离子交换深度
❶ 污水的一级处理,二级处理,三级处理,深度处理各是什么,它们有什么区别
一级处理又叫来预处理,其内容是去除源污水中飘浮物和部分悬浮状态的污染物质,调节PH值,减轻污水的腐化程度和后续处理工艺的负荷。物理法中的大部份只能完成一级处理的要求。
二级处理也称生化处理,主要任务是大幅度地去除污水中呈胶态和溶解状态的有机性污染物质。
三级处理是深度处理,应用物理化学和化学方法使水质达到用水要求。废水处理的二级和三级处理一般采用的是活性污泥处理工艺。生物膜法是生物处理废水的一种常用生物活性污泥方法。
❷ 玻璃的应力层深度是什么
普通玻璃的压应力是不均匀分布的 所以没有应力层钢化玻璃的压应力层是从玻璃厚度的中间往2边分 合计玻璃厚度的1/3
EDI(Electro-de-ionization)是一种将离子交换技术、离子交换膜技术和离子电迁移技术(电渗析技术)相结合的纯水制造技术。该技术利用离子交换能深度脱盐来克服电渗析极化而脱盐不彻底,又利用电渗析极化而发生水电离产生H和OH离子实现树脂自再生来克服树脂失效后通过化学药剂再生的缺陷,是20世纪80年代以来逐渐兴起的新技术。经过十几年的发展,EDI技术已经在北美及欧洲占据了相当部分的超纯水市场。
EDI装置包括阴/阳离子交换膜、离子交换树脂、直流电源等设备。其中阴离子交换膜只允许阴离子透过,不允许阳离子通过,而阳离子交换膜只允许阳离子透过,不允许阴离子通过。离子交换树脂充夹在阴阳离子交换膜之间形成单个处理单元,并构成淡水室。单元与单元之间用网状物隔开,形成浓水室。在单元组两端的直流电源阴阳电极形成电场。来水水流流经淡水室,水中的阴阳离子在电场作用下通过阴阳离子交换膜被清除,进入浓水室。在离子交换膜之间充填的离子交换树脂大大地提高了离子被清除的速度。同时,水分子在电场作用下产生氢离子和氢氧根离子,这些离子对离子交换树脂进行连续再生,以使离子交换树脂保持最佳状态。EDI装置将给水分成三股独立的水流:纯水、浓水、和极水。纯水(90%-95%)为最终得到水,浓水(5%-10%)可以再循环处理,极水(1%)排放掉。图2表示了EDI的净水基本过程。
EDI装置属于精处理水系统,一般多与反渗透(RO)配合使用,组成预处理、反渗透、EDI装置的超纯水处理系统,取代了传统水处理工艺的混合离子交换设备。EDI装置进水要求为电阻率为0.025-0.5MΩ·cm,反渗透装置完全可以满足要求。EDI装置可生产电阻率高达15MΩ·cm以上的超纯水。 EDI装置不需要化学再生,可连续运行,进而不需要传统水处理工艺的混合离子交换设备再生所需的酸碱液,以及再生所排放的废水。其主要特点如下:
EDI的净水基本过程
·连续运行,产品水水质稳定
·容易实现全自动控制
·无须用酸碱再生
·不会因再生而停机
·节省了再生用水及再生污水处理设施
·产水率高(可达95%)
·无须酸碱储备和酸碱稀释运送设施
·占地面积小
·使用安全可靠,避免工人接触酸碱
·降低运行及维护成本
·设备单元模块化,可灵活的组合各种流量的净水设施
·安装简单、费用低廉
·设备初投资大 EDI装置与混床离子交换设备属于水处理系统中的精处理设备,下面将两种设备在产水水质、投资量及运行成本方面进行比较,来说明EDI装置在水处理中应用的优越性。
(1)产品水水质比较
EDI装置是一个连续净水过程,因此其产品水水质稳定,电阻率一般为15MΩ·cm,最高可达18MΩ·cm,达到超纯水的指标。混床离子交换设施的净水过程是间断式的,在刚刚被再生后,其产品水水质较高,而在下次再生之前,其产品水水质较差。
(2)投资量比较
与混床离子交换设施相比EDI装置投资量要高约20%左右,但从混床需要酸碱储存、酸碱添加和废水处理设施及后期维护、树脂更换来看,两者费用相差在10%左右。随着技术的提高与批量生产,EDI装置所需的投资量会大大的降低。另外,EDI装置设备小巧,所需厂房远远小于混床。
(3)运行成本比较
EDI装置运行费用包括电耗、水耗、药剂费及设备折旧等费用,省去了酸碱消耗、再生用水、废水处理和污水排放等费用。
在电耗方面,EDI装置约0.5kWh/t水,混床工艺约0.35kWh/t水,电耗的成本在电厂来说是比较经济的,可以用厂用电的价格核算。
在水耗方面,EDI装置产水率高,不用再生用水,因此在此方面运行费用低于混床。
至于药剂费和设备折旧费两者相差不大。
总的来说,在运行费用中,EDI装置吨水运行成本在2.4元左右,常规混床吨水运行成本在2.7元左右,高于EDI装置。因此,EDI装置多投资的费用在几年内完全可以回收。 EDI装置属于水精处理设备, 具有连续产水、水质高、易控制、占地少、不需酸碱、利于环保等优点, 具有广泛的应用前景。随着设备改进与技术完善以及针对不同行业进行优化, 初投资费用会大大降低。可以相信在不久的将来会完全取代传统的水处理工艺中的混合 。
控制氮含量的方法(4种):生物硝化-反硝化(无机氮延时曝气氧化成硝酸盐,再厌氧反硝化转化成氮气);折点氯化(二级出水投加氯,到残余的全部溶解性氯达到最低点,水中氨氮全部氧化);选择性离子交换;氨的气提(二级出水pH提高到11以上,使铵离子转化为氨,对出水激烈曝气,以气体方式将氨从水中去除,再调节pH到合适值)。每种方法氮的去除率均可超过90%。
❹ 谁知道离子交换法具体概念是什么
离子交换法是通过离子交换剂上的离子与水中离子交换以去除水中阴离子的方法。在城市污水深度处理中它是一种主要的处理技术。离子交换法脱盐处理主要是以含盐浓度为100-300mg/L的污水作为对象的。
❺ 离子交换怎么试验
离子交换法是一种借助于离子交换剂上的离子和废水中的离子进行交换反应而除去废水中有害离子的方法。离子交换是一种特殊吸附过程,通常是可逆性化学吸附;其特点是吸附水中离子化物质,并进行等电荷的离子交换。
离子交换剂分无机的离子交换剂如天然沸石,人工合成沸石,及有机的离子交换剂如磺化煤和各种离子交换树脂。
在应用离子交换法进行水处理时,需要根据离子交换树脂的性能设计离子交换设备,决定交换设备的运行周期和再生处理。通过本实验希望达到下述目的:
1) 加深对离子交换基本理论的理解;学会离子交换树脂的鉴别;
2) 学会离子交换设备操作方法;
3) 学会使用手持式盐度计,掌握pH计、电导率仪的校正及测量方法。
二、实验内容和原理
由于离子交换树脂具有交换基因,其中的可游离交换离子能与水中的同性离子进行等当量交换。 用酸性阳离子交换树脂除去水中阳离子,反应式如下:
nRH + M+n → RnM + nH+
M——阳离子 n——离子价数
R——交换树脂
用碱性阴离子交换树脂除去水中的阴离子,反应式如下:
nROH + Y−n → RnY + nOH-
Y——阴离子
离子交换法是固体吸附的一种特殊形式,因此也可以用解吸法来解吸,进行树脂再生。
本实验采用自来水为进水,进行离子交换处理。因为自来水中含有较多量的阴、阳离
子,如Cl¯, NH4+,Ca,Mg,Fe,Al,K,Na等。在某些工农业生产、科研、医疗卫生等工作中所用的水,以及某些废水深度处理过程中,都需要除去水中的这些离子。而采用离子交换树脂来达到目的是可行的方法。
❻ 离子交换混床结构 工作原理 讲讲 详细 在什么情况下回楼树脂 另在附一张 混床结构图
混床么实际就是里面装满了阴阳树脂的圆柱形容器,柱身有玻璃钢、不锈钢、碳钢等材回质,混床是答混合离子交换柱的简称。装填方式都是上阴下阳,最底层是排水帽。
混床一般适用于反渗透后面,当然现在有取代混床的EDI装置,也可以为了更好效果,装在EDI后面,或直接应用于含盐量较低的水。离子交换是一种特殊的固体吸附过程,它是由离子交换剂的电解质溶液中进行的。混床为深度脱盐设备,用于制造高纯水,产水电阻率为10-18MΩ?CM(25C),及使出水水质PH值接近中性。
阳树脂有酸箱、酸泵再生系统,阴树脂配备有碱箱、碱泵再生系统。反洗时候上进碱,下进酸,中间排放。排放时候防止树脂露出就用不锈钢筛网或者其他网状物。
漏树脂么你要看是哪里漏的,下面漏么证明排水帽老化或者松动了,如果是反洗时候从中排漏的话么证明筛网网眼太大。
❼ 常用的深度处理工艺
污水的几种深度处理方法
污水深度处理,也称高级处理或三级处理。它是将二级处理出水再进一步进行物理、化学和生物处理,以便有效去除污水中各种不同性质的杂质,从而满足用户对水质的使用要求。深度处理常见的方法有以下几种。
1.1 活性炭吸附法与离子交换
活性炭是一种多孔性物质,而且易于自动控制,对水量、水质、水温变化适应性强,因此活性炭吸附法是一种具有广阔应用前景的污水深度处理技术。活性炭对分子量在500~3 000的有机物有十分明显的去除效果,去除率一般为70%~86.7%[1],可经济有效地去除嗅、色度、重金属、消毒副产物、氯化有机物、农药、放射性有机物等。
常用的活性炭主要有粉末活性炭(PAC)、颗粒活性炭(GAC)和生物活性碳(BAC)三大类。近年来,国外对PAC的研究较多,已经深入到对各种具体污染物的吸附能力的研究。淄博市引黄供水有限公司根据水污染的程度,在水处理系统中,投加粉末活性炭去除水中的COD,过滤后水的色度能降底1~2度;臭味降低到0度[2]。GAC在国外水处理中应用较多,处理效果也较稳定,美国环保署(USEPA)饮用水标准的64项有机物指标中,有51项将GAC列为最有效技术[3]。
GAC处理工艺的缺点是基建和运行费用较高,且容易产生亚硝酸盐等致癌物,突发性污染适应性差。如何进一步降低基建投资和运行费用,降低活性炭再生成本将成为今后的研究重点。BAC可以发挥生化和物化处理的协同作用,从而延长活性炭的工作周期,大大提高处理效率,改善出水水质。不足之处在于活性炭微孔极易被阻塞、进水水质的pH 适用范围窄、抗冲击负荷差等。目前,欧洲应用BAC技术的水厂已发展到70个以上,应用最广泛的是对水进行深度处理[4]。抚顺石化分公司石油三厂采用BAC技术,既节省了新鲜水的补充量,减少污水排放量,减轻水体污染,降低生产成本,还体现了经济效益和社会效益的统一[5]。今后的研究重点是降低投资成本和增加各种预处理措施与BAC联用,提高处理效果。
1.2 膜分离法
膜分离技术是以高分子分离膜为代表的一种新型的流体分离单元操作技术[6,7]。它的最大特点是分离过程中不伴随有相的变化,仅靠一定的压力作为驱动力就能获得很高的分离效果,是一种非常节省能源的分离技术。
微滤可以除去细菌、病毒和寄生生物等,还可以降低水中的磷酸盐含量。天津开发区污水处理厂采用微滤膜对SBR二级出水进行深度处理, 满足了景观、冲洗路面和冲厕等市政杂用和生活杂用的需求[8]。
超滤用于去除大分子,对二级出水的COD和BOD去除率大于50%。北京市高碑店污水处理厂采用超滤法对二级出水进行深度处理,产水水质达到生活杂用水标准,回用污水用于洗车,每年可节约用水4 700 m3[9]。
反渗透用于降低矿化度和去除总溶解固体,对二级出水的脱盐率达到90%以上,COD和BOD的去除率在85%左右,细菌去除率90%以上[10]。缅甸某电厂采用反渗透膜和电除盐联用技术,用于锅炉补给水。经反渗透处理的水,能去除绝大部分的无机盐、有机物和微生物[11]。
纳滤介于反渗透和超滤之间,其操作压力通常为0.5~1.0 MPa,纳滤膜的一个显著特点是具有离子选择性,它对二价离子的去除率高达95%以上,一价离子的去除率较低,为40%~80%[12]。潘巧明等人采用膜生物反应器-纳滤膜集成技术处理糖蜜制酒精废水取得了较好结果,出水COD小于100 mg/L,废水回用率大于80%[13]。
我国的膜技术在深度处理领域的应用与世界先进水平尚有较大差距。今后的研究重点是开发、制造高强度、长寿命、抗污染、高通量的膜材料,着重解决膜污染、浓差极化及清洗等关键问题。
1.3 高级氧化法
工业生产中排放的高浓度有机污染物和有毒有害污染物,种类多、危害大,有些污染物难以生物降解且对生化反应有抑制和毒害作用。而高级氧化法在反应中产生活性极强的自由基(如•OH等),使难降解有机污染物转变成易降解小分子物质,甚至直接生成CO2和H2O,达到无害化目的。
1.3.1 湿式氧化法
湿式氧化法(WAO)是在高温(150~350 ℃)、高压(0.5~20 MPa)下利用O2或空气作为氧化剂,氧化水中的有机物或无机物,达到去除污染物的目的,其最终产物是CO2和H2O[14]。福建炼油化工有限公司于2002年引进了WAO工艺,彻底解决了碱渣的后续治理和恶臭污染问题,而且运行成本低,氧化效率高[15]。
1.3.2 湿式催化氧化法
湿式催化氧化法(CWAO)是在传统的湿式氧化处理工艺中加入适宜的催化剂使氧化反应能在更温和的条件下和更短的时间内完成,也因此可减轻设备腐蚀、降低运行费用[16,17]。目前,建于昆明市的一套连续流动型CWAO工业实验装置,已经体现出了较好的经济性[18]。
湿式催化氧化法的催化剂一般分为金属盐、氧化物和复合氧化物3类。目前,考虑经济性,应用最多的催化剂是过渡金属氧化物如Cu、Fe、Ni、Co、Mn等及其盐类。采用固体催化剂还可避免催化剂的流失、二次污染的产生及资金的浪费。
1.3.3 超临界水氧化法
超临界水氧化法把温度和压力升高到水的临界点以上,该状态的水就称为超临界水。在此状态下水的密度、介电常数、粘度、扩散系数、电导率和溶剂化学性能都不同于普通水。较高的反应温度(400~600 ℃)和压力也使反应速率加快,可以在几秒钟内对有机物达到很高的破坏效率。
美国德克萨斯州哈灵顿首次大规模应用超临界水氧化法处理污泥,日处理量达9.8 t。系统运行证明其COD的去除率达到99.9%以上,污泥中的有机成分全部转化为CO2、H2O以及其他无害物质,且运行成本较低[19]。
1.3.4 光化学催化氧化法
目前研究较多的光化学催化氧化法主要分为Fenton试剂法、类Fenton试剂法和以TiO2为主体的氧化法。
Fenton试剂法由Fenton在20世纪发现,如今作为废水处理领域中有意义的研究方法重新被重视起来。Fenton试剂依靠H2O2和Fe2+盐生成•OH,对于废水处理来说,这种反应物是一个非常有吸引力的氧化体系,因为铁是很丰富且无毒的元素,而且H2O2也很容易操作,对环境也是安全的[20]。Fenton试剂能够破坏废水中诸如苯酚和除草剂等有毒化合物。目前国内对于Fenton试剂用于印染废水处理方面的研究很多,结果证明Fenton 试剂对于印染废水的脱色效果非常好。另外,国内外的研究还证明,用Fenton试剂可有效地处理含油、醇、苯系物、硝基苯及酚等物质的废水。
类Fenton试剂法具有设备简单、反应条件温和、操作方便等优点,在处理有毒有害难生物降解有机废水中极具应用潜力。该法实际应用的主要问题是处理费用高,只适用于低浓度、少量废水的处理。将其作为难降解有机废水的预处理或深度处理方法,再与其他处理方法(如生物法、混凝法等)联用,则可以更好地降低废水处理成本、提高处理效率,并拓宽该技术的应用范围。
光催化法是利用光照某些具有能带结构的半导体光催化剂如TiO2、ZnO、CdS、WO3等诱发强氧化自由基•OH,使许多难以实现的化学反应能在常规条件下进行。锐钛矿中形成的TiO2具有稳定性高、性能优良和成本低等特征。在全世界范围内开展的最新研究是获得改良的(掺入其他成分)TiO2,改良后的TiO2具有更宽的吸收谱线和更高的量子产生率。
1.3.5 电化学氧化法
电化学氧化又称电化学燃烧,是环境电化学的一个分支。其基本原理是在电极表面的电催化作用下或在由电场作用而产生的自由基作用下使有机物氧化。除可将有机物彻底氧化为CO2和H2O外,电化学氧化还可作为生物处理的预处理工艺,将非生物相容性的物质经电化学转化后变为生物相容性物质。这种方法具有能量利用率高,低温下也可进行;设备相对较为简单,操作费用低,易于自动控制;无二次污染等特点。
1.3.6 超声辐射降解法
超声辐射降解法主要源于液体在超声波辐射下产生空化气泡,它能吸收声能并在极短时间内崩溃释放能量,在其周围极小的空间范围内产生1 900~5 200 K的高温和超过50 MPa的高压。进入空化气泡的水分子可发生分解反应产生高氧化活性的•OH,诱发有机物降解;此外,在空化气泡表层的水分子则可以形成超临界水,有利于化学反应速度的提高。
超声波对含卤化物的脱卤、氧化效果显著,氯代苯酚、氯苯、CH2Cl2、CHCl3、CCl4等含氯有机物最终的降解产物为HCl、H2O、CO、CO2等。超声降解对硝基化合物的脱硝基也很有效。添加O3、H2O2、Fenton试剂等氧化剂将进一步增强超声降解效果。超声与其他氧化法的组合是目前的研究热点,如US/O3、US/H2O2、US/Fenton、US/光化学法。目前,超声辐射降解水体污染物的研究仍处于试验探索阶段。
1.3.7 辐射法
辐射法是利用高能射线(γ、χ射线)和电子束等对化合物的破坏作用所开发的污水辐射净化法。一般认为辐射技术处理有机废水的反应机理是由于水在高能辐射的作用下产生•OH、H2O2、•HO2等高活性粒子,再由这些高活性粒子诱发反应,使有害物质降解。
辐射法对有机物的处理效率高、操作简便。该技术存在的主要难题是用于产生高能粒子的装置昂贵、技术要求高,而且该法的能耗大、能量利用率较低;此外为避免辐射对人体的危害,还需要特殊的保护措施。因此该法要投入运行,还需进行大量的研究探索工作。
1.4 臭氧法
臭氧具有极强的氧化性,对许多有机物或官能团发生反应,有效地改善水质。臭氧能氧化分解水中各种杂质所造成的色、嗅,其脱色效果比活性炭好;还能降低出水浊度,起到良好的絮凝作用,提高过滤滤速或者延长过滤周期。目前,由于国内的臭氧发生技术和工艺比较落后,所以运行费用过高,推广有难度。
此外,一般的化学混凝、沉淀和气浮、消毒等也是常见工艺
❽ 几个深度处理方法的优缺点
给出要处理的废水水质信息和回用水标准,可以帮你看看。 只想知道优缺点的话,随便找个该技术的综述自己看就行了。
❾ 为什么表层土壤和深层土壤的阳离子交换量不同
土壤的阳离子交换性能是由土壤胶体表面性质所决定,由有机质的交换基与无机质的回交换基所构成,前者答主要是腐殖质酸,后者主要是粘土矿物。它们在土壤中互相结合着,形成了复杂的有机无机胶质复合体,所能吸收的阳离子总量包括交换性盐基(K+、Na+、Ca++、Mg++)和水解性酸,两者的总和即为阳离子交换量。表层土壤和深层土壤有机质含量不同,土壤颗粒的风化程度也不一样,阳离子交换量就不一样。
❿ 污水的一级处理,二级处理,三级处理,深度处理各是什么,它们有什么区别
一级处理、二级处理、三级处理,是目前城市污水及工业废水根据不同需要而采用污版水处理方法.
一级处理也权叫预处理,是通过沉淀、浮选、过滤等物理方法去除污水中的悬浮状固体物质,或通过凝聚、氧化、中和等化学方法,使污水中的强酸、强碱和过浓的有毒物质,得到初步净化,为二级处理提供适宜的水质条件.二级处理是在一级处理的基础上,利用生物化学作用,对污水进行进一步的处理.三级处理也叫深度处理,三级处理根据进水水质,采用相应处理方法,如凝集沉淀、活性碳过滤、逆渗透、离子交换和电渗析等.废水经深度处理后可达到工业用水或城市用水所要求的水质标准.