离子交换盐浓度akta
『壹』 离子交换色谱中,为何能够利用pH梯度改善分离选择性
呵呵,刚才加了AKTA的培训,就献丑了。
离子交换色谱中,PH的影响极大。要知道为内何能够利用pH梯度改善分离选择性容?就得知道其原理:
离子色谱是利用相反电荷之间的相互作用来分离的,当检测物质带负电荷时,要选择阴离子色谱柱,阴离子色谱柱带正电荷的配基,进行阴离子-阳离子交换,结合带负电荷的分子,经过交换后检测物质的带负电荷的分子就会吸附色谱柱上,然后在用高盐洗脱,洗脱的组分先后进入检测器,就达到了检测的目的。
当检测物质带正电荷时,道理类似,自己想吧。
pH梯度可以改变检测物质电荷、偏离等电点的程度,从而影响带正/负电荷的分子(或离子)与色谱柱的结合能力(可以认为是牢固程度),洗脱时的难易程度就改变,从而改变了分离选择性。
更多问题可以去我的空间:http://hi..com/yyx520
『贰』 AKTA离子交换各参数代表什么纵坐标代表是什么
UV1 280nm就是波长280nm的紫外吸收
UV2 254nm就是波长280nm的紫外吸收
Cond是流动相的电导
Conc是梯度
pH就是流动相的pH
Pressure就是系统压力
Flow就是系统泵的流速
Temp就是系统内的温度
以上这些都可以作为纵坐标
横坐标就是流动相体积
『叁』 过离子交换柱时,pH梯度洗脱缓冲液一般用什么缓冲液
如果不限定纯化方法,可以考虑亲和层析或离子交换,但根据你问题的意思版,是选定离子权交换。
此时就要考虑你蛋白的等电点了,如果等电点在你稳定pH之上,就用阳离子交换柱:
设计阳离子交换层析:将你的样品置换到你所指的稳定pH的running
buffer。同时装柱,平衡,然后上样,平衡,洗脱(因为你的pH不稳定,建议盐洗脱),收峰。得你的蛋白;
如果你的等电点在稳定pH之下,就用阴离子交换柱,其步骤如上,只是改变柱子类型。
『肆』 英文翻译
这样一个情况,会支持的结合蛋白
“低半胱氨酸型”,可能存在于一些冷冻避免
从寒冷地区。无脊椎动物从这些物种所依赖的动物
在生产半胱氨酸丰富蛋白质(17-19%防冻剂,看看
”等,1998;名,1999),促进过冷
为了避免致命,让他们在冬季冻结
(Zachariassen硕士(1985年),2001)。”在最近的一项研究chronical
接触到的Cd,铜或墨里托锌在冬季适应环境
没有显著的效果的能力吗
制造防冻剂蛋白(小等,2006)。这个发现
在目前的研究中,这一Cd-binding诱导蛋白的
“低半胱氨酸式”负责大部分的Cd-binding
t,可能作为墨里托补充可以解释。
为什么不减少蛋白质的生产能力防冻剂
可观察到的现象。
然而,更多的信息关于结构、动力学和
这些蛋白的内部国产化之前是必要的
功能性作用可以被指定给这些毒蛋白质。
放射性标记homogenates 2.6的40毫升)(∼
直接用于离子交换柱(XK-16/20的包装
Sepharose和Q高性能、Amersham生物科学领域,
乌普萨拉、瑞典)使用一种蛋白质净化系统(AKTA
主要有50毫升,Amersham super-loop生物)。
蛋白质是eluted 140分钟时的最小流量−1 1毫升
一个渐变的缓冲液(20毫米/盐酸三)pH 7.6 55%
1MNaCl缓冲(20 mMTris /盐酸、pH 7.6)。吸
以214米(肽键)。109Cd内容
确定所有收集分数(1毫升)使用的
柜台。分数,给了顶峰109Cd活性
集中和集中使用Macrosep∼50毫升1K
与Omega离心设备kDa切断(笼罩着生命
科学)。2.8纯净的109Cd-peak排除步骤。
为了避免氧化的半胱氨酸和蛋氨酸
在真空中水解进行。
『伍』 ge akta初安装时是否用丙酮测试
丙酮主复要是用来测试层析柱的柱制效的
用来测试AKTA的话也就只能看看紫外检测池正不正常
柱子性能可定期通过注入丙酮检测柱效(N)和峰对称性(不对称因子,AS)衡量。
在层析中柱效在相同浓度下通过注入丙酮(不与填料反应)测量洗脱峰进行检测,通常情况下,一个好的H值(柱床长度)大约是填充的填料颗粒平均直径的2-3倍。如对于90μm的颗粒H值为0.018-0.027cm。
对称因子AS表述为:
AS=
其中
=10%峰高处第一次半峰宽
=10%峰高处第二次半峰宽
AS应当接近1。对于短柱子当使用疏水相互作用层析或反相层析时合理的AS为0.80-1.80。
『陆』 aktapure层析系统检测蛋白质时,怎样判定为纯蛋白质
蛋白质分离鉴定的常用方法: 沉淀法 沉淀法也称溶解度法。其纯化生命大分子物质的基本原理是根据各种物质的结构差异性来改变溶液的某些性质,进而导致有效成分的溶解度发生变化。 1、盐析法 盐析法的根据是蛋白质在稀盐溶液中,溶解度会随盐浓度的增高而上升,但当盐浓度增高到一定数值时,使水活度降低,进而导致蛋白质分子表面电荷逐渐被中和,水化膜逐渐被破坏,最终引起蛋白质分子间互相凝聚并从溶液中析出。 2、有机溶剂沉淀法 有机溶剂能降低蛋白质溶解度的原因有二:其一、与盐溶液一样具有脱水作用;其二、有机溶剂的介电常数比水小,导致溶剂的极性减小。 3、蛋白质沉淀剂 蛋白质沉淀剂仅对一类或一种蛋白质沉淀起作用,常见的有碱性蛋白质、凝集素和重金属等。 4、聚乙二醇沉淀作用 聚乙二醇和右旋糖酐硫酸钠等水溶性非离子型聚合物可使蛋白质发生沉淀作用。 5、选择性沉淀法 根据各种蛋白质在不同物理化学因子作用下稳定性不同的特点,用适当的选择性沉淀法,即可使杂蛋白变性沉淀,而欲分离的有效成分则存在于溶液中,从而达到纯化有效成分的目的。 吸附层析 1、吸附柱层析 吸附柱层析是以固体吸附剂为固定相,以有机溶剂或缓冲液为流动相构成柱的一种层析方法。 2、薄层层析 薄层层析是以涂布于玻板或涤纶片等载体上的基质为固定相,以液体为流动相的一种层析方法。这种层析方法是把吸附剂等物质涂布于载体上形成薄层,然后按纸层析操作进行展层。 3、聚酰胺薄膜层析 聚酰胺对极性物质的吸附作用是由于它能和被分离物之间形成氢键。这种氢键的强弱就决定了被分离物与聚酰胺薄膜之间吸附能力的大小。层析时,展层剂与被分离物在聚酰胺膜表面竞争形成氢键。因此选择适当的展层剂使分离在聚酰胺膜表面发生吸附、解吸附、再吸附、再解吸附的连续过程,就能导致分离物质达到分离目的。 离子交换层析 离子交换层析是在以离子交换剂为固定相,液体为流动相的系统中进行的。离子交换剂是由基质、电荷基团和反离子构成的。离子交换剂与水溶液中离子或离子化合物的反应主要以离子交换方式进行,或借助离子交换剂上电荷基团对溶液中离子或离子化合物的吸附作用进行。 凝胶过滤 凝胶过滤又叫分子筛层析,其原因是凝胶具有网状结构,小分子物质能进入其内部,而大分子物质却被排除在外部。当一混合溶液通过凝胶过滤层析柱时,溶液中的物质就按不同分子量筛分开了。 亲和层析 亲和层析的原理与众所周知的抗原-抗体、激素-受体和酶-底物等特异性反应的机理相类似,每对反应物之间都有一定的亲和力。正如在酶与底物的反应中,特异的底物(S)才能和一定的酶(E)结合,产生复合物(E-S)一样。在亲和层析中是特异的配体才能和一定的生命大分子之间具有亲和力,并产生复合物。而亲和层析与酶-底物反应不同的是,前者进行反应时,配体(类似底物)是固相存在;后者进行反应时,底物呈液相存在。实质上亲和层析是把具有识别能力的配体L(对酶的配体可以是类似底物、抑制剂或辅基等)以共价键的方式固化到含有活化基团的基质M(如活化琼脂糖等)上,制成亲和吸附剂M-L,或者叫做固相载体。而固化后的配体仍保持束缚特异物质的能力。因此,当把固相载体装人小层析柱(几毫升到几十毫升床体积)后,让欲分离的样品液通过该柱。这时样品中对配体有亲和力的物质S就可借助静电引力、范德瓦尔力,以及结构互补效应等作用吸附到固相载体上,而无亲和力或非特异吸附的物质则被起始缓冲液洗涤出来,并形成了第一个层析峰。然后,恰当地改变起始缓冲液的pH值、或增加离子强度、或加入抑制剂等因子,即可把物质S从固相载体上解离下来,并形成了第M个层析峰。显然,通过这一操作程序就可把有效成分与杂质满意地分离开。如果样品液中存在两个以上的物质与固相载体具有亲和力(其大小有差异)时,采用选择性缓冲液进行洗脱,也可以将它们分离开。用过的固相载体经再生处理后,可以重复使用。 上面介绍的亲和层析法亦称特异性配体亲和层析法。除此之外,还有一种亲和层析法叫通用性配体亲和层析法。这两种亲和层析法相比,前者的配体一般为复杂的生命大分子物质(如抗体、受体和酶的类似底物等),它具有较强的吸附选择性和较大的结合力。而后者的配体则一般为简单的小分子物质(如金属、染料,以及氨基酸等),它成本低廉、具有较高的吸附容量,通过改善吸附和脱附条件可提高层析的分辨率。 聚焦层析 聚焦层析也是一种柱层析。因此,它和另外的层析一样,照例具有流动相,其流动相为多缓冲剂,固定相为多缓冲交换剂。 聚焦层析原理可以从pH梯度溶液的形成、蛋白质的行为和聚焦效应三方面来阐述。 1、PH梯度溶液的形成 在离子交换层析中,pH梯度溶液的形成是靠梯度混合仪实现的。例如,当使用阴离子交换剂进行层析时,制备pH由高到低呈线性变化的梯度溶液的方法是,在梯度仪的混合室中装高pH溶液,而在另一室装低pH极限溶液,然后打开层析柱的下端出口,让洗脱液连续不断地流过柱体。这时从柱的上部到下部溶液的pH值是由高到低变化的。而在聚焦层析中,当洗脱液流进多缓冲交换剂时,由于交换剂带具有缓冲能力的电荷基团,故pH梯度溶液可以自动形成。例如,当柱中装阴离子交换剂PBE94(作固定相)时,先用起始缓冲液平衡到pH9,再用含pH6的多缓冲剂物质(作流动相)的淋洗液通过柱体,这时多缓冲剂中酸性最强的组分与碱性阴离子交换对结合发生中和作用。随着淋洗液的不断加入,柱内每点的pH值从高到低逐渐下降。照此处理J段时间,从层析柱顶部到底部就形成了pH6~9的梯度。聚焦层析柱中的pH梯度溶液是在淋洗过程中自动形成的,但是随着淋洗的进行,pH梯度会逐渐向下迁移,从底部流出液的pH却由9逐渐降至6,并最后恒定于此值,这时层析柱的pH梯度也就消失了。 2、蛋白质的行为 蛋白质所带电荷取决于它的等电点(PI)和层析柱中的pH值。当柱中的pH低于蛋白质的PI时,蛋白质带正电荷,且不与阴离于交换剂结合。而随着洗脱剂向前移动,固定相中的pH值是随着淋洗时间延长而变化的。当蛋白质移动至环境pH高于其PI时,蛋白质由带正电行变为带负电荷,并与阴离子交换剂结合。由于洗脱剂的通过,蛋白质周围的环境pH 再次低于PI时,它又带正电荷,并从交换剂解吸下来。随着洗脱液向柱底的迁移,上述过程将反复进行,于是各种蛋白质就在各自的等电点被洗下来,从而达到了分离的目的。 不同蛋白质具有不同的等电点,它们在被离子交换剂结合以前,移动之距离是不同的,洗脱出来的先后次序是按等电点排列的。 3、聚焦效应 蛋白质按其等电点在pH梯度环境中进行排列的过程叫做聚焦效应。pH梯度的形成是聚焦效应的先决条件。如果一种蛋白质是加到已形成pH梯度的层析柱上时,由于洗脱液的连续流动,它将迅速地迁移到与它等电点相同的pH处。从此位置开始,其蛋白质将以缓慢的速度进行吸附、解吸附,直到在等电点pH时被洗出。若在此蛋白质样品被洗出前,再加入第二份同种蛋白质样品时,后者将在洗脱液的作用下以同样的速度向前移动,而不被固定相吸附,直到其迁移至近似本身等电点的环境处(即第一个作品的缓慢迁移处)。然后两份样品以同样的速度迁移,最后同时从柱底洗出。事实上,在聚焦层析过程中,一种样品分次加入时,只要先加入者尚未洗出,并且有一定的时间进行聚焦,剩余样品还可再加到柱上,其聚焦过程都能顺利完成,得到的结果也是满意的。 气相色谱 多种组分的混合样品进入色谱仪的气化室气化后呈气态。当载气流入时,气化的物质被带人色谱柱内,在固定相和流动相中不断地进行分配.在理想状态下,溶质于气-液两相间的分配可用分配系数Kg描述。当分配系数小时,溶质在柱中就停留时间短,也即滞留因子(Rf)大,所以它将首先从色谱柱流出而进入鉴定器,经放大系统放大后,输出讯号便在记录仪中自动记录下来,这时呈现的图形为色谱图,亦称色谱峰;当分配系数大时,溶质在柱中停留时间就长,其色谱图在记录仪上后出现。由于不同物质有不同的分配系数,所以将一混合样品通过气-液色谱柱时,其所含组分就可得到分离。 气相色谱柱效率高、分辨率强的重要原因是,理论塔板数(N)大。毛细管气相色谱的N可达105~6。增加理论塔板数和降低样品组分的不同分子在展层中扩展程度(速率理论),就可明显地提高柱效。以下将讨论塔板理论和速率理论对柱效的影响: 1、塔板理论 塔板理论是将色谱假设为一个蒸馏塔,塔内存在许多块塔板,样品各组分在每块塔板的液相和气相间进行分配,在柱内塔板间高度H(即理论塔板高度)一定时,在有效范围内,柱子越长,N也就越大,样品各组分分配次数也就越多,分辨率自然提高;若柱长一定时,塔板理论高度H越小,就越能增加样品各组分的分配次数,进而提高其分辨率。因此 N=L/H 在线性分配和忽略塔板间纵向扩散的条件下,根据样品组分的保留时间tr、峰宽W或半峰高宽度2ΔXi,Martin导出了计算N的公式,样品组分峰宽度值越小,理论塔板数越高。实际上,进行色谱分析时,峰宽度值的大小是衡量分辨率高低的一个尺度。 2、速率理论 根据塔板理论,在H(塔板理论高度)一定时,增加柱长可以提高柱效。但是,柱子过长,将会延长分析时间,降低检测的灵敏度。所以实践中应设法降低H,提高柱效。 速率理论主要是分析同一样品的不同分子,在色谱柱中迁移速度差异所引起色谱峰的扩张程度。而涡流扩散、纵向分子扩散和质量传递(包括流动相传质和固定相传质)等因子与速率理论值(H)的密切关系可用下面的公式表示: H=A+B/U+C 涡流扩散(A)是由于样品组分随着流动相的移动通过固定相颗粒不均匀的色谱柱时,引起同一组分的不同分子在流动相中形成不规则的"涡流",致使色谱峰变宽、柱效降低。如固定相颗粒均匀、直径小时,则可降低"涡流"现象发生。 纵向扩散(B/U)亦称分子扩散项。纵向扩散与样品分子在色谱柱中的流畅程度(有无阻碍)、流动相的速度(U)等因子有关。因此,降低溶质在流动相中扩散系数和缩短溶质在流动相中停留时间,均可降低纵向扩散。 传质阻力(C):溶质分子在气相与气液界面进行交换所受的阻力,以及在进入固定相液膜传递的差异性统称传质阻力。传质阻力分别与固定相颗粒直径的平方和固定相液膜厚度成正比关系。 高效液相色谱 高效液相色谱按其固定相的性质可分为高效凝胶色谱、疏水性高效液相色谱、反相高效液相色谱、高效离子交换液相色谱、高效亲和液相色谱以及高效聚焦液相色谱等类型。用不同类型的高效液相色谱分离或分析各种化合物的原理基本上与相对应的普通液相层析的原理相似。其不同之处是高效液相色谱灵敏、快速、分辨率高、重复性好,且须在色谱仪中进行。 高效液相色谱仪主要有进样系统、输液系统、分离系统、检测系统和数据处理系统,下面将分别叙述其各自的组成与特点。 1、进样系统 一般采用隔膜注射进样器或高压进样器完成进样操作,进样量是恒定的。这对提高分析样品的重复性是有益的。 2、输液系统 该系统包括高压泵、流动相贮存器和梯度仪三部分。高压泵的一般压强为l.47~4.4×107Pa,流速可调且稳定,当高压流动相通过层析柱时,可降低样品在柱中的扩散效应,可加快其在柱中的移动速度,这对提高分辨率、回收样品、保持样品的生物活性等都是有利的。流动相贮存和梯度仪,可使流动相随固定相和样品的性质而改变,包括改变洗脱液的极性、离子强度、pH值,或改用竞争性抑制剂或变性剂等。这就可使各种物质(即使仅有一个基团的差别或是同分异构体)都能获得有效分离。 3、分离系统 该系统包括色谱柱、连接管和恒温器等。色谱柱一般长度为10~50cm(需要两根连用时,可在二者之间加一连接管),内径为2~5mm,由"优质不锈钢或厚壁玻璃管或钛合金等材料制成,住内装有直径为5~10μm粒度的固定相(由基质和固定液构成)。固定相中的基质是由机械强度高的树脂或硅胶构成,它们都有惰性(如硅胶表面的硅酸基团基本已除去)、多孔性(孔径可达1000?)和比表面积大的特点,加之其表面经过机械涂渍(与气相色谱中固定相的制备一样),或者用化学法偶联各种基团(如磷酸基、季胺基、羟甲基、苯基、氨基或各种长度碳链的烷基等)或配体的有机化合物。因此,这类固定相对结构不同的物质有良好的选择性。例如,在多孔性硅胶表面偶联豌豆凝集素(PSA)后,就可以把成纤维细胞中的一种糖蛋白分离出来。 另外,固定相基质粒小,柱床极易达到均匀、致密状态,极易降低涡流扩散效应。基质粒度小,微孔浅,样品在微孔区内传质短。这些对缩小谱带宽度、提高分辨率是有益的。根据柱效理论分析,基质粒度小,塔板理论数N就越大。这也进一步证明基质粒度小,会提高分辨率的道理。 再者,高效液相色谱的恒温器可使温度从室温调到60C,通过改善传质速度,缩短分析时间,就可增加层析柱的效率。 4、检测系统 高效液相色谱常用的检测器有紫外检测器、示差折光检测器和荧光检测器三种。 (1)紫外检测器 该检测器适用于对紫外光(或可见光)有吸收性能样品的检测。其特点:使用面广(如蛋白质、核酸、氨基酸、核苷酸、多肽、激素等均可使用);灵敏度高(检测下限为10-10?g/ml);线性范围宽;对温度和流速变化不敏感;可检测梯度溶液洗脱的样品。 (2)示差折光检测器 凡具有与流动相折光率不同的样品组分,均可使用示差折光检测器检测。目前,糖类化合物的检测大多使用此检测系统。这一系统通用性强、操作简单,但灵敏度低(检测下限为10-7?g/ml),流动相的变化会引起折光率的变化,因此,它既不适用于痕量分析,也不适用于梯度洗脱样品的检测。 (3)荧光检测器 凡具有荧光的物质,在一定条件下,其发射光的荧光强度与物质的浓度成正比。因此,这一检测器只适用于具有荧光的有机化合物(如多环芳烃、氨基酸、胺类、维生素和某些蛋白质等)的测定,其灵敏度很高(检测下限为10-12~10-14?g/ml),痕量分析和梯度洗脱作品的检测均可采用。 (5)数据处理系统 该系统可对测试数据进行采集、贮存、显示、打印和处理等操作,使样品的分离、制备或鉴定工作能正确开展。
『柒』 akta与hplc操作有什么不同
您好,这个还复是有很多制区别的
1.蛋白纯化过程中很多操作习惯和HPLC有很多不同,你用HPLC做蛋白层析会很不方便
2.一般的hplc不具备电导和ph的在线测量,而蛋白纯化一般需要测量此两项
3.蛋白流路需要生物惰性材质,如peek、PFA红宝石、蓝宝石等,而HPLC是不锈钢系统,有些地方会有特异性吸附,甚至使蛋白变性。
4.蛋白纯化需高盐高碱环境,会对HPLC的不锈钢材质造成腐蚀。
5.有些蛋白产品对温度敏感,而紫外光源会发热,所以蛋白纯化系统要采用外接光纤,既避免了发热影响,有便于维护,还减小了延迟体积。
『捌』 AKTA蛋白纯化系统分离时电导率变化意味着什么求!
电导率变化说明洗脱液中的盐浓度变了,如果你做的是梯度洗脱的话,280nm没有一点反应,那内你可以提容高你的盐浓度。或者直接做个0-1的梯度!
想问下你是什么填料?如果你的缓冲液没有问题,那么就是有种可能,你的柱子在上次使用后没有再生,也就是还有东西在柱子上面,被你的缓冲液给洗脱下来了,这种物质在280处没有吸收。建议你用1M的NaOH冲下柱子,根据你填料的性质也可以提高NaOH的浓度,但GE的胶一般不超过2M。
你观察下你的电导开始起峰的体积减去你的柱体积,得到的体积在unicorn里面的logbook里有什么操作没?
你也可以把你的原始图谱发给我看看!