在动作电位去极相钾离子通道也被激活
1. 兴奋由动作电位恢复到静息电位K离子通道开放吗
开放的。
由于神经细胞膜内外各种电解质的离子浓度不同,膜外钠离子浓度高。膜内钾离子浓度高,而神经细胞膜对不同离子的通透性各不相同。
神经细胞膜在静息时对钾离子的通透性大,对钠离子的通透性小,膜内的钾离子扩散到膜外,而膜内的负离子却不能扩散出去, 膜外的钠离子也不能扩散进来,因而出现极化状态。即膜外为正电位,膜内为负电位。
在神经纤维膜上有两种离子通道。一种是钠离子通道,一种是钾离子通道。当神经某处受到剌激时会使钠通道开放,于是膜外钠离子在短期内大量涌人膜内,造成了内正外负的反极化现象。
但在很短的时期内钠通道又重新关闭,钾通道随即开放,钾离子又很快涌出膜外,使得膜电位又恢复到原来外正内负的状态。
如果给细胞膜一个较小的不能使其产生动作电位的电刺激,细胞膜将产生一个分级电位(graded potential)。不断增加刺激强度,则分级电位的幅值也逐渐增大,分级电位产生的是一种去极化的局部电位。
(1)在动作电位去极相钾离子通道也被激活扩展阅读
当给细胞膜一个能使其产生动作电位的阈刺激时,就会观察到,首先出现一个缓慢的去极化过程,当去极化达到约-55~-50 mV的临界水平时,即阈电位时,立即产生了一个爆发的去极化过程。首先记录到一个尖锐的向上偏转的电位波形,达到0 mV后膜电位的极性翻转。
与细胞膜外相比,此时细胞膜内的电位为正,然后膜又迅速复极化,回到静息电位水平。由于复极化的驱动力通常较大,使得膜电位的恢复超过了静息电位值,产生了一个比静息电位还负的电位(如,-80 mV),即正后电位,然后才回到静息膜电位水平。
从阈电位到峰值,然后回到静息水平这段迅速的电位变化称为动作电位(action potential)。动作电位的膜极性翻转部分(0~+30 mV之间)称为超射(overshoot)。在一个给定的细胞中,动作电位的波形永远是相同的。神经细胞的动作电位一般仅持续1 ms的时间。
2. 一道高中生物题目 关于动作电位传导的
这个图的区别来,就在于自有个向右的箭头。我记得你们高中物理学了波的传播这块内容,可以迁移一下。如果没有这个向右箭头,就标明是一个点上,不同时间的变化。有了这个箭头,表示同一个时间,不同位置的电位。
看关键点3这个点。这个点已经在电位最高了,有向下的趋势。说明这个点之前的位置,已经到达“过”最高点了(因为传递方向是向右的。),也就是说,这个点之前的点都是在向下,即复极化过程。这个过程中,钠离子通道关闭,钾离子通道打开,钾离子外流,所以A错误。同理,2也是这个情况,而1已经复极化完成,达到极化状态了。
对于3之后的位置,还没有达到最高点,所以有向上的趋势,4这个位置,已经在阈电位(也就是电位差为0)的上面,这个时候是钠离子通道大量开放,钠离子大量内流的过程。
同理,5这个点是将要进行钠离子开放,此时还是极化状态。所以B正确。
3. 动作电位中离子通道、钠钾泵的活性变化
神经细胞在静息条件下维持稳定的外正内负的膜电位,即静息电位,这主要是由于Na-K泵的工作,膜上的通道蛋白将钠离子不断排到膜外,将钾离子运输到膜内,但由于细胞膜对于钾离子的通透性大于钠离子,所以运输到膜内的钾离子会少量溢出膜外,这样就在细胞膜内外形成稳定的外正内负电压差,即,静息电位,这个过程又叫做极化。
当细胞接受到外界刺激时,钠离子通道打开,引起钠离子瞬间大量内流,这使得静息电位减小乃至消失,称为去极化过程;钠离子进一步内流可以形成瞬间内正外负的动作电位,称为质膜的反极化,当钠离子内外平衡时,动作电位随即达道最大值;在钠离子大量进入细胞时,钾离子通道逐渐打开,钠离子通道从失活到关闭,钾离子通道完全打开,这时钾离子的大量外流使得质膜再度极化,以至于超过原来的静息电位,此时称为超极化;超极化时膜电位又恢复至静息电位。这期间,钠离子通道经历了关闭态-开放态-无活性态-关闭态的变化过程。
随后细胞又会在钠钾泵的作用下不断将钠离子排出膜外,钾离子吸收到膜内,当然这时不会再影响膜电位这种外正内负的状态了。钠钾泵对于静息电位的维持起着至关重要的作用。
这就是神经细胞静息以及兴奋传导时的分子变化过程。
4. 动作电位形成时钾离子通道是不是关闭
高中阶段认为是关闭的。
5. 关于神经传导,传说冲动是由于钠离子内流动作电位然后钾离子外流回复静息电位,那么钾离子什么时候又进来
细胞外钠离子的浓度比细胞内高的多,它有从细胞外向细胞内扩散的趋势,但钠离子能否进人细胞是由细胞膜上的钠通道的状态来决定的。当细胞受到刺激产生兴奋时, 测单一神经纤维静息和动作电位的实验模式图
首先是少量兴奋性较高的钠通道开放,很少量钠离子顺浓度差进人细胞,致使膜两侧的电位差减小,产生一定程度的去极化。当膜电位减小到一定数值(阈电位)时,就会引起细胞膜上大量的钠通道同时开放,此时在膜两侧钠离子浓度差和电位差(内负外正)的作用下,使细胞外的钠离子快速、大量地内流,导致细胞内正电荷迅速增加,电位急剧上升,形成了动作电位的上升支,即去极化。当膜内侧的正电位增大到足以阻止钠离子的进一步内流时,也就是钠离子的平衡电位时,钠离子停止内流,并且钠通道失活关闭。在此时,钾通道被激活而开放,钾离子顺着浓度梯度从细胞内流向细胞外,大量的阳离子外流导致细胞膜内电位迅速下降产生去极化,形成了动作电位的下降支,即复极化。此时细胞膜电位虽然基本恢复到静息电位的水平,但是由去极化流人的钠离子和复极化流出钾离子并未各自复位,此时,通过钠泵的活动将流人的钠离子泵出并将流出的钾离子泵人,恢复动作电位之前细胞膜两侧这两种离子的不均衡分布,为下一次兴奋做好准备。[1]
总之,动作电位的去极化是由于大量的钠通道开放引起的钠离子大量、快速内流所致;复极化则是由大量钾通道开放引起钾离子快速外流的结果。[1]
动作电位的幅度决定于细胞内外的钠离子浓度差,细胞外液钠离子浓度降低动作电位幅度也相应降低,而阻断钠离子通道(河豚毒素)则能阻碍动作电位的产生。
6. K离子通道开放是处在静息电位时,动作电位过程中(如绝对不应期和相对不应期),K离子通道是否开放
电压门控的钾通道只有一道门、两种功能状态。安静时,是关闭状态,门是关专闭的;激属活时是开放状态,此时门是开放的。
动作电位的上升支主要是由于当细胞受到刺激膜电位减小到一定数值时引起细胞膜上钠通道开放,使细胞外的钠离子大量内流,导致细胞内正电荷增加电位上升造成的。此时一般认为钾离子通道是关闭的,但实际仍有少量钾离子外流。
7. 动作电位产生时,钠离子通道打开,钾离子通道关闭,此时钠钾泵会工作吗
钠钾泵应该是动作电位结束之后才工作