当前位置:首页 » 净水方式 » 协同过滤相似度

协同过滤相似度

发布时间: 2021-01-01 05:21:39

1. 相似度的计算 用哪个算法 协同过滤 算法

SIM = Structural SIMilarity(结构相似性),这是一种用来评测图像质量的一种方法。由于人类视觉很容易从图像中抽取出结构信息,因此计算两幅图像结构信息的相似性就可以用来作为一种检测图像质量的好坏.

首先结构信息不应该受到照明的影响,因此在计算结构信息时需要去掉亮度信息,即需要减掉图像的均值;其次结构信息不应该受到图像对比度的影响,因此计算结构信息时需要归一化图像的方差;最后我们就可以对图像求取结构信息了,通常我们可以简单地计算一下这两幅处理后的图像的相关系数.

然而图像质量的好坏也受到亮度信息和对比度信息的制约,因此在计算图像质量好坏时,在考虑结构信息的同时也需要考虑这两者的影响.通常使用的计算方法如下,其中C1,C2,C3用来增加计算结果的稳定性:
2u(x)u(y) + C1
L(X,Y) = ------------------------ ,u(x), u(y)为图像的均值
u(x)^2 + u(y)^2 + C1

2d(x)d(y) + C2
C(X,Y) = ------------------------,d(x),d(y)为图像的方差
d(x)^2 + d(y)^2 + C2

d(x,y) + C3
S(X,Y) = ----------------------,d(x,y)为图像x,y的协方差
d(x)d(y) + C3

而图像质量Q = [L(X,Y)^a] x [C(X,Y)^b] x [S(X,Y)^c],其中a,b,c分别用来控制三个要素的重要性,为了计算方便可以均选择为1,C1,C2,C3为比较小的数值,通常C1=(K1 x L)^2, C2=(K2 xL)^2, C3 = C2/2, K1

2. 怎样用perl实现相似度的计算

在数据挖掘中有很多地方要计算相似度,比如聚类分析和协同过滤。
计算相似度的有许多方法版,其中权有欧几里德距离、曼哈顿距离、Jaccard系数和皮尔逊相关度等等。
我们这里把一些常用的相似度计算方法,用Python进行实现以下。

3. 有没有比较两个用户兴趣相似度的api

针对传统协同过滤推荐数据稀疏会影响推荐质量,以及项目最近邻居集的计算忽略用户多版兴趣及提高推荐的权准确度问题,该文采用混合模型改进了相似性度量计算,综合Pearson相关系数与修正余弦相似性,提出了一种基于混合相似度的用户多兴趣推荐算法.实验表明:该推荐方法的相似度计算更高效,不仅提高推荐准确率,而且使用户有更好的推荐体验.

热点内容
丁度巴拉斯情人电影推荐 发布:2024-08-19 09:13:07 浏览:886
类似深水的露点电影 发布:2024-08-19 09:10:12 浏览:80
《消失的眼角膜》2电影 发布:2024-08-19 08:34:43 浏览:878
私人影院什么电影好看 发布:2024-08-19 08:33:32 浏览:593
干 B 发布:2024-08-19 08:30:21 浏览:910
夜晚看片网站 发布:2024-08-19 08:20:59 浏览:440
台湾男同电影《越界》 发布:2024-08-19 08:04:35 浏览:290
看电影选座位追女孩 发布:2024-08-19 07:54:42 浏览:975
日本a级爱情 发布:2024-08-19 07:30:38 浏览:832
生活中的玛丽类似电影 发布:2024-08-19 07:26:46 浏览:239