阴床去氯离子
A. 为什么锅炉水中要去除离子
水壶经常烧开水,时间长了,上面会结垢,主要是水中的钙,镁离子与碳酸氢根离子作用内形成沉积.锅炉也是这样.此外容水中的氯离子等阴离子有一定的腐蚀性.除离子是为了防止锅炉,管道结垢.
化学水处理,是通过阳床除去水中的阳离子,阴床除去阴离子.
B. 重铬酸钾法测定铁矿石中的铁时,Cl-(氯离子) 有无影响
工业大规模生产过程,消除溶液中氯离子的方法如下:
1,可以采用阴床,若是氯离子含量高的时,采用反渗透等膜法处理的话,会破坏反渗透膜的。
2,用三辛胺作萃取剂,用液-液萃取处理,三辛胺与水中Cl-离子形成萃合物而使Cl-转移到有机相。再经高效絮凝处理。
3,在测定COD的时候,先稀释至标准的氯离子范围,然后再用硫酸汞隐蔽。
4,还可以可以用离子膜除去,使用这种方法时,只除氯离子是比较困难的,另外的离子如硫酸根也要去除的,还要看离子浓度,再定方案。
5,还可以经过阴离子树脂我,用这个办法还可以同时除去溶液中的硫酸根离子。
6,电渗析,反渗透……其他的方法多了,但是真正经济的不多。
尤其不能选用离子交换树脂,成本太高了。
如果含氯量比较高,可以考虑副产一些其他产品。
7,酸性重铬酸钾氧化性很强,可氧化大部分有机物,加入硫酸银作催化剂时,直链脂肪族化合物可完全被氧化,而芳香族有机物却不易被氧化,吡啶不被氧化,挥发性直链脂肪族化合物、苯等有机物存在于蒸气相,不能与氧化剂液体接触,氧化不明显。氯离子能被重铬酸盐氧化,并且能与硫酸银作用产生沉淀,影响测定结果,故在回流前向水样中加入硫酸汞,使成为络合物以消除干扰。氯离子含量高于1000mg/L的样品应先作定量稀释,使含量降低到1000mg/L以下,再行测定。
如将COD看作还原性物质的污染指标,则除氯离子之外的无机还原物质的耗氧全包括在内。如将COD看作有机物的污染指标的话,则需将无机还原物质的耗氧除去。对于Fe2+、S2-等无机还原物的干扰,可根据其测定的浓度,由理论需氧量计算出其需氧量,从而对已测的COD值加以校正。Fe2+和S2-的理论需氧量值分别为O.11g/g和O.47g/g。
对其它的干扰一般采用氨基磺酸去除,其加入量为10rag氨基磺酸/mg 对Cl-的干扰一般采用HgSO4去除,其加入量为0.4g HgS04/20ml水样(这儿[Cl-]2000mg/L)。
氯离子广泛存在于自然界中,在CODcr的实验条件下(不加HgS04时),氯离子可以完全被氧化,经实验证明,氯离子的含量和测得的CODcr值存在良好的线性关系,其斜率为0.226mgCOD/L/mg[Cl-]/L。这儿理论上的计算是一致的:
Cl-被完全氧化时,1mg Cl-相当于消耗0.226mg的氧(16/(2 x 35.5)=0.266)。从完全氧化昕需的时间来看,加热10min就可以氧化99%,如不采用回流加热,单靠浓流酸放热反应,其体系的温度为106℃,20min后降为50℃,在这段时间内,氯离子的氧化率为53%。由此可见,在CODcr,的测定条件下,氯离子是很容易被氧化的。
从两个半反应的标准电极电位看,氯离子应不被酸性重铬酸钾氧化;
但在CODcr的测定中,体系为强酸性介质,酸度大小直接影响重铬酸钾氧化的条件电极电位,而酸度大小却与氯离子的条件电极电位无关。由前面所述可知,在测定CODcr时,体系中氧化剂的条件电极电位达1.55V,完全可使反应按以下方向进行。
氯离子在反应体系中可能与Ag2SO4或HgSO4发生反应:
由此可见,后者要较前者优先进行。为避免前一个反应的进行,往往在取来水样分析时,第一步先加入HgS04,让其络合氯离子。
在氧化过程中,会出现如下反应:
尽管[HgCl4]2-的稳定常数很大,但难免仍有少量氯离子存在,马上被酸性重铬酸钾所氧化。因此,我们即使采用HgSO4掩蔽氯离子的影响,仍会有少量的氯离子被氧化。另外,在实验中也发现,按标准方法加HgS04掩蔽氯离子时所测的CODcr值与不加HgS04时测得的COD1值和O.226[C1-]的差值并不相等,即:
要使该式相等,要添加一个校正值。
式中COD1表示不加HgSO4时测得的COD值(为防止Ag2S04对氯离子的沉淀作用,在反应开始时不加Ag2SO4,待反应30min后,再加入Ag2SO4)。[Cl-]表示氯离子浓度,CODcr表示标准方法测得的COD值。
校正值 就是一小部分未络合的氯离子所产生的COD值。可先采用已知浓度的NaCl溶液测出此校正值 。
在实际计算中,可从COD1、[Cl-]及 值计算出CODcr值。此法可省去使用剧毒药品HgSO4的手续,其计算值与测定结果误差在8%之内。
C. 达肝素钠生产过程中会有氯离子吗
工业大规模生产过程,消除溶液中氯离子的方法如下: 1,可以采用阴床,若是氯离子含量高的时,采用反渗透等膜法处理的话,会破坏反渗透膜的。 2,用三辛胺作萃取剂,用液-液萃取处理,三辛胺与水中Cl-离子形成萃合物而使Cl-转移到有机相。再经高效絮凝处理。
3,在测定COD的时候,先稀释至标准的氯离子范围,然后再用硫酸汞隐蔽。 4,还可以可以用离子膜除去,使用这种方法时,只除氯离子是比较困难的,另外的离子如硫酸根也要去除的,还要看离子浓度,再定方案。 5,还可以经过阴离子树脂我,用这个办法还可以同时除去溶液中的硫酸根离子。 6,电渗析,反渗透……其他的方法多了,但是真正经济的不多。 尤其不能选用离子交换树脂,成本太高了。
如果含氯量比较高,可以考虑副产一些其他产品。 7,酸性重铬酸钾氧化性很强,可氧化大部分有机物,加入硫酸银作催化剂时,直链族化合物可完全被氧化,而芳香族有机物却不易被氧化,吡啶不被氧化,挥发性直链族化合物、苯等有机物存在于蒸气相,不能与氧化剂液体接触,氧化不明显。氯离子能被重铬酸盐氧化,并且能与硫酸银作用产生沉淀,影响测定结果,故在回流前向水样中加入硫酸汞,使成为络合物以消除干扰。氯离子含量高于1000mg/L的样品应先作定量稀释,使含量降低到1000mg/L以下,再行测定。
如将COD看作还原性物质的污染指标,则除氯离子之外的无机还原物质的耗氧全包括在内。如将COD看作有机物的污染指标的话,则需将无机还原物质的耗氧除去。对于Fe2+、S2-等无机还原物的干扰,可根据其测定的浓度,由理论需氧量计算出其需氧量,从而对已测的COD值加以校正。Fe2+和S2-的理论需氧量值分别为O.11g/g和O.47g/g。
对其它的干扰一般采用氨基磺酸去除,其加入量为10rag氨基磺酸/mg 对Cl-的干扰一般采用HgSO4去除,其加入量为0.4g HgS04/20ml水样(这儿[Cl-]<2000mg/L)。
氯离子广泛存在于自然界中,在CODcr的实验条件下(不加HgS04时),氯离子可以完全被氧化,经实验证明,氯离子的含量和测得的CODcr值存在良好的线性关系,其斜率为0.226mgCOD/L/mg[Cl-]/L。这儿理论上的计算是一致的:
Cl-被完全氧化时,1mg Cl-相当于消耗0.226mg的氧(16/(2 x 35.5)=0.266)。从完全氧化昕需的时间来看,加热10min就可以氧化99%,如不采用回流加热,单靠浓流酸放热反应,其体系的温度为106℃,20min后降为50℃,在这段时间内,氯离子的氧化率为53%。由此可见,在CODcr,的测定条件下,氯离子是很容易被氧化的。
从两个半反应的标准电极电位看,氯离子应不被酸性重铬酸钾氧化;
但在CODcr的测定中,体系为强酸性介质,酸度大小直接影响重铬酸钾氧化的条件电极电位,而酸度大小却与氯离子的条件电极电位无关。由前面所述可知,在测定CODcr时,体系中氧化剂的条件电极电位达1.55V,完全可使反应按以下方向进行。
氯离子在反应体系中可能与Ag2SO4或HgSO4发生反应:
由此可见,后者要较前者优先进行。为避免前一个反应的进行,往往在取来水样分析时,第一步先加入HgS04,让其络合氯离子。
在氧化过程中,会出现如下反应:
尽管[HgCl4]2-的稳定常数很大,但难免仍有少量氯离子存在,马上被酸性重铬酸钾所氧化。因此,我们即使采用HgSO4掩蔽氯离子的影响,仍会有少量的氯离子被氧化。另外,在实验中也发现,按标准方法加HgS04掩蔽氯离子时所测的CODcr值与不加HgS04时测得的COD1值和O.226[C1-]的差值并不相等,即:
要使该式相等,要添加一个校正值。
式中COD1表示不加HgSO4时测得的COD值(为防止Ag2S04对氯离子的沉淀作用,在反应开始时不加Ag2SO4,待反应30min后,再加入Ag2SO4)。[Cl-]表示氯离子浓度,CODcr表示标准方法测得的COD值。
校正值 就是一小部分未络合的氯离子所产生的COD值。可先采用已知浓度的NaCl溶液测出此校正值 。 在实际计算中,可从COD1、[Cl-]及 值计算出CODcr值。此法可省去使用剧毒品HgSO4的手续,其计算值与测定结果误差在8%之内。
D. 工业大规模生产过程,如何消除溶液中氯离子要充分考虑运行成本。
工业大规模生产过程,消除溶液中氯离子的方法如下: 1,可以采用阴床,若是氯离子含量高的时,采用反渗透等膜法处理的话,会破坏反渗透膜的。 2,用三辛胺作萃取剂,用液-液萃取处理,三辛胺与水中Cl-离子形成萃合物而使Cl-转移到有机相。再经高效絮凝处理。
3,在测定COD的时候,先稀释至标准的氯离子范围,然后再用硫酸汞隐蔽。 4,还可以可以用离子膜除去,使用这种方法时,只除氯离子是比较困难的,另外的离子如硫酸根也要去除的,还要看离子浓度,再定方案。 5,还可以经过阴离子树脂我,用这个办法还可以同时除去溶液中的硫酸根离子。 6,电渗析,反渗透……其他的方法多了,但是真正经济的不多。 尤其不能选用离子交换树脂,成本太高了。
如果含氯量比较高,可以考虑副产一些其他产品。 7,酸性重铬酸钾氧化性很强,可氧化大部分有机物,加入硫酸银作催化剂时,直链脂肪族化合物可完全被氧化,而芳香族有机物却不易被氧化,吡啶不被氧化,挥发性直链脂肪族化合物、苯等有机物存在于蒸气相,不能与氧化剂液体接触,氧化不明显。氯离子能被重铬酸盐氧化,并且能与硫酸银作用产生沉淀,影响测定结果,故在回流前向水样中加入硫酸汞,使成为络合物以消除干扰。氯离子含量高于1000mg/L的样品应先作定量稀释,使含量降低到1000mg/L以下,再行测定。
如将COD看作还原性物质的污染指标,则除氯离子之外的无机还原物质的耗氧全包括在内。如将COD看作有机物的污染指标的话,则需将无机还原物质的耗氧除去。对于Fe2+、S2-等无机还原物的干扰,可根据其测定的浓度,由理论需氧量计算出其需氧量,从而对已测的COD值加以校正。Fe2+和S2-的理论需氧量值分别为O.11g/g和O.47g/g。
对其它的干扰一般采用氨基磺酸去除,其加入量为10rag氨基磺酸/mg 对Cl-的干扰一般采用HgSO4去除,其加入量为0.4g HgS04/20ml水样(这儿[Cl-]<2000mg/L)。
氯离子广泛存在于自然界中,在CODcr的实验条件下(不加HgS04时),氯离子可以完全被氧化,经实验证明,氯离子的含量和测得的CODcr值存在良好的线性关系,其斜率为0.226mgCOD/L/mg[Cl-]/L。这儿理论上的计算是一致的:
Cl-被完全氧化时,1mg Cl-相当于消耗0.226mg的氧(16/(2 x 35.5)=0.266)。从完全氧化昕需的时间来看,加热10min就可以氧化99%,如不采用回流加热,单靠浓流酸放热反应,其体系的温度为106℃,20min后降为50℃,在这段时间内,氯离子的氧化率为53%。由此可见,在CODcr,的测定条件下,氯离子是很容易被氧化的。
从两个半反应的标准电极电位看,氯离子应不被酸性重铬酸钾氧化;
但在CODcr的测定中,体系为强酸性介质,酸度大小直接影响重铬酸钾氧化的条件电极电位,而酸度大小却与氯离子的条件电极电位无关。由前面所述可知,在测定CODcr时,体系中氧化剂的条件电极电位达1.55V,完全可使反应按以下方向进行。
氯离子在反应体系中可能与Ag2SO4或HgSO4发生反应:
由此可见,后者要较前者优先进行。为避免前一个反应的进行,往往在取来水样分析时,第一步先加入HgS04,让其络合氯离子。
在氧化过程中,会出现如下反应:
尽管[HgCl4]2-的稳定常数很大,但难免仍有少量氯离子存在,马上被酸性重铬酸钾所氧化。因此,我们即使采用HgSO4掩蔽氯离子的影响,仍会有少量的氯离子被氧化。另外,在实验中也发现,按标准方法加HgS04掩蔽氯离子时所测的CODcr值与不加HgS04时测得的COD1值和O.226[C1-]的差值并不相等,即:
要使该式相等,要添加一个校正值。
式中COD1表示不加HgSO4时测得的COD值(为防止Ag2S04对氯离子的沉淀作用,在反应开始时不加Ag2SO4,待反应30min后,再加入Ag2SO4)。[Cl-]表示氯离子浓度,CODcr表示标准方法测得的COD值。
校正值 就是一小部分未络合的氯离子所产生的COD值。可先采用已知浓度的NaCl溶液测出此校正值 。 在实际计算中,可从COD1、[Cl-]及 值计算出CODcr值。此法可省去使用剧毒药品HgSO4的手续,其计算值与测定结果误差在8%之内。
E. 为什么锅炉水中要去除离子
水壶经常烧开水,时间长了,上面会结垢,主要是水中的钙,镁离子与碳酸氢根离子作用专形成沉积.锅炉也是这样属.此外水中的氯离子等阴离子有一定的腐蚀性.除离子是为了防止锅炉,管道结垢.
化学水处理,是通过阳床除去水中的阳离子,阴床除去阴离子.
F. 电厂化学阴床和混床再生所用的工业烧碱有何要求是否有工业烧碱的国家标准
反洗是将阳、阴、混床平时运行时经由上层树脂的悬浮物反冲洗掉(假设运行时水流是自内上而下的),一般在容再生(阳床用盐酸、阴床用氢氧化钠、混床交替用盐酸、氢氧化钠)前需要将这些悬浮物冲洗去,防止影响使用酸、碱的再生效率
G. 水质含氯及硫酸根离子比较高用什么材质
工业大规模生产过程,消除溶液中氯离子的方法如下: 1,可以采用阴床,若是氯回离子含量高的时,答采用反渗透等膜法处理的话,会破坏反渗透膜的。 2,用三辛胺作萃取剂,用液-液萃取处理,三辛胺与水中Cl-离子形成萃合物而使Cl-转移到有机相。
H. 反渗透膜能除氯离子吗
氯离子是可以透过反渗透膜的,而且对于反渗透膜没有影响。但是余氯
【余氯可分为化合性余氯(指水中氯与氨的化合物,有NH2Cl、NHCl2及NHCl3三种,以NHCl2较稳定,杀菌效果好),又叫结合性余氯;游离性余氯指水中的ClO-、HClO、Cl2等,杀菌速度快,杀菌力强,但消失快),又叫自由性余氯;总余氯即化合性余氯与游离性余氯之和】——网络
具有氧化性会对聚酰胺膜造成巨大影响,所以需要严格控制。
RO及NF进水中的游离氯要降到0.05ppm以下,才能达到聚酰胺复合膜的要求。
【除氯的预处理方法有两种,粒状活性炭吸附和使用还原性药剂如亚硫酸钠。在小系统(50-00gpm)中一般用活性碳过滤器,投资成本比较合理。推荐使用酸洗处理过的优质活性炭,去除硬度、金属离子,细粉含量要非常低,否则会造成对膜的污染。新安装的碳滤料一定要充分淋洗,直到碳粉被完全除去为止,一般要几个小时甚至几天。我们不能依靠5μm的保安过滤器来保护反渗透膜不受碳粉的污染。
碳过滤器的好处是可以除去会造成膜污染的有机物,对于所有进水的处理比添加药剂更为可靠。但其缺点是碳会成为微生物的饲料,在碳过滤器中孳生细菌,其结果是造成反渗透膜的生物污染。
亚硫酸氢钠(SBS)是较大型RO装置选用的典型还原剂。
将固体偏亚硫酸氢钠溶解在水中配制成溶液,商品偏亚硫酸氢钠的纯度为97.5-99%,干燥储存期6个月。BS
溶液在空气中不稳定,会与氧气发生反应,所以推荐2%的溶液的使用期为3-7天, 10%以下的溶液使用期为7-14天。从理论上讲,1.47ppm的SBS(或0.70ppm偏亚硫酸氢钠)能够还原1.0ppm的氯。
设计时考虑到工业苦咸水系统的安全系数,设定SBS的添加量为每1.0ppm氯1.8-3.0ppm。SBS的注入口要在膜元件的上游,设置距离要保证在进入膜元件有29秒的反应时间。推荐使用适当的在线搅拌装置(静态搅拌器)。
SBS脱氯反应:
Na2S2O5 (偏亚硫酸钠)+ H2O =2 NaHSO3 (亚硫酸氢钠) ·
NaHSO3 + HOCl =NaHSO4 (硫酸氢钠) + HCl (盐酸)·
NaHSO3 + Cl2 + H2O =NaHSO4 + 2 HCl
采用SBS脱氯的好处是在大系统中比碳过滤器的投资较少,反应副产物及残余SBS易于被RO脱除。
SBS
脱氯的缺点是需要人工混合小体积的药剂,在脱氯系统没有设计足够的监测控制仪器时增加了氯对膜的威胁,而且在少数情况下进水中存在硫还原菌(SBR),亚硫酸会成为细菌营养帮助细菌的繁殖。SBR通常在浅层井水厌氧环境下有发现,硫化氢(H2S)作为SBR的代谢产物会同时存在。