edi阴极气体
❶ EDI极水中气泡一阵阵的怎么回事
极水中有气泡是很正常的,
● 阳极处的氧化反应产生 氧气、 氯气
● 阴极处的还原反应产生 氢气
如果气泡量太多的话看看是不是电流太大了
❷ 混床和EDI,哪一个对Si的去除效果更好
应该说两种方法对Si的去除效果是相当的,因为EDI技术本身是建立在电渗析技术和混床离子交换基础上的,EDI最终有效的工作单元也是树脂;至于在实际的使用过程中所产生的差异,是和在操作过程中的合理性密切相关的.比如流速\温度\PH\TOC\进水电阻等等都会影响到最后的效果,还要看硅在水中的性质,看是不是活性硅.如果都实在许可且最佳的操作条件下运行,两种方法对Si的去除效果是相当的.
与传统的混床技术相比,EDI工艺摒弃伴生废酸、废碱污染的传统离予交换技术,具有无化学污染、连续再生、启动和操作简单、模块更换方便、产水纯度更高、回收率更高、占地面积小、低 微生物污染风险等多个优点,对保护环境、节约能源非常有利,同时,EDI系统的树脂使用量仅为传统混床的5%,经济高效。深圳科瑞环保工程师认为,由于大部分溶解于水中的气体,如二氧化碳等都呈弱电性,EDI可以对其进行有效去除。EDI技术将电渗析技术和离子交换技术相融合,通过阴、阳离子交 换膜对阴、阳离子的选择性透过作用及离子交换树脂对离子的交换作 用,在直流电场的作用下实现离子的定向迁移,从而完成水的深度除盐,水质可达0. 1μs/cm-0.067μs/cm以下。在进行除盐的同时,水电离解产生的氢离子和氧氧根离子对离子交换树脂进行再生,因此不需酸碱化学再生而 能连续制取超纯水。
❸ EDI的工艺是什么
EDI电去离子工作原理:
EDI电去离子装置将离子交换树脂充夹在阴/阳离子交换膜之间形成EDI单元。EDI工作原理如图所示。 EDI组件中将一定数量的EDI单元间用网状物隔开,形成浓水室。又在单元组两端设置阴/阳电极。在直流电的推动下,通过淡水室水流中的阴阳离子分别穿过阴阳离子交换膜进入到浓水室而在淡水室中去除。而通过浓水室的水将离子带出系统,成为浓水。
EDI电去离子设备技术介绍:
EDI电去离子设备一般以反渗透(RO)纯水作为EDI给水。RO纯水电导率一般是40-2μS/cm(25℃)。EDI纯水电阻率可以高达17MΩ.cm(25℃),但是根据去离子水用途和系统工艺、配置不同,EDI纯水适用于制备电阻率要求在1-18.2MΩ.cm(25℃)的超纯水。
EDI电去离子技术的发展历程:
近几十年以来,混合床离子交换技术一直作为超纯水制备的标准工艺。由于其需要周期性的再生且再生过程中使用大量的化学药品(酸、碱)和纯水,并造成一定的环境问题,因此需要开发无酸碱处理的超纯水系统。
正因为传统的离子交换已经越来越无法满足现代工业和环保的需要,于是将膜、树脂和电化学原理相结合的EDI技术成为水处理技术的一场革命。其离子交换树脂的的再生使用的是电,而不再需要酸碱,因而更满足于当今世界的环保要求。
自从1986年EDI 膜堆技术工业化以来,全世界已安装了数千套EDI电去离子系统,尤其在制药、半导体、电力和表面清洗等工业中得到了大力的发展,同时在废水处理、饮料及微生物等领域也得到广泛使用。
EDI电去离子设备的特点:
⊙ 产水水质高且稳定、连续 ⊙ 操作简单、安全 ⊙ 不会因再生而停机
⊙ 不需酸、碱化学药剂再生 ⊙ 运行费用低于混床 ⊙ 占地面积小
⊙ 无污水排放 ⊙ 容易实现全自动控制
❹ EDI纯水到底是什么东西啊
EDI纯水应该是使用EDI模块制成的纯水。
EDI制备纯水的原理:
EDI连续电除盐水处理设备(电解式连续去离子)为模块式设备,可根据需要任意组合,该系统不需要停机再生,无需酸碱,因此废水排放问题也得到解决,更符合环保要求。可将水的电阻值由0.05-
0.1MQ/cM提升至15-18MQ/cM。EDI装置现已应用在半导体、电厂、电子、制药、实验室等领域制备高纯水;阴阳离子及混床离子交换水处理设备是利用阴阳离子树脂与水中溶解性盐类离子进行离子交换的水处理技术;
根据最终去除水中阴阳离子及混床离子交换除盐水系统的交换特性,可将系统分为:单床式离子交换除盐系统、双床式离子交换除盐系统和混床式离子交换除盐系统。
❺ EDI的具体作用是什么
EDI指的是EDI模块,EDI技术全称为:连续电除盐(EDI,Electro-deionization
或CDI,Continuous
deionization)
简单地说,是用来制备超纯水的产品,可取代超纯水树脂,但EDI模块的出水电阻率不超过16兆欧。
专业点说:EDI是利用填充在淡水室中的混合离子交换树脂吸附给水中的阴阳离子,同时这些被吸附的离子又在直流电压的作用下发生横向电迁移,并分别透过阴阳离子交换膜进入浓水室而被去除;另一方面,在给水前进的方向上,由于离子不断被去除,溶液的电导率越来越低,在直流电压的作用下水会发生解离以产生足够的H+和OH-离子来维持系统的电流量,这些水解离产生的H+和OHT除了发生横向电迁移外,还会就地把吸附有离子的树脂再生,从而实现连续深度脱盐。因此EDI过程的本质是离子交换、电渗析和水解离产生H+和OH-离子再生树脂这三个过程的综合过程。
❻ EDI 的系统组成是什么
EDI系统由技术标准、EDI软件及硬件、EDI技术通信网络3个要素组成。EDI装置由增压泵、电去离子(EDI)膜块、直流稳压电源、流量计、仪表等组成。
EDI系统是利用混合离子交换树脂吸附给水中的阴、阳离子,同时被吸附的离子又在直流电压的作用下,分别透过阴、阳离子交换膜而被去除的过程。电渗析器的一对电极之间,通常由阴膜,将一定数量的EDI单元间用网状网隔开,构成浓室和淡室。
淡室水中阳离子向负极迁移透过阳膜,被浓室中的阴膜截留,水中阴离子向正极方向迁移阴膜,被浓室中的阳膜截留,淡水又在单元组两端设置阴/阳离子分别穿过阴、阳离子交换膜进入浓水室而被去除。而通过浓水室的水将离子带出系统,成为浓水。从而达到淡化、提纯、浓缩或精制的目的。
(6)edi阴极气体扩展阅读
EDI膜堆是EDI工作的核心,膜堆是由阴、阳离子交换膜,淡、浓水室隔板,离子交换树脂和正负电极等按一定规则排列组合并夹紧所构成的单元。膜堆中淡 水室相当于一个混床,使用的离子交换树脂是磺酸型阳树脂和季胺型阴树脂,淡水室中的树脂必须装填紧密。
EDI膜堆系统在每个单元内都有两类不同的室,待除盐的淡水室和收集所除去杂质离子的浓水室。淡水室中用混匀的阴、阳离子交换树脂填满,这些树脂位于两个膜之间,只允许阳离子透过的阳离子交换膜及只允许阴离子透过的阴离子交换膜。
❼ EDI为什么必须阴极接地啊
看了一下其原理
EDI是利用电泳的原理除盐的,采用的是直流电
1.阴极接地是为了保证电极与设备具有相同的电势
使阴极和设备其他部件之间不存在吸附的效应,保证设备的持续运行
2.通电极板具体材料我不知道,但是采用此种吸附原理的设备。阳极一般会发生氧化腐蚀,这是其附带的效果。
阳极接地、设备外壳再接地带来的结果可能是,
加速我们不希望损坏的部件受到腐蚀。
(原理需要了解的话,可以参见石油输管道送的牺牲阳极保护法)
❽ 水处理行业中的EDI对设备起什么作用
EDI技术可以用来代替来传统自的混床离子交换树脂来制取纯水或超纯水,与混床不同的是EDI淡水室隔板中填充的离子交换树脂在工作时能够自动获得再生而不会饱和,不需要化学再生,从而使产水程度及出水水质非常稳定。除此之外,EDI技术还具有很多优点,比如可以不间断的出水,再生过程无需酸碱试剂,并且可以做到无人看管的全自动运行装置。
❾ EDI模块极水没冒泡是什么原因
GE EDI模块中E-CELL MK-3型号极水流会溢出电极室。极水流冷却电极并去除极水室产生内的任何气体。容由于极水流中可能出现氢气、氧气和氯气,因此这些气体应被送至通风口排出。有些氯气也会溶解在溶液中。由于氧化剂的存在,加上通风的要求和较小流量,极水流量都是排放,而不是被循环利用。极水流由淡水进口分流获取。
具体操作手册及问题分析请联系GE正规代理商北京盛大维新索要
❿ 电厂化学中 EDI是什么意思
三.水处理系统中的EDI
EDI(Electrodeionization,电去离子技术),是一种将离子交换技术、离子交换膜技术和离子电迁移技术相结合的纯水制造技术。它巧妙的将电渗析和离子交换技术相结合,利用两端电极高压使水中带电离子移动,并配合离子交换树脂及选择性树脂膜以加速离子移动去除,从而达到水纯化的目的。在EDI除盐过程中,离子在电场作用下通过离子交换膜被清除。同时,水分子在电场作用下产生氢离子和氢氧根离子,这些离子对离子交换树脂进行连续再生,以使离子交换树脂保持最佳状态。 EDI设施的除盐率可以高达99%以上,如果在EDI之前使用反渗透设备对水进行初步除盐,再经EDI除盐就可以生产出电阻率高达成15M .cm以上的超纯水。
EDI 膜堆是由夹在两个电极之间一定对数的单元组成。在每个单元内有两类不同的室:待除盐的淡水室和收集所除去杂质离子的浓水室。淡水室中用混匀的阳、阴离子交换树脂填满,这些树脂位于两个膜之间:只允许阳离子透过的阳离子交换膜及只允许阴离子透过的阴离子交换膜。 树脂床利用加在室两端的直流电进行连续地再生,电压使进水中的水分子分解成 H+及 OH-,水中的这些离子受相应电极的吸引,穿过阳、阴离子交换树脂向所对应膜的方向迁移,当这些离子透过交换膜进入浓室后, H +和 OH-结合成水。这种 H+和 OH-的产生及迁移正是树脂得以实现连续再生的机理。
当进水中的 Na+及 CI-等杂质离子吸咐到相应的离子交换树脂上时,这些杂质离子就会发生象普通混床内一样的离子交换反应,并相应地置换出 H+及 OH-。一旦在离子交换树脂内的杂质离子也加入到 H+及 OH-向交换膜方向的迁移,这些离子将连续地穿过树脂直至透过交换膜而进入浓水室。这些杂质离子由于相邻隔室交换膜的阻挡作用而不能向对应电极的方向进一步地迁移,因此杂质离子得以集中到浓水室中,然后可将这种含有杂质离子的浓水排出膜堆。
几十年来纯水的制备是以消耗大量的酸碱为代价的,酸碱在生产、运输、储存和使用过程中,不可避免地会带来对环境的污染,对设备的腐蚀,对人体可能的伤害以及维修费用的居高不下。反渗透的使用大大减少了酸碱的用量,但是,还留着条?/span>尾巴?/span>。反渗透和电除盐的广泛使用,将会带给纯水制备一次产业性革命。
EDI的工作原理
自来水中常含有钠、钙、镁、氯、硝酸盐、矽等溶解盐。这些盐是由负电离子(负离子)和正电离子(正离子)组成。反渗透可以除去其中超过99%的离子。自来水也含有微量金属,溶解的气体(如CO2)和其他必须在工业处理中去除的弱离子化的化合物(如矽和硼)。
RO出水(EDI进水)一般为4?0μ/cm(电导),根据不同需要,超纯水或去离子水一般电阻为2?8.2MΩ穋m。
交换反应在模组的纯化学室进行,在那里阴离子交换树脂用它们的氢氧根据离子(OH)来交换溶解盐中的阴离了(如氯离子C1)。相应地,阳离子交换树脂用它们的氢离子(H)来交换溶解盐中的阳离子(如Na)。
在位于模组两端的阳极(+)和阴极(?/span>)之间加一直流电场。电势就使交换到树脂上的离子沿着树脂粒的表面迁移并通过膜进入浓水室。阳极吸引负电离子(如OH,CI)这些离子通过阴离子膜进入相临的浓水流却被阳离子选择膜阻隔,从而留在浓水流中。阴极吸引纯水流中的阳离子(如H,Na)。这些离子穿过阳离子选择膜,进入相临的浓水流却被阴离子膜阴隔,从而留在浓水流中。当水流过这两种平行的室时,离子在纯水室被除去并在相临的浓水流中聚积,然后由浓水流将其从模组中带走。在纯水及浓水中离子交换树脂的使用是ElectropupreEDI技术和专利的关键。一个重要的现象在纯水室的离子交换树脂中发生。在电势差高的局部区域,电化学反应分解的水产生大量的H和OH。在混床离子交换树脂中局部H和OH的产生使树脂和膜不需要添加化学药品就可以持续再生。
要使EDI处于最佳工作状态、不出故障的基本要求就是对EDI进水要求进行适当的预处理。进水中的杂质对去离子模组有很大影响。并可能导致缩短模组的寿命。
系统特点
⊙ 产水水质高而稳定。
⊙ 连续不间断制水,不因再生而停机。
⊙ 无需化学药剂再生。
⊙ 设想周到的堆叠式设计,占地面积小。
⊙ 操作简单、安全。
⊙ 运行费用及维修成本低。
⊙ 无酸碱储备及运输费用。
⊙ 全自动运行,无需专人看护
纯水处理技术的发展主要经历了阴、阳离子交换器+混合离子交换器;反渗透+混合离子交换器;反渗透+电去离子装置等阶段。?/span>预处理 + 反渗透 + 电去离子?/span>整套除盐系统,有着其他处理系统无可比拟的优点,正被广泛应用于纯水、高纯水的制备中。
应用领域
⊙电厂化学水处理
⊙电子、半导体、精密机械行业超纯水
⊙制药工业工艺用水
⊙食品、饮料、饮用水的制备
⊙海水、苦咸水的淡化
⊙精细化工、精尖学科用水
⊙其他行业所需的高纯水制备