,其孔径n≤2mm,微孔遍布整个陶瓷薄膜,在所述陶瓷薄膜的微孔内填充有高电导率的电解质。孔径n最好为纳米数量级。该质子交换膜的制备方法为:首先在厚度h≤1mm金属薄膜上制备有序微孔;再用电化学方法或其它方式氧化成陶瓷薄膜;然后在陶瓷薄膜的微孔中填充高电导率的电解质。这种方法成膜容易,制造成本低的特点,并且可以通过提高质子交换膜的工作温度解决催化剂中毒的问题。
此外,近期国外报道的一些质子交换膜制造方法还有:
WO200545976为Renault公司于2005年5月19日申请的有关离子导体复合质子交换膜的专利,其揭示了一种离子导体复合膜的制造方法,包括a)组合电子和离子性非导体聚合物,或在溶液或熔融状态下将低熔点盐与至少两种聚合物混合;b)与硅土水解类有机前驱体结合;c)与相适合的杂多酸有机溶液混合,铸造成膜,特别是成薄膜状,厚度为5~500微米,具有平滑表面,离子导体孔道为纳米级。其中聚合物选择为聚砜类和聚酰亚胺树脂。最终质子电导率为433k,100%RH条件下测试,达到(1.1~3.8)×10-2S/cm。
2005年3月10日公开的SABANCI大学世界专利WO200521845,使用了一种金属涂层的纳米纤维,此外还涉及电子纺纱纳米纤维的金属涂层工艺。
表1和表2分别列出了以上新方法所采用的材料、质子电导率及最终燃料电池的性能。
但目前对新方法的研究还未成熟,有一些缺点还有待进一步完善。例如:在添加无机物后复合膜会变脆且硬,成膜性变差,所以复合膜中有机物与无机物之间的适当比列变得尤其重要,这也是今后研究方向之一,此外,加入纳米粒子后,在膜的综合性能,如纳米粒子的分散性能、控制反应能量方面的研究也值得进一步关注。
ht19891... 2011-04-27
2
8
分享
燃料电池中才会用到,使得阳离子或者阴离子单项通过,使反应能够持续进行。
jun9209... 2011-04-27
⑸ EDI的基本工作原理是什么
EDI超纯水设备工作原理:
EDI工作原理如图所示。EDI膜块中将一定数量的EDI单元用格板隔开,内形成浓水室和淡水容室。又在单元两端设置阴/阳电极。在直流电的推动下,通过淡水室水流中的阴阳离子分别透过阴阳离子交换膜迁移到浓水室而在淡水室中去除。如下图:
请点击输入图片描述电场使进水中的水分
电场使进水中的水分子在离子交换树脂界面离解成H+及OH-,并不断地再生淡水室中阴、阳离子交换树脂。离子交换树脂中的阴、阳离子在再生过程中受到相应正负电极的吸引,透过阳、阴离子交换树脂向所对应的离子膜的方向迁移。当这些离子透过交换膜进入浓室后,H+及OH-重新结合成水。这种H+及OH-的产生、湮灭及阴、阳离子迁移正是离子交换树脂得以实现连续再生的机理。
⑹ 膜分离的基本原理是什么
把膜当作过抄滤器来理解就袭行了。分离的结果,需要滤液的称为过滤,需要过滤后的料液的称为浓缩。根据料液的性质不同,以及一些物理特性和所需要的物料结果,膜可以有多种形式的结构。比如,平板膜、板框膜、卷式膜、陶瓷膜、中空纤维膜。
按照通过的孔径的大小,可以分为微滤膜、超滤膜、纳滤膜、RO膜、离子交换膜、电极隔离膜等。
⑺ MBR膜生物反应器是怎样的工作原理
MBR膜原理
MBR以膜组件单元是将膜的高效分离技术与生物降解作用相结合而成的一种新型内高效的污水处理与回容用工艺。取代二沉池,所有悬浮物和胶体都被膜分离截留,膜分离作用增加了曝气池中活性污泥的浓度、提高了生物降解的速率,减少了剩余污泥的排放量。
出水水质:优于国家污水排放一级A标准,可用于绿化浇灌、洗车、马路降尘和冲洗、冲厕、消防、景观补充水等非饮用水场所。
⑻ EDI系统的工作原理
EDI超纯水设备工作原理:
EDI工作原理如图所示。EDI膜块中将一定数量的EDI单元用格内板隔开,形成浓水室和淡容水室。又在单元两端设置阴/阳电极。在直流电的推动下,通过淡水室水流中的阴阳离子分别透过阴阳离子交换膜迁移到浓水室而在淡水室中去除。如下图:
EDI模块膜堆主要由交替排列的阳离子交换膜、浓水室、阴离子交换膜、淡水室和正、负电极组成。在直流电场的作用下,淡水室中离子交换树脂中的阳离子和阴离子沿树脂和膜构成的通道分别向负极和正极方向迁移,阳离子透过阳离子交换膜,阴离子透过阴离子交换膜,分别进入浓水室形成浓水。同时EDI进水中的阳离子和阴离子跟离子交换树脂中的氢离子和氢氧根离子交换,形成超纯水(高纯水)。极限电流使水电解产生的大量氢离子和氢氧根离子对离子交换树脂进行连续的再生。传统的离子交换,离子交换树脂饱和后需要化学间歇再生。而EDI膜堆中的树脂通过水的电解连续再生,工作是连续的,不需要酸碱化学再生。
⑼ 离子交换膜基本原理及应用的介绍
《离子来交换膜基本原源理及应用》是一本书籍,该书全面系统地介绍了离子交换膜的制备、性能测定及其应用。全书分为基本原理卷和应用卷,内容新颖、翔实。基本原理卷部分概念清晰,图文并茂,易于理解;应用卷借助大量已成功应用的工业规模化的实例,介绍了离子交换膜特别是双极膜的应用。