神经细胞动作电位的去极相离子
『壹』 求大神解决:如何证明神经纤维动作电位的去极相是由Na+内流引起的、复极相是由K+外流引起的
是温医的同学么?我也在找这道题。。。
『贰』 神经细胞由动作电位恢复为静息电位时离子运输方式
神经细胞抄由【动作】电位恢复为【静息】电位时【K】离子运输方式:钾离子外流——相当于协助扩散。
由【静息】电位变成【动作】电位的时候【K】离子运输方式:吸收钾离子——主动运输
动作电位恢复为静息电位,这个过程需要钠钾泵向外泵钠离子向内泵钾离子,需要耗能,是主动运输。神经元内钾离子浓度较高,膜外钠离子浓度较高,而静息电位(内负外正)主要是钾离子外流造成的,这个过程钾离子是通过钾离子通道(相当于载体)出去的,不耗能,所以是协助扩散。
动作电位主要是钠离子内流,是通过钠离子通道(相当于载体)进入膜内,不耗能,所以这个过程也是协助扩散。
(2)神经细胞动作电位的去极相离子扩展阅读
动作电位的去极化是由于大量的钠通道开放引起的钠离子大量、快速内流所致;复极化则是由大量钾通道开放引起钾离子快速外流的结果。
动作电位的幅度决定于细胞内外的钠离子浓度差,细胞外液钠离子浓度降低动作电位幅度也相应降低,而阻断钠离子通道(河豚毒素)则能阻碍动作电位的产生。
在细胞膜上任意一点产生动作电位,那整个细胞膜都会经历一次完全相同的动作电位,其形状与幅度均不发生变化。
『叁』 神经纤维动作电位形成的离子机制是什么在线等,急
动作电位产生的机制与静息电位相似,都与细胞膜的通透性及离子转运有关。内
l.去极化过程容 当细胞受刺激而兴奋时,膜对Na+通透性增大,对K+通透性减小,于是细胞外的Na+便会顺其波度梯度和电梯度向胞内扩散,导致膜内负电位减小,直至膜内电位比膜外高,形成内正外负的反极化状态。当促使Na+内流的浓度梯度和阻止Na+内流的电梯度,这两种拮抗力量相等时,Na+的净内流停止。因此,可以说动作电位的去极化过程相当于Na+内流所形成的电一化学平衡电位。
2.复极化过程 当细胞膜除极到峰值时,细胞膜的Na+通道迅速关闭,而对K+的通透性增大,于是细胞内的K+便顺其浓度梯度向细胞外扩散,导致膜内负电位增大,直至恢复到静息时的数值。
可兴奋细胞每发生一次动作电位,总会有一部分Na+在去极化中扩散到细胞内,并有一部分K+在复极过程中扩散到细胞外。这样就激活了Na+-K+依赖式 ATP酶即Na+-K+泵,于是钠泵加速运转,将胞内多余的Na+泵出胞外,同时把胞外增多的K+泵进胞内,以恢复静息状态的离子分布,保持细胞的正常兴奋性。如果说静息电位是兴奋性的基础,那么,动作电位是可兴奋细胞兴奋的标志。
『肆』 简述神经细胞、心室肌细胞、窦房结细胞动作电位产生的离子机制
心室肌细胞动作电位由去极化和复极化两个过程五个时期组成:0 期(快速去极化期回)、1 期(快答速复极化初期)、2 期(平台期)、3 期(快速复极化末期)以及4 期(完全复极化期,或静息期)。
窦房结细胞的动作电位属慢反应电位,其动作电位形状与心室肌等快反应电位很不相同。其特征为:动作电位去极化速度和幅度较小,很少有超射,没有明显的1 期和平台期,只有0 、3 、4 期,而4期电位不稳定,最大复极电位绝对值小。在3 期复极完毕后就自动地产生去极化,使膜电位逐渐减小,即发生4 期自动去极化。
(4)神经细胞动作电位的去极相离子扩展阅读:
窦房结P 细胞缺乏Ito通道,因此其动作电位无明显的1 期和2 期, 0 期去极化后直接进入3 期复极化过程,其复极化主要依赖IK来完成, IK 的激活不仅使动作电位复极,并且使之达到最大复极电位水平。
IK 的进行性衰减是窦房结细胞4 期自动去极化的重要离子基础之一,除此之外,If的进行性增强以及ICa-T也在4期自动去极过程中发挥一定作用。
『伍』 引起神经细胞动作电位去极化的主要离子是
该题考查的是生理学-细胞的生理特性-细胞电活动-动作电位的知识点。(2)细胞专膜内主要的阳离子为属K+,细胞内的K+浓度达到细胞外液的30倍左右。(3)细胞膜外主要的阳离子为Na+,细胞外液中的Na+浓度达到胞质内的10倍左右。(4)去极化:静息电位减小(如细胞内电位由-70mV变为0mV)表示膜的极化状态减弱,这种静息电位减小的过程或状态称为去极化,主要为Na+内流(A对)
『陆』 在神经细胞动作电位的去极化阶段,通透性最大的离子是什么
钾离子,去极化过程中细胞膜外的钾离子迅速通过细胞膜,内流到细胞内,导致细胞膜内电位升高,从而去极化
『柒』 神经细胞动作电位上升支的离子基础是
这是高中阶段比较复杂的问题,教材涉及的信息较少。因此,高考一般不会考难题。可做一下典型题【2011年浙江理综卷第3题】
神经细胞由【动作】电位恢复为【静息】电位时【k】离子运输方式:
(1)钾离子外流——相当于协助扩散
(2)吸收钾离子——主动运输
以上两项都发生,维持静息电位时钾离子外流,主动运输摄取钾离子可以保证能够有足够的钾离子外流,同时也能调节细胞的渗透压。不管细胞是否处于静息状态,都会发生相应离子的进出。
由【静息】电位变成【动作】电位的时候离子运输方式:主要是钠离子内流——相当于协助扩散。
【总结】维持静息电位时的钾离子外流,以及由动作电位恢复为静息电位时钾离子外流,都是钾离子通道开放,相当于协助扩散;
产生动作电位时的钠离子外流,是钠离子通道开放,也是相当于协助扩散;
若涉及“钠—钾泵”作用下的吸钾排钠,是主动运输。
【典例】(2011年浙江理综第3题)在离体实验条件下单条神经纤维的动作电位示意图如下。下列叙述正确的是(
)
a.a-b段的na+内流是需要消耗能量的
b.b-c段的na+外流是不需要消耗能量的
c.c-d段的k+外流是不藉要消耗能量的
d.d-e段的k+内流是需要消耗能量的
【答案】c
【解析】据图所示,a点之前为静息电位,即为极化状态,由k+外流所致,此时的外流是简单扩散,不消耗能量;a-b段是去极化的过程,由na+内流所致,属于简单扩散,不消耗能量;b-c段是反极化至最大动作电位的过程(c点是动作电位的峰值),其实质仍然是na+内流;c-d段是从最大动作电位恢复的过程,实质与d-e段相同,为k+外流所致,属于简单扩散,不消耗能量。
【阅读参考】“钠—钾泵”也称钠钾转运体,又称钠—钾依赖atp酶。科学研究表明,“钠—钾泵”普遍存在于动物的各种细胞上,其实际上是镶嵌在细胞膜磷脂双分子层中具有腺苷三磷酸酶(atp酶)活性的一种特异性蛋白质,在mg2+存在的条件下可被膜外的k+或膜内的na+所激活。“钠—钾泵”被激活后分解atp并释放能量,用于转运na+和k+。一般认为,“钠—钾泵”每分解一个atp分子,即可排出三个na+和摄入两个k+,na+的泵出和的k+泵入两个过程是偶联在一起的。
可以说,细胞代谢活动不停止,“钠—钾泵”就要不停的发挥其转运离子的作用。由于有直接能源物质atp的消耗,因此,“钠—钾泵”参与下的离子运输属于主动运输。
“钠—钾泵”的存在,造成膜两侧的na+、k+不均匀分布,因此,分别有向膜内或膜外扩散的趋势,能否扩散及扩散通透量的大小决定于膜的相应离子通道开放的情况,即膜对相应离子的通透性的高低,这是静息电位和动作电位的离子基础。
概括来说,静息电位和动作电位的形成,以“钠—钾泵”的参与作为基础,但是在膜电位的表现上,静息电位主要取决于k+外流,而动作电位主要取决于na+内流。由于涉及离子通道的开放,维持静息电位时的k+外流和产生动作电位时的na+内流在跨膜运输的方式上相当于协助扩散,不消耗能量。
『捌』 简述神经细胞动作电位产生与恢复过程中Na+的变化
动作电位
①去极化:钠离子通道部分开放,缓慢去极化,到达阈电位水平后,钠内离子通道容大量开放,钠离子大量快速内流,迅速去极化。
②复极化:膜两侧由内负外正变为内正外负,一方面膜内正电位组织钠离子继续内流,一方面膜内外钠离子浓度差组织钠离子继续内流。钠离子内流的同时钾离子也在外流,钠离子内流与钾离子外流平衡时,达到峰电位。钠离子逐渐停止内流,钾离子外流,产生复极化。
③钠钾泵工作将钠离子泵出钾离子泵入,恢复两种离子的分布。
所以说,动作电位产生和恢复过程中钠离子的变化就是:
去极化时,钠离子内流;复极化时,钠离子缓慢或停止内流;钠钾泵工作时,钠离子外流。
『玖』 神经细胞动作电位上升支主要与哪些离子无关
细胞处于静息电位时钾 离子外流,内负外正。受到刺激时,钠离子内流,内正外负。静息电位恢复时钾离子内流,接下来钠离子外流。
『拾』 神经和肌肉细胞动作电位去极相的产生是由于什么
钠离子的主动运输